
Hindawi Publishing Corporation
Journal of Automated Methods and Management in Chemistry
Volume 2006, Article ID 26908, Pages 1–19
DOI 10.1155/JAMMC/2006/26908

Sampling of Atmospheric Precipitation and Deposits for
Analysis of Atmospheric Pollution
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1. INTRODUCTION

The tremendous dynamics of the atmosphere makes it the
main propagation path for air pollution and its transport be-
tween the various elements of the environment in the form of
dust, gases, and aerosols. Pollution, depending on its proper-
ties and on meteorological conditions, is subject to scatter-
ing and transformation during atmospheric transport. Most
of the pollutants eventually return to the earth’s surface, of-
ten at great distances from their sources. Their return may
be through precipitation or absorption of gaseous pollutants
and aerosols by surface waters, the vegetation cover, or the
soil. Of these, wet deposition plays the greatest role in feeding
atmospheric pollutants back to the earth’s surface in regions
distant from their sources.

Atmospheric precipitation is the result of condensation
of atmospheric water vapour due to adiabatic cooling. Pre-
cipitation falls down to the surface in the form of rain, snow,
drizzle, snow pellets, and hail; floats in the air in the form of
clouds and fog, and settles on surfaces in the form of dew,
hoarfrost, and rime (see Figure 1).

Environmental protection begins with identification and
definition of the kind and degree of pollution and its analysis
and monitoring. During the past 20 years the field of anal-
ysis and monitoring of atmospheric deposition has grown
dramatically because we now recognize that the quantity and
quality of transported pollutants, as well as the range of their
interactions, can be a good indicator of the degree of atmo-
spheric pollution in a given geographical region. An exten-
sive review of the design and basic parameters of samplers

for rain precipitation and runoff waters appeared in 2002
[1]. This paper is prompted by the growing interest in the
sampling of other atmospheric deposits, particularly fog and
clouds, dew, hoarfrost and rime, that began around 1990.
The basic characteristics of the forms of precipitation that
will be discussed in this paper are presented in Table 1.

2. IMPORTANCE OF REPRESENTATIVE SAMPLES

To be a source of reliable analytical information a sample
must be representative of the object or distribution from
which it is extracted. In practice the samples we analyze can
only be a small fragment of the objects of interest. Hence, we
must take care to insure that the samples are as representative
as possible [2]. Sampling has a special significance for all an-
alytical processes; in a sense, it is the critical point of analysis.
Errors committed at this stage cannot be estimated nor can
their effect upon the result of the analysis be reduced.

One of the most important ways in which sampling can
fail to be representative is through sample contamination.
For sampling of atmospheric deposits, the proper prepa-
ration of the sampler is an important factor for minimiz-
ing sample contamination. The most obvious step is also
the most important—cleaning the sampler before collecting
a sample. A standard cleaning procedure includes, among
other things, washing in deionized water [3–5] and/or for ex-
ample, rinsing with acetone [6]. Collecting vessels are also
washed in water with detergents [7], in aqueous solutions
of nitric acid [7], distilled water, and eventually rinsed with
deionized water [8, 9]. Subsequent handling of samples in
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Figure 1: Types of atmospheric precipitation and deposits.

accord with good laboratory practice is, of course, also a re-
quirement for minimization of sample contamination.

We now turn to our review of the designs of samplers
for the collection of fog and cloud water, dew, hoarfrost, and
rime.

3. SAMPLERS FOR THE COLLECTION OF FOG
AND CLOUD WATER SAMPLES

As previously noted, transport of anthropogenic pollutants
through the atmosphere is an important means of their
worldwide distribution. Airborne pollutants can be trans-
ferred to aquatic and land environments via mechanisms
such as wet and dry deposition and air/water partitioning.
Fog has recently attracted the attention of the scientific com-
munity as a potentially important deposition mechanism.
Organic and inorganic pollutants distribute themselves be-
tween the vapour and aqueous phases, of fog and between the
particles present in both phases and chemical reactions can
occur within fog droplets. When fog droplets subsequently
evaporate, the chemicals contained in them can be deposited
on surfaces in contact with the fog [10].

Over the last 20 years, investigators have examined the
chemical compositions of cloud and fog [7, 11–13]. They
have studied the processes occurring in atmospheric parti-
cles and developed sample collection methods [14, 15]. Col-
lecting samples of fog and cloud water is often more compli-
cated than collecting samples of precipitation or runoff wa-
ter [1], since we need to extract the water from the cloud or
fog. Many of the methods for fog and cloud water sampling
are based on instruments originally designed for quantita-
tive meteorological measurements of the amount of water in
clouds or fog. Fog and cloud water samplers that are used for
the evaluation of pollutants differ from those used for wa-
ter measurements, because they must not only perform effi-
cient, quantitative water collection, but must also avoid col-
lection of submicron “nonactivated” aerosols, preserve the
size and chemical composition of droplets through all the
stages of collection, and provide rapid collection of relatively
large amounts of liquid water for wet chemical analysis. As
with any instrument, the collector should also be easy to use
and automate, and should require minimal maintenance.

Cloud and fog water collectors operate primarily on the
principle of inertial impaction on a plane surface, a standard
technique also used for the collection of dry aerosol particles.
Collection efficiency curves, which show the percentage of
particles of any size which are collected as a function of the
particle size, indicate that the instruments based on inertial
impaction generally provide more reliable results than other
methods [16].

The efficiency curves of inertial impactors show a sharp
division (cutoff) between the droplets collected and those
which are not. Marple and Willeke [17] formulated design
criteria for inertial impactors that enable construction of
dry aerosol impactors with well-defined cutoff characteris-
tics. Their techniques had to be adapted, however, to the spe-
cial needs of liquid water sampling [16]. Single stage cloud
water impactors, based on the adapted techniques, have been
used for several years to perform studies of cloud and fog wa-
ter chemical composition [16]. They are used in both active
collectors, where flow of air containing the droplets is forced
by means of a suitable mechanical device, and passive collec-
tors, where natural circulation of air (wind) is utilized. There
is a wide variety of passive and active collectors available for
various ambient conditions.

4. PASSIVE COLLECTORS

Passive collectors are often simpler in operation and may be
used in windy environments. However, their impaction char-
acteristics (cutoff) are less controllable. The collecting ele-
ments (impaction plane) for passive collectors may vary from
flat surface to solid elements like rods; tubes as well as strings,
ropes, filaments, screens, and meshes have also been used.

The simplest passive fog sampler is the deposition plate,
typically a horizontal plate on which fog droplets are allowed
to settle [18]. This sampler may suffer from contamination
due to dry deposition and dew formation, which leads to
significant biases toward errors with large particle measure-
ments. The design is attractive on its own, but its disadvan-
tages restrict its applications.

The next simplest fog sampler is the string screen sam-
pler in which fog is collected through the impaction of fog
droplets on a string screen. After collision the droplets ad-
here to the string and drop along the strings to a collection
tray. String screen samples can be also in an active version.

In a published paper [19], a passive collector is described
(Figure 2), consisting of a 2 m tall collection, of two horizon-
tal disks 20 cm in diameter, installed vertically on frames at
a distance of 40 cm from each other. Between the disks, Ny-
lon strings of 0.2 mm diameter are stretched into two rows.
The fog water collected on the strings is stored in a 500 mL
polyethylene bottle. Collection area was 314 cm2. A hood
above the collector prevents rain from diluting the fog sam-
ple. The sampler was set up in a 1 m high PVC tube to protect
it from direct radiation and light.

The principle of the work of the collector described
in [20] (Appalachian Mountain Club/Worcester Polytechnic
Institute (AMC/WPI)) is based on the utilisation of wind
to transfer particles to Teflon collecting strands. The cloud
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Table 1: The characteristics of some atmospheric precipitation types.

Atmospheric
Characteristicsprecipitation

or deposits

Cloud
Water droplets of microscopic size (diameters not exceeding 100 µm) and/or ice crystals floating in the air

due to microturbulences counteracting their gravitational sedimentation.

Fog
Suspension of very small water droplets with diameters below 0.05 mm or ice crystals in air. It is formed from

the result of cooling from the ground layer of air to the dew–point temperature–reaching the state of saturation

with water vapour. From the sample collection point of view both cloud and fog present similar challenges.

Dew

Deposit of water droplets forming on the surface of ground and objects on earth’s surface or close to it due

to condensation of water vapour contained in surrounding air. Generally, it is caused by night-time radiation

of heat. Dew originates also when warm and humid airflows above a cooled-down substratum, whose

temperature is lower than the saturation point of the inflowing air mass.

Hoarfrost

Deposit of ice crystals forming generally on horizontal surfaces. The appearance and size of the deposit

depend on thermal properties of the substratum and on air humidity. It occurs with distinct differences

between air and ground temperatures and the ground surface temperature must be negative but the air

temperature can be positive. It is often linked with ground frost.

Rime
Granular or crystalline deposit (generally both forms of deposit appear simultaneously) settling most easily

on thin fibrous objects windward, at negative air temperature and with fog. The amount of the

deposit depends on the density and duration of fog.

Hood support

Funnel

Stand

Hood

Separator

Collector bottle

Support tube

Steel stabilizer

Figure 2: Structure of a passive fog water collector [19].

water droplets are collected principally by the mechanism of
inertial impaction on Teflon strings. Exclusion of the heav-
ier rain droplets is accomplished by both the placement of
the collection strands deep within the collection box and by
a baffle system (Figure 3). The airflowing through the baf-
fles is restricted and forced to turn, causing it to accelerate.
The rain droplets, with their greater inertia, overcome the
viscous drag effects of the airstream and pass out of it, im-

Inlet

(a)

Inlet

Front baffle
Collection cartridge

Rain
splatter
shield Rain

drains
(b)

Rear
baffle

Collection hose
to bottle

Figure 3: Structure of a passive cloud water collector (AMC/WPI)
[20]: (a) top view, (b) side view.

pacting on the lower baffle. A drain below the baffle per-
mits the separated rain water to leave the collector. The car-
tridge containing the collection strands is located behind the
baffle to allow adequate expansion of the airflow and thus
to maximize the utilization of the collection surface area.
The distance back from the top of the entrance of the
collection box to the upper lip of the lower baffle was se-
lected for its theoretical ability to remove free-falling droplets
> 200 µm at winds of 0–10 m/s and droplets > 500 µm at
winds of 0–25 m/s. These values represent the minimum
ability of the collector to exclude rain and drizzle. To prevent
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contamination of the cloud water sample by rain, baffles have
lips to prevent the impacted rain water from running to the
edge of the baffle and from becoming reentrained in the ac-
celerated airflow. The upper baffle has a small reservoir where
water collects prior to draining out holes drilled on the side
of the collector. To prevent rain splatter on the lower sur-
face of the collector from reentering the airstream, a series of
vanes set at 40 degrees is positioned in front of the lower baf-
fle. Rain water collected by these vanes leaves the collector at
the base of the lower baffle.

In order to collect cloud water samples, another collector
has also been used, consisting of 0.45 mm diameter Teflon-
coated wires, strung at 3 mm intervals around the perimeters
of two 25 cm diameter plastic disks, held 1 m apart by plas-
tic rods [21]. The surface area of the collector is sufficient to
provide a sample of 50 mL in 3–30 minutes, depending on
the wind speed and cloud liquid water content. The collec-
tion efficiency of this sampler indicates that cloud droplets
of 10 µm diameter are collected with only 50% efficiency at
wind speed of 1 m/s, proving poor performance of the collec-
tor at low wind speeds. For 80% of the cloud water samples,
the wind speed was greater than 5 m/s, yielding 50% collec-
tion diameters below 5 µm.

5. ACTIVE COLLECTORS

Active collectors use either forced flow (fans, pumps) or mo-
tors moving the collecting elements in the air (usually rotat-
ing them) to achieve the same end. Active collectors typically
use collection elements such as rods, tubes, strings, ropes,
filaments, screens, and flat surface. Some active collectors
use jet-driven impaction onto solid surfaces. Size-resolved
cloud composition is usually obtained via active collectors
with multiple jet/impaction surface combinations, or multi-
ple stages with varying cutoff diameters.

The active string screen fog sampler described by Jacob
et al. [22] consists of three parts: a series of three screens
of Teflon wires on which the fog condenses, a baffle which
smoothes the airflow, and a fan which pulls the air past the
Teflon wires. The fog water is collected on the wires until
drops are formed, then they move down the wire, pool in a
Teflon tray, and are then collected in a clean glass jar [10].
Inclining the screen at 35 degrees from the vertical in the
direction of airflow helps prevent resuspension of impacted
droplets into the airflow. During sampling the fog water only
comes into contact with Teflon and Glass. During sample col-
lection, the face velocity of the air through the sampler, the
time of collection, and the air temperature are monitored.
Typical sample collection volumes range from 50 to 200 mL,
which can take from 50–180 minutes depending on the liq-
uid water content LWC of the fog event (0.1–0.3 g/m3) [23].
Droplets in the range 3–100 µm diameter are efficiently col-
lected using this type of sampler [22].

Figure 4 presents a schematic diagram of a typical active
string screen collector. The Teflon screen consists of a frame
of four 4 mm thick copper rods, over which Teflon strings
are strung [24]. Drops collected on the strings find their way
to polyethylene collecting bottles. Additional string screen

Flow straightener
String screen

Inlet

Polyethylene collection bottle

Blower

Figure 4: Schematic diagram showing the construction of an active
screen fog water collector [24].

collectors are described by Sasakawa and Uematsu [25] and
Sasakawa et al. [26].

The High-Volume Fog Sampler [27, 28] is a scaled-up
version of the sampler described by Jacob et al. [22]. In this
system, a 50 cm diameter fan in the back draws air at the
rate of 4400 m3/h across a screen consisting of four layers of
0.28 mm Teflon filaments wound around threaded rods. Fog
droplets impact on the Teflon filaments, coalesce, and flow
down the filaments into a Teflon-coated funnel. The fog wa-
ter then drains by gravity through a Teflon tube to a Teflon
bottle. Collection rate of this system is approximately 1 L/h
in fog with 400 m visibility.

The Active String Cloud Water Collector (CWP) de-
scribed by Daube et al. [20] is shown schematically in
Figure 5. This system collects cloud droplets on a removable
cartridge of 0.78 mm diameter Teflon strands. A fan inside
the collector draws air and cloud droplets up through a ven-
tral opening and then into the vertical collection strands. The
positioning of the air inlet on the bottom of the sampler
makes it possible to avoid collecting rain [29–31]. The col-
lector excludes most rain droplets ≥ 200 µm at wind speeds
≤ 10 m/s. With this system, cloud water collection is usu-
ally initiated within 15–30 minutes after the onset of a cloud
event, and the typical collection time is approximately 5
hours.

The CalTech Active Strand Cloud Water Collector
(CASCC), built at California Institute of Technology, is
shown schematically in Figure 6. It has been described in
detail in several publications [4, 11, 32–35]. In this system,
cloud droplets are collected by inertial impaction on an an-
gled bank of six rows of 508 µm diameter Teflon strands. A
fan sucks in air through the Teflon strings with a velocity
of 8.5 m/s. The strands are inclined at an angle of 35 de-
grees from vertical. The collected droplets coalesce, and are
drawn down the strands by gravity and aerodynamic drag
into a Teflon trough. A Teflon tube delivers the sample from
the trough to a collection bottle, which is emptied at 30–60
minutes intervals. The 50% collection efficiency cutoff, based
on droplet diameter and predicted from impaction theory,
is 3.5 µm. A protective rain shield, with its opening facing
downward, can be attached to the front of the collector to
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Fan
(a)

Fan Inlet
Collection
cartridge

Collection cartridge Collection hose
to bottle

(b)

Figure 5: Schematic diagram of an active cloud water collector
(CWP): [20] (a) top view, (b) side view.

Fan Strands
Flow straightener

InletCollection bottle

(a)

(b)

Figure 6: Schematic diagram showing the construction of CASCC
collector [32]: (a) side view, (b) front view.

exclude large sedimenting droplets (d > 300 µm) [34]. The
typical flow rate of air through the CASCC is 24.5 m3/min,
yielding a collection rate of approximately 2 mL/min when
the LWC of the fog is 0.1 g/m3.

The CASCC cannot function below 0◦C, because cloud
water droplets will freeze on the collection surface. For this
reason, a winter cloud water sampler—the CalTech Heated
Rod Cloud Water Collector (CHRCC)—was developed [36].
The stainless steel rods that form the collection surface in this
sampler are internally heated on a periodic basis when tem-
peratures fall below 4.5◦C (Figure 7). When heated, accumu-
lated frozen cloud water on the rods melts and drains off the
rods to the sample bottle. A fan draws air across an inclined
bank of six rows of the 3175 µm diameter rods at a rate of
6.3 m3/min. The corresponding cutoff of the rod bank is cal-
culated to be 7.7 µm. The predicted collection rate in a cloud
with an LWC of 0.1 g/m3 is 0.44 g/min.

Fan

Air
flow

Rear
cover

Diffuser

Collection rods

Drainage

Air flow

Inlet
cover

Inlet

Rinse nozzle

Pneumatic cylinder

Figure 7: Schematic diagram showing the construction of CHRCC
[36].

Impaction surfaces

Sample collection port
Connection to pump

Inlet

Figure 8: Schematic diagram showing the construction of CSU 5-
Stage Collector [37].

6. MULTISTAGE FRACTIONING SAMPLERS

The operation of Two-Stage Fog Water Impactor (TFI) [16]
is also based on the principle of inertial impaction on a
plane surface. This sampler consists of vertical slit impaction
stages, one to collect the larger droplets, followed by two
identical stages in parallel. These collect those droplets which
passed the first stage, but which are above a well-defined cut-
off diameter. The cutoff diameters of the first stage are be-
tween 10 and 12 µm, and of the second stages are between
5 and 6 µm, calculated for flow rates from 150 to 200 m3/h.
The air, together with smaller water droplets, leaves the im-
pactor through holes in the plate and four suction pipes. The
collected samples are forced by airflow to the external edges
and to streams directed down the plates. The samples are col-
lected into vials situated at the bottom of the device. This
apparatus has the capability of controlling the velocity of in-
coming air depending on the average wind speed.

Cloud chemistry can vary as a function of drop size.
In order to investigate variations in chemical composition
across the drop size spectrum, a multistage cloud water col-
lector was developed by Moore et al. [37] at Colorado State.
The CSU 5-Stage Collector (Figure 8) is a cascade inertial
impactor that collects samples of cloud water in five inde-
pendent size fractions for chemical analysis. Its design incor-
porates many features to facilitate its use in the field, and
to maintain both consistent performance between varying
atmospheric conditions and the chemical and physical in-
tegrity of the collected sample. The sampler consists of five
stages, each with a single, one-sided rectangular jet arranged
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Suction Stagnation plane
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Warm, dry, and clean air

Droplets of different
size (inertia)

Figure 9: A schematic diagram of CVI sampler.

in a cascade. The intensity of airflow rises as it passes through
the sampler. Drops of progressively smaller diameters are col-
lected in each stage as those with too much inertias can-
not follow the fluid streamlines and impact. The collector is
mounted at 45 degrees to the horizontal, so sampled drops
coalesce and run down to polypropylene vials threaded di-
rectly into each stage. The collector is oriented into the wind
during operation, subject only to site restrictions and its own
geometry. While the collector is designed for low wind en-
vironments, a baffle or windshield parallel to the inlet can
be added for higher winds. The experimentally determined
50% cutoff diameter for the first stage was 25.5 µm, while
the second stage had a slightly higher 50% cutoff diameter
of 29 µm. Stages three, four, and five had 50% cutoff diam-
eters of 17.5, 10.5, and 4.5 µm, respectively. Although some
mixing between drop sizes occurs, the CSU 5-stage effectively
separates the largest drops (> 30 µm in diameter) from the
smallest ones (< 10 µm in diameter) [38].

An important drawback of most cloud and fog water
samplers is their inability to separate completely the water
particles from the surrounding air. The Counterflow Virtual
Impactor (CVI) collector described by Krupa [15] is shown
schematically in Figure 9 and offers a solution to this prob-
lem. Warm, dry, and particle-free airflows through the an-
nular region of two concentric tubes to the tip of the im-
pactor. The wall of the inner tube at the tip is made of porous
stainless steel, which allows the dry air to flow into the in-
ner tube. A fraction of the air entering the inner tube is
sucked back into the sampler, while the rest blows out the
tip. A stagnation plane, where no net axial flow occurs, is
formed inside the porous section of the inner tube. Tipward
of this plane, the airflows towards the tip, while inward of
this plane, the airflows back into the sampler. The distance
from the stagnation plane to the tip can be varied by ad-
justing the airflow rates to the tip and back into the sam-
pler. This plane is the virtual impaction surface. The device
must be moving in the air, tipward (it is frequently airplane-
mounted). Cloud droplets approaching the CVI tip can ei-
ther be deflected around the inlet (smaller ones, low inertia,
also small solid particles) or swept into the inner tube (iner-
tia sufficient to reach the stagnation plane). One can adjust
the lower size limit of droplets being sampled (from 4 µm
to 15 µm) by suitable positioning of the stagnation plane.
The sampled cloud droplets evaporate quickly in the warm,

Motor

Collection bottle

Arm

Slot

Figure 10: Structure of a fog and cloud water rotating arm collector
[11].

dry air inside the CVI sampler. The maximum droplet ra-
dius that can be sampled is between 50 and 100 µm. Am-
bient gases and submicron aerosol particles are rejected in
the CVI with almost 100% effectiveness. The instrument re-
quires a condenser for water collection and measurement. In
this respect, a CVI collecting sample for chemical analysis
must ensure total recovery from the gaseous phase of both
water and other volatile substances (pollutants) contaminat-
ing original droplets caught by the device.

7. ROTATING COLLECTORS

The active sampler described by Glotfelty et al. [6] is a ro-
tating screen device, 50 cm in diameter, in which four lay-
ers of stainless steel screen are rotated around a central axis
at 720 rpm. Fog water obtained from droplets impacting on
the screen is centrifuged to the periphery, collected in a slot-
ted aluminum tube, and drained into a collection vessel. A
large fan pulls air through the device at 160 m3/min. Under
these conditions, the collection rate of this system is approxi-
mately 0.5–1 L/h depending on the LWC of fog water (0.024–
0.08 g/m3).

The CalTech, Atmospheric Science Research Center (AS-
RC),and AeroVironment (AV) instruments are rotating col-
lectors [14], employing external surfaces for the impaction of
the droplets.

Jacob et al. [39] built the CalTech system. It is an exter-
nal impactor that sweeps through the air at a high velocity
(1700 rpm) in order to collect large particles. The arm (63 cm
long) spins in a vertical plane, driven by a motor (Figure 10).
Each end of the arm has a slot milled into its leading edge.
Bottles (30 mL) are mounted at the ends of the arm to collect
the water that impacts on the slots. Threaded Teflon tubes
are screwed on the ends of the arm and extend inside the
collection bottles, preventing the collected fogwater samples
from running out after the instrument has stopped. Deflec-
tors prevent water that impacts on the solid part of the arm
from entering the slot. Small fins are welded to the back of
the arm for extra strength. The entire arm is Teflon-coated
to prevent chemical contamination and to facilitate cleaning.
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Motor

Nylon strings

Figure 11: Schematic diagram showing the construction of ASRC
[14].

Collection rod

Receiving troughs

Collection bottles

Figure 12: Schematic diagram showing the construction of a rotat-
ing fog water sampler (AV) [14].

The rotating arm collector samples air at a rate of 5 m3/min.
Laboratory calibration indicates a lower size cutoff of 20 µm
diameter (50% collection efficiency). This sampler has been
applied in several studies [40, 41].

The ASRC sampler consists of 1 500.41 mm diameter Ny-
lon strings mounted between two plates (Figure 11). The
sampler rotates to its vertical axis at 100 rpm [14]. Water im-
pacting on the strings collects in traps on the bottom plate.
Periodically, the sample rotation is stopped and the fogwater
on the strings is coaxed into the traps by tapping the bottom
plate with a mallet. At the end of the sampling period, water
in the trap is manually transferred to polyethylene bottles.
Two versions of the device exist; one of them is passive and
the other is active.

The AV rotating rod sampler collects droplets by im-
paction on a Teflon-coated rod rotated in a vertical plane at
3450 rpm (Figure 12). The outer part of the rod is 1.6 mm
and the inner part is 19 mm in diameter to provide size cuts
of 2.5 and 10 µm, respectively, [14]. Water impacting on the
rods is transferred by centrifugal force to circular polyethy-
lene troughs that drain to polyethylene collection bottles.
Separate troughs and sample bottles are used for the two size
fractions.

In Table 2 parameters of samplers used for collecting fog
and cloud were set together.

8. OTHER TYPES OF SAMPLERS

The Global Geochemistry Mesh Impaction Fog Sampler and
the Desert Research Institute (DRI) instruments are internal
collectors [14], in which air is drawn into the instrument and
extracted by surfaces internal to the device.

The Global Geochemistry Mesh Impaction Fog Sampler
(Figure 13) is an internal impaction sampler that collects fog
water on a 10 cm diameter by 4 cm thick polypropylene mesh
located at the entrance of a V-shaped Teflon lined PVC pipe.
The mesh is made of interlaced filaments (410 µm diame-
ter) and has a void volume of 96%. Air is drawn through the
mesh at 1.7 m3/min. Fog droplets impact on the mesh, coa-
lesce, and then drain into a polyethylene bottle at the bottom
of the V-tube. The sampler can effectively intercept droplets
> 5.0 µm, with a 50% collection efficiency at 2.4 µm. Liquid
holdup on the mesh depends on the mass of liquid sampled.
If ≤ 1 g of water is sampled, all of it remains on the mesh. If
100 g is sampled, less than 5% remains [14].

The DRI (Figure 14) is based on a jet impaction prin-
ciple. Fog is drawn through three rectangular jets at a total
flow rate of 20 L/s. The accelerated droplets impact on rotat-
ing Teflon rollers and are transferred to a central roller. Here,
the fogwater is forced to accumulate in bulk form and is de-
posited into a polystyrene collection vessel. The impactor has
a sharp cutoff at 5 µm diameter to allow efficient collection of
droplets while rejecting small interstitial particles. The col-
lector is housed in a shelter consisting of an inverted, insu-
lated 250 l drum to prevent collection of precipitation. Air-
flow up to the collector is provided by a fan [14, 44].

Specially [8] designed equipment, consisting of a stain-
less steel cooling chamber (10 cm × 10 cm × 22 cm) and a
collector for fog droplets utilizing the impaction technique,
has also been used for collecting fog water. Fog air is drawn
at the rate of 0.2 m3/min and the fog droplets impact on the
collector which is maintained at 15◦C in the cooling cham-
ber. The sampling period varies from 30 to 120 minutes, and
in this time from 5 to 30 mL of fog water is collected. The
volume of the sample collected depends on the duration of
the fog event.

In the available literature [15, 46] one can find informa-
tion on an electrostatic precipitation method capable of sam-
pling single cloud or fog drops (Figure 15). The precipitator
is based on the corona discharge principle. A copper elec-
trode is placed as a discharge electrode at a distance of 10 cm
above an aluminum precipitation electrode. A 25–30 kV volt-
age is applied to the discharge electrode for 1 second to pro-
duce a spray of electrons or negative charge and the charge is
transferred to the droplets by the action of the electric field.
Charged droplets moving in the direction of the collecting
electrode are captured on Petri dishes. The droplets are cov-
ered immediately with paraffin oil to prevent evaporation
and contamination. Capillary electrophoresis is then used for
the chemical analysis of the individual drops. This sampler
can also be used for collecting bulk phase cloud or fog wa-
ter, by increasing the time for the application of the voltage
to the discharge electrode from 1 second to 5–15 minutes,
depending on the density of the fog.
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Table 2: Basic parameters characterizing fog and cloud collectors.

Name of
sampler

Type of
sampler

Collector
surface

Collection
rate

(mL/min)

Cutoff

(µm)
LWC
(g/m3)

Flow rate
(m3/min)

Comments Reference

String
screen
sampler

Active
Teflon
wires

50–200/
50–180

3–100 0.1–0.3

Inclining the screen at
35 degrees from the ver-
tical in the direction of
airflow helps prevent re-
suspension of impacted
droplets into the airflow.

Jacob
et al. [22]

High-
Volume
Fog
Sampler

Active
Teflon
filaments

16.7
4400 1 L/h in fog with 400 m

visibility, 50 cm
diameter fan.

Schomburg
et al. [27],
Chernyak
et al. [28]

CWP Active

Teflon
strands,
0.78 mm
diameter

The collector excludes
most rain droplets
≥ 200 µm at wind
speeds ≤ 10 m/s.

Daube
et al. [20]

CASCC Active

Teflon
strands,
508 µm
diameter

2 3.5 0.1 24.5
The strands are inclined
at an angle of 35 degrees
from vertical.

Igawa
et al. [4, 33],
Munger
et al. [32, 34]

CHRCC Active
Stainless
steel rods

0.44 7.7 0.1 6.3

The stainless steel rods
that form the collection
surface in this sampler
are internally heated on
a periodic basis when
temperatures fall below
4.5◦C.

Collett
et al. [36],
Schell
et al. [16]

TFI Active 5–12 150–200

This apparatus has the
capability of controlling
the velocity of incoming
air depending on the
average wind speed.

Schell
et al. [16]

CSU
5-Stage
Collector

Active 4.5–29

The collector is
mounted at 45 degrees
to the horizontal. It is a
cascade inertial
impactor that collects
samples in five
independent size
fractions.

Moore
et al. [38]

CalTech
Rotating
Arm
Collector

Rotating
active

Teflon-
coated

20
5 The arm spins in a

vertical plane, driven by
a motor at 1700 rpm.

Jacob
et al. [39, 41],
Johnson
et al. [40]

Rotating
screen
sampler

Rotating
active

Stainless
steel
screen

8.3–16.7
0.024–
0.08 160

Fifty-centimeter
diameter screen rotated
around a central axis at
720 rpm.

Glotfelty
et al. [6]

AV
Rotating
active

Teflon-
coated
rod

Rod rotated in a vertical
plane at 3450 rpm.

Hering
et al. [14]

ASRC Rotating

Nylon
strings,
0.41 mm
diameter

The sampler rotates to
its vertical axis at
100 rpm. Two versions
of the device exist, one
of them is passive, and
the other is active.

Hering
et al. [14]
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Table 2: Continued.

Global
Geochemistry
Mesh
Impactor

Mesh
impaction

Polypropylene
mesh

2.4 1.5–1.7
Hering et al. [14],
Krupa [15]

Sampler with
cooling
chamber

Stainless steel
cooling
chamber

5–30/
30–120

0.2

The volume of
the sample collected de-
pends on the duration of
the fog event.

Khemani et al. [8]

Passive
collector

Passive
Nylon strings,
0.2 mm
diameter

Collection area
314 m2.

Lange et al. [19]

AMC/WPI Passive Teflon strands Baffle system. Daube et al. [20]

Passive
sampling
system

Passive

Teflon
strings,
0.3 mm
diameter

15–25/120

The sampler is activated
and closed by a fog sensor
based on the dew point
and a separate rain sensor.

Krupa [15]

Automated
sampling
system

Teflon
strings

The measurement of pH
and conductance occurs
automatically in real time
during sampling.

Baumgardner
et al. [3], Mohnen
et al. [42], Vong
et al. [43]

CRAC 2

The instrumentation and
the electronic section
include a conductometer,
a pH meter and a
microprocessor.

Jacob et al. [22]

Vacuum
channel

Collection bottle

Polypropylene mesh

Inlet

Figure 13: Construction scheme of a fog water sampler (Global
Geochemistry Mesh Impaction) [15].

9. AUTOMATIC DEVICE

Figure 16 provides an example of a passive sampling sys-
tem [15]. It consists of a Teflon support structure and
0.3 mm diameter Teflon strings, mounted 3.0 mm apart in
a cylindrical configuration. Under appropriate airflow con-
ditions, fog droplets are impacted on these strings, grow to
larger drops, run down the strings, and are collected into bot-
tles. All droplets > 5.0 µm diameter are impacted at normal
wind speeds. In order to collect 15–25 mL it is necessary to
collect samples for two hours. This collector is set out only
in case of the occurrence of fog. In other situations it is en-
closed inside a metal cylinder in order to prevent its contam-
ination (rain and dry deposition). The sampler is activated
and closed by a fog sensor based on the dew point and a sep-
arate rain sensor. A modified dynamic version of the passive
sampler is the CalTech Active Strand Cloud Water Collector.

Inlet

Central rod

To the collection
bottle

PVC pipe
for protection

Deionized water system

Impaction rod

Outlet

Deionized
water tube

Rotating rods

Support rods

Figure 14: A schematic diagram of DRI sampler [45].

An automated system for the collection of cloud wa-
ter samples directly from clouds (Figure 17) has been de-
scribed in various papers [3, 42, 43]. The system consists
of a collector which uses wind speed to affect cloud im-
paction on 0.4 mm Teflon strings, a system for collecting,
retaining, and storing samples, and an electronic unit con-
trolling the system. The equipment includes also a tempera-
ture sensor, a rain detector, and a device for measuring wind
speed. When there are no clouds, it is stored within a pro-
tective enclosure. During cloud events, a motor-driven shaft
elevates and exposes the collector. The sample storage unit
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Voltage supply

Petri dish

Discharge
electrode

Collection or
precipitation
electrode

Figure 15: Structure of a device for electrostatic precipitator for
sampling single cloud or fog water droplets [15].

Fog sensor
Rain sensor

Collector

Shield

Motor

Figure 16: Structure of a passive fog water sampling system [15].

consists of 24 l polyethylene sample bottles contained in a cir-
cular wire support and housed in a commercial refrigerator.
When the liquid water content of a cloud exceeds 0.05 g/m3,
the wind speed is higher than 2.5 m/s, ambient air tempera-
ture is above freezing, and there is no rainfall, the cloud water
collector is activated and projected out of its protective hous-
ing. The measurement of pH and conductance occurs auto-
matically in real time during sampling. The indications of pH
values are checked on a daily basis and the conductance value
is indicated in relation to the external temperature.

An automated system for collecting and analyzing rain
samples (Cloud and Rain Acidity/Conductivity Analyzer
(CRAC)) has been adapted for the analysis of cloud water
[5]. The system consists of a rain probe connected to an
active CalTech collector [22] (Figure 18). When cloud wa-
ter samples are being collected, the rain detector is discon-
nected. The instrumentation and the electronic section in-
clude a conductometer, a pH meter, and a microprocessor.
Samples are collected sequentially in double accumulation
vessels containing conductometric cells. After having col-
lected 50 mL of samples, the system directs 12 mL to a cham-
ber where pH is measured, while the remaining quantity goes
to a vial which is kept in an automatic whirling arm. The
whirling arm and the pH meter are situated in the cooling
section. This collector has a 50% cutoff size centered around
2 µm diameter.

In published papers [47, 48], an automatic device for col-
lecting fog samples has been described. Figure 19 shows a

Funnel

Tree-way
pinch
solenoid

Accumulator

Motor

Refrigerator

Collector tower

Rinse pump

Spray nozzle

Cloud collector

Deionized rinse water

Figure 17: Structure of an automatic system to collect rain water
samples directly from the clouds [3].

Cover

Rain collector

pH meterRefrigerator

Conductivity meter

Rain sensor

Cloud collector

Figure 18: Structure of an automatic system for the analysis of
cloud water samples [5].

block diagram of this instrument [48, 49]. The micropro-
cessor, after receiving signals from three sensors: fog, tem-
perature, and rain, uses them to control the system of fog
droplet collection. The fog detector, being an optical back-
scattered sensor (Figure 20), consists of two receivers; one
of which measures the intensity of the light source and the
other the intensity of the light scattered by the fog droplets.
Both signals reach the microprocessor and their ratio is com-
pared with a threshold value. The system is activated when
the detector signals the presence of fog. An active string col-
lector was used to collect fog samples because of its simple
structure and ease of automation. This collector consists of a
polyethylene aerodynamic tunnel in which air is sucked in by
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Temperature
sensor

Fog
sensor

Rain
sensor

Microproccesor
unit

Data
output

Rear
cover

Sample collection

Fan
Flow

measurement
Collection

strings

IR lamp

Air flow

Front
cover

Figure 19: Block diagram of the automatic instrumentation for fog
water sampling [48].

a fan located in its rear part. Teflon strings (0.4 mm diame-
ter) are strung 5 mm apart from each other in the form of a
vertical shield, on three frames placed at an angle of 30 de-
grees with respect to the direction of the stream. Fog droplets
collide with them and once they reach an adequate size, they
flow down into bottles. The velocity of airflowing through
the tunnel is 6 m/s, which corresponds to an airstream inten-
sity of 17 m3/min. The collector opens and closes automati-
cally. At the end of fog occurrence the lid is closed in order to
keep away impurities. In order to prevent the freezing of fog
droplets on the strings, an infrared emitting lamp is placed
above the frames, which allows the hoarfrost on the strings
to melt into the collecting bottles. A simplified version was
used in [50].

10. COLLECTING DEW SAMPLES

Dew typically forms on cool nights with light breezes; water
condenses from the atmosphere at ground level under these
conditions. Hence, ground effects control the atmospheric
chemistry during condensation [51]. Dew can play an im-
portant role in the deposition of air pollution particularly
in arid ecosystems [18]. Dew may increase seedling survival,
plant growth, and crop yield, but it may also have a negative
effect, promoting bacteria and fungal infections. As a source
of information on the environment, dew samples have long
been a subject of study [52]. During the night, the latent heat
flux towards the soil surface is very small, and therefore the
amounts of dew deposition are very small as well. This fact
poses special technical measurement difficulties that we will
discuss in the following paragraphs.

The first publications presenting methods for determin-
ing the amount of dew appeared at the end of the last cen-
tury [52]. Measurements were carried out using very sim-
ple methods, that is, collecting dew from grass by means of
a sponge or by placing absorbent paper on grass. The dew
samples were collected early in the morning. Before the ex-
pected appearance of dew, the collecting surface was flushed
with deionized water and subsequently dried. Dew collection

Lamp

Mirror

Receiver

Lenses
Optical

fibre

Figure 20: Schematic diagram of the fog optical detector [47].

took place only on rainless nights to eliminate any influence
of rain droplets on collected dew samples.

Modern methods of dew collection can be divided into
three basic groups: optical, volumetric, and gravimetric.
Modern methods permit continuous registration of dew
events in their nascent stage, measurement of amount of dew,
its duration, and evaporation time. Optical methods consist
in visually estimating the amount of dew. In this method the
device Duvdevan is often used.

Volumetric methods are connected with measuring the
amount (volume) of the collected dew. Volumetric methods
are exemplified by the volumetric drosometer, which has a
collecting surface consisting of a filter paper 9 cm in diam-
eter, saturated with water [53]. This instrument has limitia-
tions: it can be used only at temperatures above 0◦C and the
exact moment of dew formation must be determined.

Gravimetric methods rely on defining the increase of the
weight of the collecting surface (without and with dew),
which can be determined by means of analytical balance.
Gravimetric methods include the method using Leick’s plates
(made from a mixture of silicon dioxide dust, alabaster gyp-
sum, and water) [53]. The plates are weighed before being
used and after they are bedewed. The increase in weight in
mg is proportional to the amount of dew in mm. Gravimet-
ric methods include the drosograph too. The nascent dew
settles upon a receiving plate and then flows down to a col-
lecting vessel located underneath. The plate and vessel are
located at one end of a first-order lever, the opposite end of
which ends in a small writing pen. The movement of the pen,
combined with the rotating movement of the drum, makes it
possible to record changes in the quantity of dew. The droso-
graph described by Hutorowicz [54] uses an analytical bal-
ance with a metal box with turf in the role of dew collector
and holder.

Li [55] has described another direct gravimetric tech-
nique. The collectors are containers made of polymethyl-
methacrylate (PMMA), with a diameter of 9.2 cm and a
height of 10 cm, filled with an appropriate collecting mate-
rial: thick gravel, sand, and/or loess.

As with cloud and fog, dew can deposit atmospheric pol-
lution and in recent years, interest has grown in dew sam-
pling for analysis of atmospheric pollution. The dew sam-
pling method most often used for experiments on atmo-
spheric pollution is the cloth plate method (CPM) [18, 56], a
variant of the gravimetric method of dew collection. Velvet-
like fabric (a square cloth of 6 cm × 6 cm), 0.15 cm thick, is
placed in the centre of a 10 cm × 10 cm × 0.2 cm glass plate.
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Collection bottle

Foil

Figure 21: Schematic diagram of a dew sampler [57].

The glass plate is placed on a 10 cm × 10 cm × 0.5 cm layer
of plywood. The plate and the plywood form a homogenous
base 0.7 cm thick. The absorbent material is removed and
replaced every day. Upon removal it is placed in flasks and
weighed in order to measure dampness.

In the collector described in paper [57] and shown in
Figure 21, the condensation surface is a rectangular foil sheet,
3 m × 10 m, made from TiO2 and BaSO4 microspheres em-
bedded in polyethylene (volumetric method). The foil is
fixed by lateral cables on a light grid attached by cables. The
cables are fixed to beams anchored to the ground. This foil
exhibits improved emitting properties in the near infrared
(to provide radiative cooling of room temperature surfaces)
and efficiently reflects the visible radiation (sun). A weak
wind (< 1 m/s) is necessary to provide sufficient humid air
around the condenser, but strong wind increases heat losses.
To minimize wind influence and recover water drops by grav-
ity using a plane condensing area with an angle with respect
to horizontal and thermally isolated from the ground with
2 cm thick polystyrene foam, the placement of the collector
at an angle of 30 degrees facilitates the flow of droplets (it
seems that the angle may be a critical value, too high leads to
diminishing dew formation). Dew, accumulating in a groove
along the lower edge of the collecting plane, flows off to a 25 l
polyethylene bottle.

Dew has been sampled by means of a collector which
consists of a pump and a Teflon pipe terminated with a glass
fibre filter [64]. The dew is sucked in by the pump together
with air and flows through the pipe into a polyethylene bot-
tle. Within 30 minutes, 1 mL of dew is collected.

In Table 3 parameters of samplers used for collecting dew
were set together.

11. COLLECTING HOARFROST/RIME SAMPLES

Rime and hoarfrost are physical processes and forms when
supercooled cloud droplets in a basal cloud layer freeze
on impact with vegetation or topographic surfaces. Rime
is commonly observed on trees, towers, power lines, and
other objects at high elevations exposed to high-velocity
cloud airflow. The difference between rime and hoarfrost was
explained in Table 1. The chemical characteristics of rime,
hoarfrost, and glaze should mimic the chemistry of cloud
droplets and potentially affect vegetation adversely. If these
deposits act as a biologically inert, frozen protective shell,
their role could be beneficial. Hoarfrost and rime constitute
an important element in water circulation, particularly in

mountainous regions where they occur quite frequently, they
contribute to the process of cleaning the atmosphere and of
transferring impurities from air to the soil. Such collectors
can be used interchangeably because the precipitation de-
pends on meteorological conditions.

The simplest samplers used to collect samples of hoar-
frost and rime consist of flat surfaces made from materials
such as Teflon, galvanized steel [79], or Nylon wires [80].
Very often hoarfrost accumulates on some elements of cloud
water collectors, for example, the strings, and it is then col-
lected manually into polyethylene bottles [30, 81]. In Table 4
parameters of samplers used for collecting rime were set to-
gether.

In another published paper [60] an apparatus was de-
scribed as being consisting of four polyethylene plates. The
plates are fastened at the height of 1 m on an aluminium scaf-
fold and positioned vertically facing the four cardinal points.
The wind direction is estimated during sample collection by
observing the wind vanes. Hoarfrost or else rime which ac-
cumulates on the surface of the plates is removed by means
of a polyethylene scraper from the outer sides of the plates
and collected into bottles.

For collecting samples of hoarfrost and rime, a passive
collector is used with a string polyethylene screen. The col-
lector mesh has 12 mm openings with 2 mm strands. Samples
gathering on the screen are collected into 250 mL containers
[61].

In the passive shield hoarfrost/rime collector is made of
polyvinyl chloride and the collecting area consists of 46-
singular fibres 0.2 mm in diameter. Deposit is scraped off
from its surface by means of a scraper. Subsequently, the sam-
ples are placed in polyethylene bottles and transported to the
laboratory [62].

To measure liquid and solid atmospheric deposits, the in-
strument known as the Grunow thimble is used also. It con-
sists of a wire mesh in the form of a cylinder with a diameter
of 10 cm and a height of 20 cm [82, 83]. This thimble is laid
over a rain gauge, for example, of the Hellman type (the in-
strument consists of a metal cylinder ending in a funnel and
the precipitation—depending on its kind—flows down into
the container or accumulates above the funnel).

12. AUTOMATIC DEVICE FOR SOLID DEPOSITS

Measurements of solidified atmospheric deposits (hoarfrost,
rime, freezing rain, and glazed frost) can be of substantial
significance for certain branches of economy, such as the
power industry, or air and road transport. It must be said that
some problems may arise to differentiate between solid de-
posited precipitation and freezing fallen precipitation (freez-
ing rain), both contributing to the icing events. A sufficiently
thick layer of the deposit can overload and possibly break
electric power lines. In a published paper [84] a method is
presented for measuring the process of accretion of solid de-
posits on specific surfaces. The method relies on the mea-
surement of the weight of ice deposits, the visual descrip-
tion of their appearance, and the time and duration of their
occurrence. For this purpose, several pairs of electric power
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Table 3: Basic parameters characterizing dew collectors.

Type of
collector
surface

Dimension
( mm ×mm)

Thickness of
collector base
( mm)

Comments Reference

PTFE-sheet 310× 307 3

The collectors were placed on a 10
cm block of polystyrene foam. Takenaka et al. [58]

Pyrex glass plate 300× 298 3

Stainless steel sheet 303× 228 0.5

Aluminium sheet 303× 226 1

PTFE-coated stainless steel sheet 303× 228 0.5

PTFE-coated aluminium sheet 303× 226 1

Plastic foil
2000× 2000
2500× 2500

0.05

Dew drops form on surfaces
slightly inclined down the foil,
they are collected in the morning
by means of a syringe and put
into 100 and 250 mL bottles.

Scheller [59]

Glass 1000× 1000 1
In order to insure that dew will
form, the back of the collector is
made of aluminium.

Jiries [51]

Table 4: Basic parameters characterizing RIME collectors.

Type of Dimension
Location Comments Reference

collector surface ( cm 2)

Polyethylene plates 400 At the height of 1 m
It is also possible to measure the size of
the collected deposit and to record its
visual appearance by photographing it.

Ferrier et al. [60]

Polyethylene screen 3600 At the height of 2–3 m
Deposits are collected for the whole
24-hour period. Berg et al. [61]

Polyvinyl chloride shield 929 At the height of 1 m Duncan [62]

Teflon film
Teflon film attached to a 3 cm thick
polystyrene block with double-stick tape. Foster [63]

line sections of different diameters are used. A single mea-
surement set consists of four conductor sections of a specific
diameter and length, suspended in pairs at some set height
above the ground. During the observation, the thickness of
the deposit on the conductors is measured with a pair of
calipers. When the thickness exceeds 10–20 mm, both con-
ductors are taken down and transferred indoors for the pur-
pose of melting and weighing, or measuring the volume of
water by means of a laboratory-graduated cylinder. A pub-
lished paper [85] presents an installation for the measure-
ment of frosting on power lines.

Measurement methods are usually based on the deter-
mination of the weight of hoarfrost (icing) per unit of area
or length (the latter value is important for the power in-
dustry). This weight may be determined by means of a de-
vice [86] which consists of two wooden rods, where frost/ice
formation occurs, laid perpendicular to each other; the first
pointing north-south and the other east-west. The modified

version of the device utilizes a strain-gage beam force sensor
connected to the cylinder collecting the ice.

In [84] a system is presented which is used to measure
frosting. It consists of continuously operating vibrational
sensors of freezing rain and frosting. The sensor is a small
cylindrical metal core, electromagnetically excited to vibrate
at a nominal resonance frequency of 40 kHz. Two feedback
coils covibrating with the core, placed in it, permit the mea-
surement of the actual frequency of core vibrations through a
microprocessor-based measuring and control circuit. When
frosting (freezing rain, rime, and hoarfrost) starts to form on
the core, the mass of the vibrating object increases, which
leads to a proportional reduction of the frequency of core
vibration. When the frosting reaches a thickness of 3.8 mm,
heating the sensor is switched on automatically in order to
melt the deposit and to restore the resonant frequency. Peri-
ods of defrosting and renewed frosting build-up last for 5–10
minutes, depending upon the wind speed and temperature of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


14 Journal of Automated Methods and Management in Chemistry

Table 5: Information on the concentrations of inorganic and organic pollutions in fog, cloud, dew, and rime samples.

Sampler
Atmospheric

Analytes
Concentration
range (mg/L)

Referenceprecipitation
or deposits

CalTech
Rotating
Arm
Collector

Fog

NO−
3 0.37–489.8 Jacob et al. [41]

SO2−
4 2.59–99.84 Johnson et al. [40]

Cl− 0.67–194.9 Lacaux et al. [65]

NH+
4 0.77–51.48

Ca2+ 0.6–39.0

K+ 0.08–5.77

Mg2+ 0.11–41.25

Na+ 0.23–139.4

pH 2.16–6.17

Formaldehyde 0.50–2.30

Acetaldehyde 0.007–0.17 Grosjean and Wright [66]

Benzaldehyde 0.08–0.32

Cloud

NO−
3 9.98–1010.6 Waldman et al. [12]

SO2−
4 6.14–446.4 Grosjean and Wright [66]

Cl− 0.53–343.1

NH+
4 1.11–133.6

Fe 0.02–6.88

Pb 0.038–2.78

pH 2.06–3.87

Formaldehyde 0.01–1.08

Acetaldehyde 0–0.59

Benzaldehyde 0–0.57

2-butanone 0–0.47

n-butanal 0–0.52

CASCC Fog

NO−
3 4.72–1791.8 Munger et al. [32]

SO2−
4 0.013–1196.16 Klemm et al. [67, 68]

Cl− 0.0027–86.51 Collett et al. [69]

NH+
4 0.38–464.4 Anastasio et al. [70]

Na+ 0.21–44.48 Wrzesinsky et al. [71]

K+ 0.23–2.67 Herckes et al. [35, 72]

Al 14–903 µg/L

Ni 0.8–42.8

Pb 3.4–61.4

Cd 0.3–8.7

Cu 2.5–56.8

Sb 0.8–5.7

Se 1.1–11.5

pH 2.33–7.43

Conductivity 17–452 µS/cm

n-Alcanes NW-5.1 ng/mL

Naphthalene NW-0.1

Phenanthrene 0.028–0.169

Anthracene NW-0.040

Fluoranthene 0.002–0.095

Pyrene 0.013–0.289

Benzo(ghi)fluoranthene NW-0.019

Benz(a)anthracene NW-0.022

Benzo(e)pyrene NW-0.252

Benzo(a)pyrene NW-0.218

Indeno(1.2.3-cd)pyrene NW-0.007

Benzo(ghi)perylene NW-0.033
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Table 5: Continued.

Cloud

NO−
3 1.74–507.8 Munger et al. [34]

SO2−
4 36.48–1112.8 Anastasio et al. [70]

Cl− 0.39–74.4 Collett et al. [73]
NH+

4 0.79–168.9 Igawa et al. [33]
Ca2+ 0.24–91.4
Mg2+ 0.11–126.6
Na+ 0.32–87.3
pH 2.42–4.98

Formaldehyde 0.41–1.84
Acetaldehyde 0.053–0.22

ASRC Fog

NO−
3 0.22–23.15

Schemenauer et al. [74] and
Schemenauer and Cereceda [75]

SO2−
4 < 0.5–36.4

F− < 0.1–1.48
Cl− < 0.1–27.9
Ca2+ < 0.10–11.10 Gordon et al. [9]
K+ < 0.08–0.93 Eckardt et al. [76]

Mg2+ 0.02–1.79
Na+ 0.08–15.7
NH+

4 0.32–3.19
Al 0.02–1.56
B < 0.07–0.22

Cd < 0.002
Cr < 0.01
Cu < 0.01
Fe < 0.02–0.86

Mn < 0.003–0.236
Ni < 0.01
Pb < 0.03–0.27
Zn < 0.01–1.03

HCO−
3 0.31–1.86

pH 3.46–6.694

Cloud

NO−
3 0.70–12.3 Schemenauer and Cereceda [77]

SO2−
4 0.45–6.70

Cl− 5.85–84.3
NH+

4 0.00–0.65
Ca2+ 2.08–42.7
K+ 0.14–2.12

Mg2+ 0.46–5.73
Na+ 3.36–46.0
Fe < 0.06
Cd < 0.0005
Pb < 0.0005
Be < 0.0005
Cr < 0.005
Mn 0.0054–0.034
Ni < 0.002–0.0074
Cu < 0.005
Zn < 0.002–0.026
pH 6.96–7.94

High-
Volume
Sampler

Fog

Diazinon 0.15–4.8 µg/L Schomburg et al. [27]
Malathion 0.14–8.7 Chernyak et al. [28]

Chlorpyrifos 0.012–0.19
Fonofos < 0.012–0.030

Methidathion 0.036–0.22
Chlorpyrifos < 900–5000
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Table 5: Continued.

Chlorothalonil 4000–17000

Endosulphan 500–10000

Metolachlor 1800–147000

Trifluralin 100–1000

CWP Fog

NO−
3 0.248–284.0 Vermeulen et al. [29]

SO2−
4 0.528–163.2 Elias et al. [30]

F− 0.02–0.67 Kimball et al. [31]

Cl− 0.60–24.7

Ca2+ 0.02–16.0

Na+ 0.09–8.33

K+ 0.12–19.5

Mg2+ 0.06–5.5

NH+
4 0.054–80.5

Al3+ 0.04–1.16

Li3+ 1.00–2.00

Sr2+ 0.03–0.05

pH 2.41–6.36

Conductivity 23.2–854 µS/cm

Rime

NO−
3 0.30–17.9 Elias et al. [30]

SO2−
4 0.70–48.8

F− 0.02–0.98

Cl− 1.47–28.6

Zn2+ 0.01–1.49

Mn2+ 0.005–0.184

Mg2+ 0.02–1.56

Na+ 0.07–17.6

K+ 0.10–9.14

Ca2+ 0.06–7.38

NH+
4 0.02–12.5

Fe2+ 0.02–0.57

Al3+ 0.02–1.29

Sr2+ 0.03–0.05

pH 3.47–6.87

Conductivity 6.65–252 µS/cm

Passive
collector
(polyvinyl
chloride)

Rime

SO2+
4 0.88 Duncan [62]

Cl− 0.65

Na+ 0.29

K+ 0.14

Mg2+ 0.06

Ca2+ 0.21 Muselli et al. [57]

NH+
4 0.31

NO−
3 0.77

pH 5.69

CPM Dew SO2−
4 0–375

polyethylene Cl− 0–2275

Ca2+ 0–90

K+ 0–30

pH 4.4–7.3

CPM
Teflon

Dew

NO−
2 2.16–8.14 Rubio et al. [78]

NO−
3 5.77–14.76

SO2−
4 8.5–43.25

Cl− 0.99–3.05

NH+
4 5.68–14.06
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K. Skarżyńska et al. 17

Table 5: Continued.

Ca2+ 7.54–13.46
K+ 0.27–3.12

Mg2+ 0.69–2.83
Na+ 0.34–2.94
pH 5.4–6.6

the environment. Once every minute a signal appears at the
output of the sensor indicating the frequency of vibrations of
the sensor.

13. MEASUREMENT RESULTS

In the recent years an increased interest is observed in the
chemistry of atmospheric precipitation and deposits, as the
impurities and pollutants undergo complicated chemical and
biochemical reactions in the aquatic and soil ecosystems due
to which they enter into biogeochemical circulation, disturb-
ing the environmental balance. For this reason, the pollution
of atmospheric air, as well as the pollution of atmospheric
precipitation and deposits which follow, constitutes a prob-
lem on an international scale, requiring constant monitor-
ing as being confirmed by national and foreign studies col-
lected through literature research. In Table 5 results of mea-
surements of inorganic and organic compound concentra-
tions determined in nontypical samples are presented.
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