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Abstract: Satellite image classification is widely used in various real-time applications, such as the
military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective
classification of satellite images is required to improve classification accuracy. In this paper, the com-
bination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is
proposed for the precise identification of satellite images. The HFEL uses three different types of
Convolutional Neural Networks (CNN), namely AlexNet, LeNet-5 and a residual network (ResNet),
to extract the appropriate features from images of the hierarchical framework. Additionally, the
optimal features from the feature set are extracted using the Correlation Coefficient-Based Gravita-
tional Search Algorithm (CCGSA). Further, the Multi Support Vector Machine (MSVM) is used to
classify the satellite images by extracted features from the fully connected layers of the CNN and
selected features of the CCGSA. Hence, the combination of HFEL and CCGSA is used to obtain
the precise classification over different datasets such as the SAT-4, SAT-6 and Eurosat datasets. The
performance of the proposed HFEL–CCGSA is analyzed in terms of accuracy, precision and recall.
The experimental results show that the HFEL–CCGSA method provides effective classification over
the satellite images. The classification accuracy of the HFEL–CCGSA method is 99.99%, which is
high when compared to AlexNet, LeNet-5 and ResNet.

Keywords: accuracy; Convolutional Neural Networks; Correlation Coefficient-Based Gravitational
Search Algorithm; ensemble learning; hierarchical framework; satellite image classification

1. Introduction

Remote sensing images are widely considered as an essential source of data related to
the Earth’s surface. Information about the fundamental land cover from remote sensing im-
ages is required for classification applications [1,2]. The advantages of the remote sensing
techniques are their low cost and the possibility for huge area coverage [3,4]. This image
classification technique is utilized to recognize and detect appropriate information from
satellite images [5], since satellite images have sufficient information to perform land cover
mapping to deliver data at national, international and local scales [6]. Remotely sensed
satellite imaging is used in various applications, such as forestry, regional planning, agricul-
ture and geology, to examine and handle human activities and natural resources [7–9]. The
biophysical cover of the Earth’s surfaces is considered one of the most important climate
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variables. In environmental analysis, adequate information about the land cover is essential
to monitor the effects of resource management and climate change [10].

Due to the ease of implementation and accuracy of the statistical parameters, they
are broadly utilized in satellite image analysis techniques. However, these statistical
parameter-based techniques are time-consuming, and they are only suitable for small
areas. The weather and errors related to the photographic equipment create noise in the
satellite images [11]. High-resolution satellite images create various issues during scene
classification, which are as follows: (1) enhanced images provide more details, but the
low-level features present in low-resolution images are inadequate in capturing different
image data, and (2) objects existing in similar types of scenes have various orientations
and scales [12,13]. In general, the classification method depends on the labeled samples
to train the classifiers, where the accuracy is mainly based on the quality and number of
the training samples. However, the annotation of the labeled samples generally requires a
great deal of time and is difficult to obtain in different real-world contexts [14].

In this research, the automated analysis and classification of remote sensing satellite
images is accomplished. This automated classification is beneficial in different real-world
applications, such as environmental monitoring, planning, rescuing, searching and so
on [15]. The main contributions of this research are as follows:

• The refined and semantic features are extracted from the fully connected layers of
AlexNet, LeNet-5 and ResNet. Further, these extracted features are concatenated
together to obtain multiple ensembles of features.

• From the extracted features, the optimal set of features is selected using the CCGSA
technique. Hence, the combination of multiple ensemble features from the HFEL
and optimal features selected from the CCGSA is used to increase the classification
accuracy of satellite images.

• Three different datasets, i.e., SAT-4, SAT-6 and Eurosat datasets, are considered to
analyze the performance of the HFEL–CCGSA method.

The following existing works are related to the classifications accomplished on the
SAT-4 and SAT-6 datasets.

Unnikrishnan, A., Sowmya, V. and Soman, K.P [16] presented a deep learning ar-
chitecture with hypertuning of the network, reducing the input bands to two (i.e., red
and near-infrared (NIR)). Deep learning architectures were designed for three networks,
namely VGG, AlexNet and ConvNet. Here, the hypertuning was accomplished over the
filters of each convolutional layer. The classification of different classes was accomplished
using the modified architecture with a reduced number of filters and two-band information.
However, the hypertuned deep learning architecture obtained less accuracy during the
classification. Jiang, J et al. [17] developed the Double-Channel Convolutional Neural
Network (DCCNN) model for classifying RGB-NIR images using the correlation among
the R, G, B and NIR bands. For describing the RGB and NIR image features, the DCCNN
had two independent CNN networks. Next, feature fusion was performed at the fully
connected layer and the classification was performed at the final layer. This configuration
was useful for the effective utilization of various features of RGB-NIR images. Moreover,
overfitting was avoided using the net dropout technique, which eliminated 60% of the
neurons in the fully connected layer. However, the classification accuracy was lower for
the double-channel CNN model with the net dropout technique.

N. Yang et al. [18] presented a training approach, namely greedy DropSample, for
increasing the speed of the Convolutional Neural Network (CNN)’s optimization process
during image classification. This method was mainly focused on the samples that generated
the highest gradients. Moreover, the activations of the network were biased in the training
process due to the absence of certain training samples. The samples with less losses
were filtered out to increase the speed of the CNN. However, the developed DropSample
failed to consider the similarity between the classes. Weng et al. [19] developed the
Multi-Dimensional Multi-Grained Scanning Structure (MGSS) method to classify the land
cover/land use over remote sensing images. The developed MGSS was used to extract the
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spatial and spectral information from the images. Next, the prediction was obtained by
mapping the probability feature vectors in the residual forest structure. The number of
parameters required for the optimization of MGSS was lower when compared to the CNN.
However, the gradient passed from the high level affected by a certain event in MGSS.
Zhong, Y et al. [20] presented an agile CNN structure, namely SatCNN, for obtaining the
classification over High-Spatial-Resolution Remote-Sensing (HSR-RS) images. Here, the
intrinsic features from the HSR-RS images were captured using preprocessing with the
z-score methods. The developed SatCNN was used to balance the training efficiency and
generalization ability of the model. However, the performance of the SatCNN was sensitive
to the testing ratio. Specifically, the SatCNN’s performance was affected due to the intra-
and inter-class complexity of the HSR-RS.

The following existing works are related to the classifications accomplished on the
EuroSAT dataset.

S. A. Yamashkin et al. [21] solved the issue of classification over HSR-RS images using
deep learning methods along with the conditions of labeled data scarcity. The GeoSys-
temNet model solved the classification issue based on the genetic uniformity of spatially
neighboring objects of various scales and hierarchical levels. However, the GeoSystem-
Net model required a huge amount of freedom degrees to maintain the classification
performance. Syrris et al. [22] developed the SatImNet, which is a group of open training,
structured and harmonized data with respect to certain rules. Further, the CNN was
modeled to obtain the classification of satellite images.

Finally, the satellite image classification carried out on the Office-31 dataset and the
NWPU-Merced-Land satellite image dataset was performed as follows: Hu et al. [23]
presented the Coordinate Partial Adversarial Domain Adaptation (CPADA) to perform
an unsupervised satellite image classification. The CPADA was used to develop a partial
transfer learning technique, and the negative transfer was discarded by coordinate loss
using the down-weighting outlier satellite images. The classification of CPADA improved
because of the domain-invariant features obtained from the CPADA. However, the features
were misaligned, due to the deviation that occurred among the predicted and ideal weights.

The better classification of the satellite images resulted in high classification accuracy.
The hypertuned deep learning architecture obtained less accuracy during the classification
process due to the vanishing gradient problem [16]. Moreover, the net dropout technique
was used to avoid the overfitting issues that affect the classification accuracy due to the
removal of relevant features [17]. The DropSample developed for the CNN failed to
consider the similarity of the classes, which may affect the classification performance [18].
Moreover, a huge amount of freedom degrees is required for the GeoSystemNet model to
maintain the classification performance [21].

Solution

In this paper, classification accuracy over the satellite images is increased using the
multiple ensemble features and optimal features selected from the CCGSA technique to
select the relevant features to avoid the overfitting problem. The correlation coefficient
considered in the feature selection process is used to avoid the irrelevant features from
the feature set. The classification accuracy of the HFEL–CCGSA method also improved
using image data obtained from the hierarchical framework to maintain the gradient in
the network.

The overall organization of the paper is as follows: a detailed explanation of the
HFEL–CCGSA method is given in Section 2. Section 3 provides the results and discussion
of the HFEL–CCGSA method. Finally, the conclusions are made in Section 4.

2. HFEL–CCGSA Method

In the HFEL–CCGSA method, the satellite image classification is performed using
HFEL and CCGSA-based feature selection. In ‘without CCGSA’, the refined and semantic
features are extracted from the fully connected layers of AlexNEt, LeNet-5 and ResNet.
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Next, the CCGSA-based feature selection is used to select the optimal features from the
extracted features. Generally, input images have unknown characteristics and an effective
model is required to handle the unknown characteristics of images. The developed method
randomly selects the number of images in the model for classification. The proposed
method analyzes the effect of the pre-processing, such as normalization and augmentation.
Then, k-fold cross-validation is applied to analyze the performance of the developed
method in remote sensing classification. Both the extracted and selected features are given
as input to the MSVM for classifying the satellite images. Therefore, the utilization of
hierarchical images, feature extraction from the CNN and optimal feature selection are
used to improve the classification performance. Figure 1 shows a block diagram of the
HFEL–CCGSA method. The hierarchial framework provides the data in various manners
for feature learning, the CCGSA method selects the features based on correlation, and
ensemble learning selects the feature set based on the MSVM model.
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Figure 1. Block diagram of HFEL–CCGSA method.

2.1. Image Acquisition

To evaluate the HFEL–CCGSA method, the tests were carried out on three differ-
ent datasets, namely the SAT-4, SAT-6 and Eurosat datasets. Both the SAT-4 and SAT-6
datasets were acquired from the NAIP dataset [24]. The SAT-4 multispectral dataset has
500,000 images, including four different classes of images, such as trees, barren land, grass-
lands and all other land covers. Next, the SAT-6 dataset has 405,000 images and contains
different classes of images, such as water bodies, grasslands, barren land, buildings, trees
and roads. The images that exist in both the SAT-4 and SAT-6 datasets have the size
of 28 × 28 with 1 m spatial resolution, and each image contains red, blue, green and
near-infrared (NIR). Figure 2 shows sample images from the SAT-4 and SAT-6 datasets.
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Figure 2. Sample images from SAT-4 and SAT-6 datasets.

In the Eurosat dataset [25], the satellite images are acquired from European cities
that are dispersed over 34 countries. The Eurosat dataset has 27,000 labeled and geo-
referenced images, where each image has a size of 64× 64. The Eurosat dataset contains
10 different classes of images, such as residential buildings, industrial buildings, seas and
lakes, herbaceous vegetation, highways, pastures, rivers, annual crops, permanent crops
and forests, where each class has 2000–3000 images. Additionally, the Eurosat images have
13 bands, namely red, blue, green, aerosols, red edge 1, red edge 2, red edge 3, red edge 4,
shortwave infrared 1, shortwave infrared 2, NIR, water vapor and cirrus. Figure 3 shows
sample images from the Eurosat dataset.
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Figure 3. Sample images from Eurosat dataset.

2.2. Hierarchical Framework

In a hierarchical framework, an ordered set of tasks is accomplished to generate the
coarse data of the images. An illustration of the hierarchical framework used in the HFEL–
CCGSA method is shown in Figure 4. For example, the input image can be directly given to
the CNN for feature extraction or it can be generated after performing the pre-processing.
The hierarchy contains the arrangement of items to represent the data at various levels or at
the same level. Here, images are arranged as raw images, pre-processed and augumented
images to extract features for better representation.
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2.2.1. Image Pre-Processing

After accomplishing the image acquisition, histogram equalization and normalization
are performed in order to enhance the image quality. The visual quality of satellite images is
improved by varying the pixel value range using normalization, also referred to as contrast
stretching. Equation (1) shows the common formulae of the normalization technique.

x2 = (x1−min)
newmax− newmin

max−min
+ newmin (1)

where x1 specifies the input image subjected to the preprocessing; min and max represent
the minimum and maximum intensity values, i.e., from 0 to 255; moreover, x2 indicates the
image after normalization, and the new minimum and maximum values are represented as
newmin and newmax, respectively. After normalization, the new image ranges from 0 to 1
and it is subjected to histogram equalization. Next, histogram equalization is applied to
adjust the image contrast using the histogram values. Histogram equalization is considered
an effective technique to provide a better image without losing information such as points,
image patches and edges [26].

2.2.2. Data Augmentation

After performing the pre-processing, the image (x2) is subjected to data augmentation.
During data augmentation, the pre-processed image is rotated according to the angles 0◦,
90◦, 180◦ and 270◦, and it is flipped from left to right. In this way, this documentation
generates eight augmented images for a single pre-processed image.

From this hierarchical framework, there are three different image outputs, such as the
x1-raw input image, x2-pre-processed image and x3-pre-processed and augmented image.
Similarly, the same hierarchical framework is carried out for N amount of input sample
images. Further, these outputs from the hierarchical framework are subjected to the feature
extraction process, which is explained in the following section.

2.3. Feature Extraction from the CNN

In the HFEL–CCGSA method, ensemble learning is performed by concatenating
the features from the CNN. There are three different CNNs, namely AlexNet, LeNet-5
and Resnet, used to extract the optimal features from the input images x1, x2 and x3,
respectively. Here, the feature vectors from the fully connected layers are obtained and
these feature vectors are concatenated together as follows.

2.3.1. AlexNet

In the HFEL–CCGSA method, AlexNet [27,28] is used to extract the feature vectors
from the given input, where the structure of the network has eight different layers, i.e., five
convolution layers and three fully connected layers. AlexNet uses an effective activation
function, namely the rectified linear unit (RELU), which prevents the gradient vanishing
issue. The RELU’s gradient is always 1, even when the input is not less than 0. The
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RELU is also used to improve the training speed, and Equation (2) defines the RELU
activation function.

y = max(0, x1) (2)

where y is the neuron output and x1 is the input. Next, AlexNet contains various small
sub-networks, which may encounter the overfitting issue. Thus, some layers are dropped
out to avoid this. On the other hand, some of the neurons are trained in each iteration
during the dropout period. The generalization is improved in AlexNet by minimizing joint
adaption among the neurons. The output of AlexNet is an average of all the sub-networks.
Therefore, the dropout is used to maximize the robustness. Next, the convolutional layers
are used for the automatic extraction of features, and the extracted features are reduced by
the pooling layer. The convolution of AlexNet is represented in the following Equation (3).

C(h, w) = (x1×m), (h, w) = ∑
b

∑
c

x1(h− b, w− c)m(b, c) (3)

where the input image is represented as x1; the width and height of the input image are
h and w, respectively; the convolutional kernel is represented as m; the width and height
of the convolutional kernel are b and c, respectively. The convolution is used to acquire
the features from the image and these parameters are exchanged in order to minimize
the model’s complexity. Moreover, the feature map is reduced using max pooling in
AlexNet. Then, cross-channel normalization (i.e., a local normalization technique) is used
to accomplish feature generalization.

So f tmax (x1)i =
exp(x1i)

∑n
j=1 exp(x1j)

f or i = 0, 1, 2, . . . k (4)

Equation (4) is a Softmax function that is used as an activation function in the fully
connected layers for mapping the output between the range of 0 and 1. Next, the feature
vectors from the fully connected layers of AlexNet, i.e., f a, are extracted from the output of
the fully connected layers and used for ensemble learning.

2.3.2. LeNet-5

LeNet-5 [29] is generally a modified version of the CNN that is applied to the pre-
processed image to extract the feature vectors. LeNet-5 has two convolutional layers and
two max pooling layers followed by a fully connected layer. The process of LeNet-5 is
described as follows.

First, feature extraction is performed using the convolution layer, where each layer
has a number of convolutional kernels. In this layer, the input matrix is convolved with
the convolution kernel. Consider the input x2 =

{
x2ij
∣∣i = 1, 2, . . . I, j = 1, 2, . . . J

}
, where

I and J are the input image and amount of data in the input image, respectively. The
convolution kernel of LeNet-5 is CK =

{
ckp,q

∣∣p = 0, 1, . . . SCK− 1, q = 0, 1, . . . SCK− 1
}

,
where SCK defines the size of the convolution kernel. Equation (5) shows the results from
the convolutional layer.

oci,j =

{
f

(
SCK−1

∑
p=0

SCK−1

∑
q=0

ckp,qx2i+m,j+q + ot

)}
i=1, 2,...I;j=1,2,...,J

(5)

where the output obtained from the convolution is represented as oci,j, the offset term is
represented as ot and the activation function is represented as f (.). Similar to AlexNet, this
LeNet-5 uses the RELU as an activation function.

The dimension of the data is minimized by accomplishing feature selection using
the pooling layer. This pooling layer uses the maximum pooling, which used to obtain
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the points with high values. The operation of maximum pooling (pool(.)) is expressed in
Equation (6).

mpl
n = pool

(
mpl−1

n

)
(6)

where the lth layer and its former layer are represented as mpl
n and mpl−1

n , respectively,
and n represents the nth sample

In general, the fully connected layer is the last layer of the CNN. Here, the RELU
activation function is used by each neuron and this RELU links the neurons with those
from previous layers. This fully connected layer combines the local information that can
differentiate the types of classes one from another. Equation (7) shows the output of the
fully connected layer (l).

f cl
n = f

(
ckl · f cl−1

n + otl
)

(7)

Hence, the integration of the convolution layer, pooling layer, RELU activation func-
tion and fully connected layer is used to accomplish the feature extraction from the
input image.

2.3.3. ResNet

ResNet [30] is used to obtain the semantic features from the input image based on
its deeper network structure using a residual block. ResNet has five convolutional layer
stages, which include 101 layers that are deeper with less redundancy. Due to the deeper
network architecture, ResNet effectively extracts the features from the pre-processed and
augmented image (x3). The output from the layers of ResNet is expressed in Equation (8).

H(x3) = F(x3) + x3 (8)

where H(x3) is the required output features from ResNet and F(x3) is the network map.
Hence, the ResNet features are referred to as the features extracted from the residual
network. Moreover, it is worth stating that the features from AlexNet and LeNet-5 are
concatenated along with the features extracted using Resnet (i.e., ensemble learning). The
concatenation of all features (FV1) from AlexNet, LeNet-5 and Resnet is expressed in
Equation (9).

FV1 = { f a, f c, H} (9)

The AlexNet features fa, LeNet-5 features fc, and ResNet feature H are combined for
the feature selection process. The formulated FV1 is a feature vector obtained from the
combination of hierarchical framework and ensemble learning, which involves appropri-
ate features obtained from the input images. FV1 is given as one input for the MSVM,
and the selected features from the feature vector are given as an additional input to the
MSVM. The feature selection process over the concatenated features is explained in the
following section.

2.4. Feature Selection Using CCGSA

In the HFEL–CCGSA method, CCGSA-based feature selection is used to select the
optimal features in each stage to minimize the redundancy and interferences caused by
the identical features. In some existing feature selection strategies [31,32], classification
accuracy is taken as a primary factor for selecting the features. However, the feature
selection using the GSA considers the correlation coefficient [33] as the primary factor.
The reason for not selecting the classification accuracy is that it requires an additional
classifier in the feature selection process. The process of the HFEL–CCGSA method already
contains two levels, i.e., it includes HFEL and a feature selection process for classification
purposes. Instead of increasing the complexity of the HFEL–CCGSA method, the GSA
considers the correlation coefficient of the features; hence, the CCGSA is developed for
selecting the features. The solution to the feature selection issue is represented using a
binary representation. The selection of the respective feature is represented by each element
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of the binary solution. Hence, a solution of the CCGSA considers 1 (selected) or 0 (not
selected) in each dimension.

Generally, the GSA [34] is designed for solving the optimization issue in the continuous
search space, but in order to use the CCGSA in the process of searching for features,
solutions are required to convert the results into binary form. Therefore, the continuous
solutions are converted into binary form using the transfer function that is expressed in
Equation (10).

At this time, each solution present in the velocity vector defines the probability of
flipping the respective feature from selected to not selected and vice versa. Specifically, flip-
ping occurs when the dimension has high velocity values; otherwise, when the dimension
has lower velocity values, there is no flipping in the feature selection.

TF
(

vi
d(t)

)
=
∣∣∣tanh

(
vi

d(t)
)∣∣∣ (10)

where the transfer function is represented as TF; the ith element velocity in dimension d
and iteration t is represented as vi

d(t).
The output from Equation (10) is utilized to change the solution location to 1 or 0 as

shown in Equation (11).

FV2(t + 1) =
{
−FV1 r < TF

(
vi

k(t)
)

FV1 r ≥ TF
(
vi

k(t)
) (11)

where the random number generated between the range of 0 and 1 is represented as r.
The derivation of the fitness function is important to select the appropriate features

from the feature set (FV1). In this CCGSA, the efficiency of the solution is represented by
the solution’s physical mass, i.e., the optimal feature set has a high mass when compared
to the worst feature subset. The optimal selection of the features is obtained by considering
the number of features in the subset and the correlation coefficient. Here, the selected
feature subset should have a lower number of features and less inter-correlation of features.
The fitness function used in the CCGSA is expressed in Equation (12).

Fitness = min

δ
Rrc f√

R + R(R− 1)r f f

+ β
|R|
|A|

 (12)

where the first term represents the correlation coefficient; the amount of selected features is
represented as R; the amount of total features in the FV1 is represented as A; the average
feature to feature inter-correlation and feature to class correlation are represented as r f f
and rc f , respectively. Therefore, this feature selection is used to eliminate the redundant
and irrelevant features from the feature vectors. The selected features (FV2) from the
feature vector are divided into M sets and are given as the second input to the voting-based
prediction. The features from CNN models have a size of n× 1000 and the feature selection
model of CCGSA selects 0.8 correlated features from extracted features.

2.5. Classification Using MSVM

Finally, the features from ‘without CCGSA’ (i.e., concatenated features) and HFEL-
CCGSA (i.e., selected features) are given as input to the MSVM in order to obtain the
precise classification of satellite images. To create the MSVM, a multiple-binary Support
Vector Machine (SVM) classifier is combined during the classification process [35]. Here,
the One Versus All (OVA) method is used to solve the issues related to the multi-class SVM.
The C-SVM models are established in the OVA for C amount of classes.

3. Results and Discussion

The results and discussion of the satellite image classification using the HFEL–CCGSA
method are given in this section. The HFEL–CCGSA method was implemented and
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simulated using MATLAB R2019a, where the PC was operated with an i9 Intel core
processor, 128 GB RAM, 3 TB hard disk and Windows 10 operating system (64-bit). The
HFEL-CCGSA method was analyzed with three different datasets, namely the SAT-4, SAT-6
and Eurosat datasets. Here, the performance is analyzed using different metrics such as
accuracy, precision and recall, which are defined as follows.

(i) Accuracy

Accuracy is defined as the total number of precise predictions obtained using the
HFEL–CCGSA method, and Equation (13) expresses the accuracy.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (13)

where TP and TN are the true positive and true negative; FP and FN are the false positive
and false negative.

(ii) Precision

Precision is the ratio among the true positives and the sum of true positives and false
positives and is expressed in Equation (14).

Precision =
TP

TP + FP
× 100% (14)

(iii) Recall

Recall is the ratio among the true positives and true positives and false negatives,
which is shown in Equation (15).

Recall =
TP

TP + FN
× 100% (15)

3.1. Quantitative Analysis on SAT-4 Dataset

This section provides the quantitative analysis of the SAT-4 dataset, which contains
500,000 satellite images. In these images, 70% of the data were used for training and 30%
of the data were used for testing purposes. Here, four different classes were considered
for classification, namely grassland, trees, barren land and a class that covered all land
cover classes excluding grassland, trees and barren land. The quantitative analysis of the
HFEL–CCGSA method for the SAT-4 dataset was carried out in three different ways, which
are given as follows.

Table 1 shows the performance comparison between the case ‘without CCGSA’ and
the HFEL–CCGSA method on the SAT-4 dataset. Here, the case ‘without CCGSA’ was
individually processed using the MSVM classifier. From Table 1, it can be concluded that the
combination in the case ‘without CCGSA’ performed well when compared to the individual
experiments. The reason for the integration of ‘without CCGSA’ is that it uses multiple
ensembles of features at the same time for the classification performance. Moreover, the
features from the images (i.e., hierarchical framework) lead to improved classification.

Tables 2 and 3 show the performance analysis of the individual CNN and HFEL–
CCGSA (AlexNet + LeNet-5 + ResNet) and different feature selection methods and HFEL–
CCGSA, respectively. The combination of CNNs, i.e., AlexNet + LeNet-5 + ResNet, provides
better classification because it extracts the feature vectors from the fully connected layers of
all CNNs. As the satellite images from the datasets have different angles and perceptions,
different types of CNN are used in the HFEL–CCGSA to obtain the refined and semantic
features from the images. Hence, the combination of different CNNs, namely AlexNet,
LeNet-5 and ResNet, can be used to obtain better classification. Moreover, the PSO and BDA
were used for the comparison of the different feature selection methods, because all the
optimization algorithms consider velocity to update the location of the population. From
Table 3, it can be seen that the classification performance was improved using the CCGSA,
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because it selects the features mainly based on the correlation coefficient of features. Hence,
the CCGSA can be used to avoid the irrelevant features from the image features, which
helps to improve the accuracy up to 99.99% for satellite image classification.

Table 1. Performance analysis for ‘without CCGSA’ and HFEL–CCGSA method on SAT-4 dataset.

Experiments Performance
Classes

Grassland Tree Barren Land Others Overall

without CCGSA

Precision (%) 98.87 97.12 98.15 97.12 97.81

Recall (%) 100 98.84 97.68 98.49 98.75

Accuracy (%) 98.40 97.68 98.09 98.76 98.23

HFEL–CCGSA
(Experiment 1 + Experiment 2)

Precision (%) 99.98 99.94 99.96 99.97 99.96

Recall (%) 99.79 99.96 99.97 99.93 99.91

Accuracy (%) 100 99.98 100 99.98 99.99

Table 2. Performance analysis for individual CNN and HFEL–CCGSA (AlexNet + LeNet-5 + ResNet) on SAT-4 dataset.

CNN Performance
Classes

Grassland Tree Barren Land Others Overall

EL with AlexNet

Precision (%) 99.45 98.97 97.18 99.17 98.69

Recall (%) 99.08 97.17 99.38 98.45 98.52

Accuracy (%) 99.97 98.99 99.76 99.19 99.47

EL with LeNet-5

Precision (%) 98.47 99.08 98.07 99.03 98.66

Recall (%) 97.08 97.67 98.79 98.97 98.12

Accuracy (%) 98.76 99.08 98.68 97.04 98.39

EL with ResNet

Precision (%) 99.01 97.56 98.07 97.43 98.01

Recall (%) 98.43 98.89 98.69 99.18 98.79

Accuracy (%) 97.78 97.04 99.02 97.99 97.95

HFEL–CCGSA
(AlexNet + LeNet-5 + ResNet)

Precision (%) 99.98 99.94 99.96 99.97 99.96

Recall (%) 99.79 99.96 99.97 99.93 99.91

Accuracy (%) 100 99.98 100 99.98 99.99

Table 3. Performance analysis for different feature selection methods and HFEL–CCGSA on SAT-4 dataset.

Feature Selection Methods Performance
Classes

Grassland Tree Barren Land Others Overall

Particle Swarm
Optimization (PSO)

Precision (%) 98.49 97.06 97.37 98.16 97.77

Recall (%) 99.08 99.28 98.78 97.33 98.61

Accuracy (%) 98.19 98.15 99.14 98.02 98.37

Binary Dragonfly
Algorithm (BDA)

Precision (%) 99.07 99.12 98.06 98.79 98.76

Recall (%) 98.46 99.88 97.67 99.02 98.75

Accuracy (%) 98.97 97.76 98.44 97.55 98.18

HFEL–CCGSA
(CCGSA)

Precision (%) 99.98 99.94 99.96 99.97 99.96

Recall (%) 99.79 99.96 99.97 99.93 99.91

Accuracy (%) 100 99.98 100 99.98 99.99
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3.2. Quantitative Analysis on SAT-6 Dataset

This section provides the quantitative analysis of the SAT-6 dataset, which has
40,500 satellite images. These 40,500 satellite images contain six different land cover
classes, such as grassland, trees, barren land, roads, buildings and water bodies. From the
40,500 satellite images, 70% of the images were used for training and 30% of the images
were used for testing purposes. The performance analysis of the HFEL–CCGSA method
for the SAT-6 dataset was accomplished in three different ways, which are as follows.

The comparison among the case ‘without CCGSA’ and the HFEL–CCGSA method for
the SAT-6 dataset is presented in Table 4. Table 4 shows that the HFEL–CCGSA achieves
higher classification accuracy when compared to the case ‘without CCGSA’. The ensemble
of multiple semantic and refined features can be used to obtain a higher classification
accuracy of 99.99% than in the case ‘without CCGSA’.

Table 4. Performance analysis for ‘without CCGSA’ and HFEL–CCGSA method on SAT-6 dataset.

Experiments Performance
Classes

Grassland Trees Barren Land Roads Buildings Water Bodies Overall

without CCGSA

Precision (%) 98.46 99.78 99.67 98.42 98.06 98.46 98.8

Recall (%) 99.08 97.67 97.99 99.05 99.45 98.05 98.54

Accuracy (%) 97.37 98.06 99.07 97.09 98.67 99.05 98.21

HFEL–CCGSA
(Experiment 1 + Experiment 2)

Precision (%) 99.88 99.95 99.96 99.93 99.98 99.94 99.94

Recall (%) 99.97 99.98 100 99.99 99.97 99.89 99.96

Accuracy (%) 99.99 99.98 99.99 100 99.98 100 99.99

The performance comparison of the individual CNNs and HFEL-CCGSA (AlexNet +
LeNet-5 + ResNet) and the different feature selection methods and CCGSA for the SAT-6
dataset are shown in Tables 5 and 6, respectively. From Tables 5 and 6, it can be concluded
that the performance of the HFEL–CCGSA method is better than that of the individual
CNNs and PSO and BDA methods. The reduction in outliers in the ensemble learning (i.e.,
AlexNet + LeNet-5 + ResNet) can be used to improve the classification performance of
the HFEL–CCGSA method. On the other hand, the correlation coefficient-based feature
selection method can be used to extract the refined features from the extracted feature
vectors, which can be used to increase the accuracy up to 99.99% compared to the other
feature selection methods.

Table 5. Performance analysis for individual CNNs and HFEL–CCGSA (AlexNet + LeNet-5 + ResNet) on SAT-6 dataset.

CNN Performance
Classes

Grassland Trees Barren Land Roads Buildings Water Bodies Overall

EL with AlexNet

Precision (%) 98.45 99.94 98.16 97.08 99.47 98.47 98.59

Recall (%) 99.98 99.76 99.47 98.02 98.89 98.73 99.14

Accuracy (%) 99.12 98.74 99.08 98.57 99.37 99.43 99.05

EL with LeNet-5

Precision (%) 98.06 99.52 97.69 98.77 98.84 98.64 98.58

Recall (%) 98.15 97.17 98.87 99.34 98.58 97.35 98.24

Accuracy (%) 99.01 98.05 98.64 99.33 99.22 99.03 98.88

EL with ResNet

Precision (%) 97.24 98.99 97.08 98.42 99.33 98.11 98.19

Recall (%) 99.05 99.15 98.49 99.67 98.42 99.08 98.97

Accuracy (%) 98.46 98.66 97.88 98.94 98.64 99.57 98.69

HFEL–CCGSA
(AlexNet + LeNet-5 + ResNet)

Precision (%) 99.88 99.95 99.96 99.93 99.98 99.94 99.94

Recall (%) 99.97 99.98 100 99.99 99.97 99.89 99.96

Accuracy (%) 99.99 99.98 99.99 100 99.98 100 99.99
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Table 6. Performance analysis for different feature selection methods and HFEL–CCGSA on SAT-6 dataset.

Feature Selection Methods Performance
Classes

Grassland Trees Barren Land Roads Buildings Water Bodies Overall

PSO

Precision (%) 98.89 98.77 97.08 98.46 99.52 99.08 98.63

Recall (%) 99.33 97.45 98.69 99.67 98.68 98.88 98.78

Accuracy (%) 98.45 98.42 99.07 97.37 99.47 99.77 98.75

BDA

Precision (%) 99.08 98.47 98.55 97.66 99.06 98.94 98.62

Recall (%) 98.62 98.66 99.11 98.88 98.79 98.63 98.78

Accuracy (%) 98.33 99.08 99.03 98.67 98.79 98.99 98.81

HFEL–CCGSA
(CCGSA)

Precision (%) 99.88 99.95 99.96 99.93 99.98 99.94 99.94

Recall (%) 99.97 99.98 100 99.99 99.97 99.89 99.96

Accuracy (%) 99.99 99.98 99.99 100 99.98 100 99.99

3.3. Quantitative Analysis on Eurosat Dataset

This section provides the quantitative analysis of the Eurosat dataset, which contains
27,000 satellite images. In these images, 70% of the data were used for training and 30% of
the data were used for testing purposes. The Eurosat dataset has 12 different land use and
land cover classes, such as residential buildings, industrial buildings, highways, permanent
crops, pastures, forests, herbaceous vegetation, annual crops, rivers, seas and lakes. The
quantitative analysis of the HFEL–CCGSA method for the Eurosat dataset was performed
in three different ways, which are given as follows.

Tables 7–9 show the performance comparison for the different experiments, CNNs
and feature selection methods, respectively. From the analysis, it can be concluded that the
HFEL–CCGSA method provides better performance than the individual experiments, the
CNNs and the PSO and BDA feature selection methods. For example, the classification
accuracy of the HFEL–CCGSA method is 99.49%, which is high when compared to the
case ‘without CCGSA’. The HFEL–CCGSA method achieves better performance due to its
ensemble of multiple features and the appropriate feature selection from the images.

3.4. Comparative Analysis

The comparative analysis of the HFEL–CCGSA method with existing satellite image
classification methods is described in this section. The existing methods considered for the
comparison were the two-band AlexNet [16], hyperparameter-tuned AlexNet [16], two-
band ConvNet [16], hyperparameter-tuned ConvNet [16], two-band VGG [16],
hyperparameter-tuned VGG [16], DCCNN [17], MGSS [19] and GeoSystemNet [21]. Here,
the comparison was made between three different datasets, namely the SAT-4, SAT-6 and
Eurosat datasets.

Table 7. Performance analysis for ‘without CCGSA’ and HFEL–CCGSA method on Eurosat dataset.

Experiments Performance Overall

without CCGSA

Precision (%) 98.15

Recall (%) 99.67

Accuracy (%) 98.56

HFEL–CCGSA

Precision (%) 98.93

Recall (%) 99.15

Accuracy (%) 99.49
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Table 8. Performance analysis for individual CNNs and HFEL–CCGSA (AlexNet + LeNet-5 + ResNet)
on Eurosat dataset.

CNN Performance Overall

EL with AlexNet

Precision (%) 98.42

Recall (%) 99.11

Accuracy (%) 98.99

EL with LeNet-5

Precision (%) 98.22

Recall (%) 97.54

Accuracy (%) 98.42

EL with ResNet

Precision (%) 97.38

Recall (%) 96.44

Accuracy (%) 97.45

HFEL–CCGSA
(AlexNet + LeNet-5 + ResNet)

Precision (%) 98.93

Recall (%) 99.15

Accuracy (%) 99.49

Table 9. Performance analysis for different feature selection methods and HFEL–CCGSA on Eurosat
dataset.

Feature Selection Methods Performance Overall

PSO

Precision (%) 98.04

Recall (%) 98.74

Accuracy (%) 96.48

BDA

Precision (%) 97.11

Recall (%) 98.57

Accuracy (%) 97.57

HFEL–CCGSA
(CCGSA)

Precision (%) 98.93

Recall (%) 99.15

Accuracy (%) 99.49

Table 10 shows the comparative analysis of the HFEL–CCGSA method for three differ-
ent datasets, namely the SAT-4, SAT-6 and Eurosat datasets. From Table 10 and Figure 5,
it can be concluded that the HFEL–CCGSA method performs well when compared to
the existing satellite image classification techniques. The classification accuracy of the
HFEL–CCGSA method is 99.99% for both the SAT-4 and SAT-6 datasets, which is high
when compared to the existing classification techniques. Additionally, the classification
accuracy of the HFEL–CCGSA method is 99.49% for the Eurosat dataset, which is high
when compared to the GeoSystemNet model [21]. The DCCNN [17] achieves lower classi-
fication accuracy, because of the net dropout technique used to avoid the overfitting issue.
Moreover, the classification performance of the GeoSystemNet model [21] is maintained
only when using a huge amount of freedom degrees. However, the classification accuracy
of the HFEL–CCGSA method is improved when using both low- and high-level image data
and an ensemble of multiple features. Furthermore, the accuracy of the HFEL–CCGSA
method is improved by selecting the optimal features during the classification.
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Table 10. Comparative analysis of HFEL–CCGSA method on 5-fold cross-validation.

Dataset Method Classification Accuracy (%)

SAT-4 dataset

2-Band AlexNet [16] 99.66

Hyperparameter-Tuned AlexNet [16] 98.45

2-Band ConvNet [16] 99.03

Hyperparameter-Tuned ConvNet [16] 98.45

2-Band VGG [16] 99.03

Hyperparameter-Tuned VGG [16] 98.59

DCCNN [17] 98.00

MGSS [19] 99.97

HFEL–CCGSA 99.99

SAT-6 dataset

2-Band AlexNet [16] 99.08

Hyperparameter-Tuned AlexNet [16] 97.43

2-Band ConvNet [16] 99.10

Hyperparameter-Tuned ConvNet [16] 97.48

2-Band VGG [16] 99.15

Hyperparameter-Tuned VGG [16] 97.95

DCCNN [17] 97.00

MGSS [19] 99.95

HFEL–CCGSA 99.99

Eurosat dataset
GeoSystemNet [21] 95.30

HFEL–CCGSA 99.49
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4. Conclusions

In this paper, the combination of HFEL and CCGSA is used for the precise classification
of satellite images from the SAT-4, SAT-6 and Eurosat datasets. The hierarchical framework
includes data pre-processing and augmentation, which are used to generate the images.
Subsequently, three different CNNs, namely AlexNet, LeNet-5 and ResNet, are used to
extract appropriate features from hierarchical images. On the other hand, the CCGSA is
used to eliminate the redundant features from the selected features based on the correlation
coefficient. Further, the MSVM effectively classifies satellite images using both multiple
ensemble features and selected features. From the performance analysis, it is concluded

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Remote Sens. 2021, 13, 4351 16 of 17

that the HFEL–CCGSA method provides better performance than the existing methods.
The classification accuracy of the HFEL–CCGSA method analyzed on the Eurosat dataset
is 99.49%, which is lower when compared to the GeoSystemNet model.
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