
29Bull. Pol. Ac.: Tech. 65(1) 2017

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 65, No. 1, 2017
DOI: 10.1515/bpasts-2017-0004

*e-mail: hanna@inf.ug.edu.pl

Abstract. In the paper we consider the problem of scheduling n identical jobs on 4 uniform machines with speeds s1 ¸ s2 ¸ s3 ¸ s4, respectively.
Our aim is to find a schedule with a minimum possible length. We assume that jobs are subject to some kind of mutual exclusion constraints
modeled by a bipartite incompatibility graph of degree ∆, where two incompatible jobs cannot be processed on the same machine. We show
that the general problem is NP-hard even if s1 = s2 = s3. If, however, ∆ ∙ 4 and s1 ¸ 12s2, s2 = s3 = s4, then the problem can be solved to
optimality in time O(n1.5). The same algorithm returns a solution of value at most 2 times optimal provided that s1 ¸ 2s2. Finally, we study the
case s1 ¸ s2 ¸ s3 = s4 and give a 32/15-approximation algorithm running also in O(n1.5) time.

Key words: equitable coloring, NP-hardness, polynomial algorithm, scheduling, uniform machine.

Scheduling of unit-length jobs with bipartite incompatibility graphs
on four uniform machines

H. FURMAŃCZYK1* and M. KUBALE2

1Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-309 Gdańsk, Poland
2Department of Algorithms and System Modelling, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

edges correspond to pairs of jobs being in conflict, is a bipartite
graph (without isolated vertices). For example, all graphs in our
figures are bipartite. Notice that two jobs being in conflict may
be executed in intersecting time intervals. A load of k jobs on Mi
machine requires the processing time k/si, and all the jobs are
ready for processing at the same time. Alternatively, if a load
on Mi is not given explicitly, we are using the notation C(Mi)
to mean the schedule length on the machine Mi. By definition,
each load forms an independent set (color) in G. Therefore, we
will be using the terms job/vertex and load/color/independent
set interchangeably. Since all the tasks have to be executed,
the problem is to find a 4-coloring, i.e. a decomposition of G
into 4 independent sets I1, I2, I3, and I4 such that the schedule
length Cmax = maxfjIij/si : i = 1, …, 4g is minimized, in sym-
bols Q4jpi = 1, G = bipartite|Cmax.

There are several papers devoted to chromatic scheduling in
the presence of mutual exclusion constraints. Boudhar in [1, 2]
studied the problem of batch scheduling with complements of
bipartite and split graphs, respectively. Finke et al. [3] consid-
ered this problem with complements of interval graphs. Other
models of batch scheduling with incompatibility constraints
were studied in [4, 5]. In all the papers the authors assumed
identical parallel machines. However, to the best of our knowl-
edge little work has been done on scheduling problems with
uniform machines involved (cf. [6, 7]).

The rest of this paper is organized as follows. In Section 2 we
show that the general problem is NP-hard even if s1 = s2 = s3.
In Section 3 we show that if s1 ¸ 12s2, s2 = s3 = s4, then the
problem can be solved to optimality in time O(n1.5) provided
that the degree of G is ∆ ∙ 4. The same algorithm returns a solu-
tion of value at most 2 times optimal provided that s1 ¸ 2s2,
s2 = s3 = s4. In Section 4 we study the case s1 ¸ s2 ¸ s3 = s4
and give an O(n1.5)-time 32/15-approximation algorithm in all
such cases. Finally, we discuss possible extensions of our model
to more than four machines.

1. Introduction

Let us imagine we have to arrange a dinner for 40 people and
we have at our disposal 4 round tables with different numbers
of seats (not greater than 16). We know that among our guests
there are vegetarians and non-vegetarians. Moreover, each veg-
etarian is not on good terms with at most 4 non-vegetarians and
vice-versa. Our task is to assign the people to the tables in such
a way that no two persons who are not on good terms with one
another seat at the same table. In the paper we show how to
solve this and related problems.

Our problem can be expressed as the following scheduling
problem. Suppose we have n identical jobs j1, …, jn, so we as-
sume that they all have unit execution times, in symbols pi = 1,
to be processed on four non-identical machines M1, M2, M3, and
M4. These machines run at different speeds s1 ¸ s2 ¸ s3 ¸ s4,
respectively. However, they are uniform in the sense that if
a job is executed on a machine Mi, it takes 1/si time units to
be completed. It refers to the situation where the machines are
of different generations, e.g. old and slow, new and fast, etc.

Our scheduling problem would be trivial if all the jobs
were compatible. Therefore we assume that some pairs of
jobs cannot be processed on the same machine. For example,
this situation appears while processing groups of elements on
non-identical serial batch machines, if the elements have var-
ious shapes that prevent some of them from being processed
on the same machine. Such manufacturing systems are encoun-
tered as heat treatment operations in metalworking industries,
as metal painted together or material transported together, etc.
More precisely, we assume that each job is in conflict with at
least 1 and at most 4 other jobs. Moreover, we assume that the
underlying incompatibility graph G, whose vertices are jobs and

30 Bull. Pol. Ac.: Tech. 65(1) 2017

H. Furmańczyk and M. Kubale

2. NP-completeness proof

We begin with introducing a few basic notions concerning
graph coloring. Given graph G = (V, E), a k-coloring of G is
a mapping c : V ! f1, …, kg such that for all edges fu, vg 2 E
we have c(u)  6= c(v). The smallest k for which G is k-color-
able is called the chromatic number of G and denoted χ(G).
A graph G = (V, E) is said to be equitably k-colorable if and
only if its vertex set can be partitioned into independent sets
V1, …, Vk ½ V, possibly empty, such that kVij ¡ jVjk ∙ 1 for all
i, j = 1, …, k. The smallest k for which G admits such a col-
oring is called the equitable chromatic number of G and de-
noted χ=(G). Graph G has a semi-equitable k-coloring (k ¸ 3),
if there exists a partition of its vertices into independent sets
V1, …, Vk ½ V such that one of these subsets, say Vi, is of size
2/ fbn/kc, dn/keg, and the remaining subgraph G ¡ V1 is equi-
tably $(k-1)$-colorable. In the following we will say that graph
G has (k ¡ 1)-coloring to express explicitly a partition of V into
k independent sets. If, however, only the cardinalities of color
classes are important, we will use the notation [jV1j, …, jVkj].
For example, the graph in Fig. 1 has one equitable coloring of
type [3, 2, 2, 2], one semi-equitable coloring of type [6, 1, 1, 1]
and several other types of colorings.

Let us recall some basic facts concerning the colorability
of bipartite graphs. First of all, for any bipartite graph G we
have χ(G) = 2. Such a 2-coloring can be obtained in time pro-
portional to the size of G while traversing it in a DFS order.
Moreover, Chen and Yen [8] proved that any bipartite graph G
with ∆ ¸ 2 is equitably ∆-colorable in linear time if and only
if G is different from a complete bipartite graph K2q+1,2q+1 for
all q ¸ 1.

The maximal size of an independent set in G is called the in-
dependence number of G and denoted α(G). Since α(G)χ(G) ¸ n,

we have a lower bound α(G) ¸ n/χ(G) on it. On the other hand,
the maximal gap between the sizes of independent sets in a bi-
partite graph is for K1, ∆. This follows that α(G) ∙ n∆/(∆ + 1).
Since in our case χ(G) = 2 and ∆ ∙ 4, we have

H. Furmańczyk, M. Kubale

graph G = (V,E) is said to be equitably k-colorable if and
only if its vertex set can be partitioned into independent sets
V1, . . . ,Vk ⊂V , possibly empty, such that ||Vi|−|Vj|| ≤ 1 for all
i, j = 1, . . . ,k. The smallest k for which G admits such a color-
ing is called the equitable chromatic number of G and denoted
χ=(G). Graph G has a semi-equitable k-coloring (k ≥ 3),
if there exists a partition of its vertices into independent sets
V1, . . . ,Vk ⊂ V such that one of these subsets, say Vi, is of size
̸∈ {⌊n/k⌋,⌈n/k⌉}, and the remaining subgraph G−Vi is eq-
uitably (k − 1)-colorable. In the following we will say that
graph G has (V1, . . . ,Vk)-coloring to express explicitly a parti-
tion of V into k independent sets. If, however, only the cardi-
nalities of color classes are important, we will use the notation
[|V1|, . . . , |Vk|]. For example, the graph in Fig. 1 has one equi-
table coloring of type [3,2,2,2], one semi-equitable coloring
of type [6,1,1,1] and several other types of colorings.

Let us recall some basic facts concerning the colorability
of bipartite graphs. First of all, for any bipartite graph G we
have χ(G) = 2. Such a 2-coloring can be obtained in time
proportional to the size of G while traversing it in a DFS order.
Moreover, Chen and Yen [8] proved that any bipartite graph G
with ∆ ≥ 2 is equitably ∆-colorable in linear time if and only
if G is different from a complete bipartite graph K2q+1,2q+1 for
all q ≥ 1.

The maximal size of an independent set in G is called
the independence number of G and denoted α(G). Since
α(G)χ(G) ≥ n, we have a lower bound α(G) ≥ n/χ(G) on
it. On the other hand, the maximal gap between the sizes of in-
dependent sets in a bipartite graph is for K1,∆. This follows that
α(G) ≤ n∆/(∆+ 1). Since in our case χ(G) = 2 and ∆ ≤ 4,
we have

n/2 ≤ α(G)≤ 4n/5. (1)

Note that an independent set of size α(G) can be computed
in O(n1.5) time by finding a maximum matching in G (see
Hopcroft and Karp [9]), since one of the two endpoints of each
edge in the maximum matching belongs to the complement of
maximum independent set in G.

In the following we will need the Partition Into
Bounded Independent Sets problem, which is defined as
follows: Given a graph G = (V,E) and positive integers k, l,
the question is whether there is a partition of V into inde-
pendent sets V1, . . . ,Vk ⊂ V such that |Vi| ≤ l for each i =
1, . . . ,k. We shall call this the PIBIS(G,k, l) problem. Since
PIBIS(G,k,n) is a well-known NP-complete k-coloring prob-
lem, so is PIBIS(G,k, l), l < n. Bodlaender and Jansen [10]
proved that the PIBIS(G,3, l) problem remains NP-complete
even if G is bipartite. Now we are ready to prove

THEOREM 2.1. The Q4|pi = 1,G= bipartite|Cmax problem
is NP-hard even if s1 = s2 = s3.

Proof. We prove by reduction from the PIBIS(G,3, l) prob-
lem. Suppose we have an instance of PIBIS(G,3, l), i.e. we
have a bipartite graph G and we want to know whether there
exists a partition of its vertices into three independent sets,
each of size ≤ l. We construct the following instance of a

scheduling decision problem: machine speeds for M1,M2, and
M3 are s1 = s2 = s3 = 1. Machine M4 is of speed s4 ≪ 1/n and
the limit on schedule length is l. The question is whether there
exists a schedule of length at most l. The membership of this
problem in class NP is obvious.

The existence of a schedule of length ≤ l implies the exis-
tence of a 3-partition of G into independent sets of size at most
l, since no job can be allocated to M4.

If G has a 3-coloring with at most l vertices in each color
then our scheduling problem has clearly a solution of length
at most l, since each color class can be regarded as a load on
some Mi, i ≤ 3.

The NP-hardness of Q4|pi = 1,G = bipartite|Cmax follows
from the fact that its decision version is NP-complete.

3. Algorithm for the case s2 = s3 = s4

Since our scheduling problem is NP-hard, we have to pro-
pose an approximation algorithm for it. First of all notice
that if all the machines are identical then the scheduling prob-
lem becomes trivial since any equitable 4-coloring of G solves
the problem to optimality. Therefore we assume herein that
s1 ≫ s2 = s3 = s4 and the incompatibility graph G is of degree
at most 4.

In the following we will need a lower bound on the schedule
length which we call an ideal schedule. Let s = s1 + s2 + s3 +
s4. A schedule in which all the machines finish at the same
time is said to be ideal. Note that the length of the ideal sched-
ule is n/s. Since the number of jobs on each machine must
be an integer, the ideal schedule need not be optimal. Such a
situation is illustrated in Fig 2.

The general idea behind our heuristics is to find a semi-
equitable coloring in which the largest possible independent set
in G is allocated to machine M1 and the remaining job vertices
are spread equitably within machines M2,M3, and M4. This
leads to the following Algorithm 1 for optimal/suboptimal
scheduling in this case.

Fig. 1. Example of incompatibility graph.

The most time-consuming Step 1 of Algorithm 1 can be
done in O(n1.5) time [9].

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

. (1)

Note that an independent set of size α(G) can be computed
in O(n1.5) time by finding a maximum matching in G (see Hop-
croft and Karp [9]), since one of the two endpoints of each
edge in the maximum matching belongs to the complement of
maximum independent set in G.

In the following we will need the partition into bounded
independent sets (PIBIS) problem, which is defined as fol-
lows: Given a graph G = (V, E) and positive integers k, l, the
question is whether there is a partition of V into independent
sets V1, …, Vk ½ V such that jVij ∙ l for each i = 1, …, k. We
shall call this the PIBIS(G, k, l) problem. Since PIBIS(G, k, n)
is a well-known NP-complete k-coloring problem, so is
PIBIS(G, k, l), l < n. Bodlaender and Jansen [10] proved that
the PIBIS(G, 3, l) problem remains NP-complete even if G is
bipartite. Now we are ready to prove Theorem 2.1.

Theorem 2.1. The Q4jpi  = 1, G = bipartite|Cmax problem is
NP-hard even if s1 = s2 = s3.
Proof. We prove by reduction from the PIBIS(G, 3, l) problem.
Suppose we have an instance of PIBIS(G, 3, l), i.e. we have
a bipartite graph G and we want to know whether there ex-
ists a partition of its vertices into three independent sets, each
of size ∙ l. We construct the following instance of a sched-
uling decision problem: machine speeds for M1, M2, and M3
are s1 = s2 = s3 = 1. Machine M4 is of speed s4 ¿ 1/n and the
limit on schedule length is l. The question is whether there
exists a schedule of length at most l. The membership of this
problem in class NP is obvious.

The existence of a schedule of length ∙ l implies the ex-
istence of a 3-partition of G into independent sets of size at
most l, since no job can be allocated to M4.

If G has a 3-coloring with at most l vertices in each color
then our scheduling problem has clearly a solution of length
at most l, since each color class can be regarded as a load on
some Mi, i ∙ 3.

The NP-hardness of Q4jpi = 1, G = bipartite|Cmax follows
from the fact that its decision version is NP-complete. □

3. Algorithm for the case s2 = s3 = s4

Since our scheduling problem is NP-hard, we have to propose
an approximation algorithm for it. First of all notice that if all
the machines are identical then the scheduling problem becomes
trivial since any equitable 4-coloring of G solves the problem to
optimality. Therefore we assume herein that s1 À s2 = s3 = s4
and the incompatibility graph G is of degree at most 4.

In the following we will need a lower bound on the schedule
length which we call an ideal schedule. Let s = s1 + s2 + s3 + s4.
A schedule in which all the machines finish at the same time Fig. 1. Example of incompatibility graph

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

31Bull. Pol. Ac.: Tech. 65(1) 2017

Scheduling of unit-length jobs with bipartite incompatibility graphs on four uniform machines

is said to be ideal. Note that the length of the ideal schedule
is n/s. Since the number of jobs on each machine must be an
integer, the ideal schedule need not be optimal. Such a situation
is illustrated in Fig. 2.

The general idea behind our heuristics is to find a semi-eq-
uitable coloring in which the largest possible independent set in
G is allocated to machine M1 and the remaining job vertices are
spread equitably within machines M2, M3, and M4. This leads to
the following Algorithm 1 for optimal/suboptimal scheduling
in this case.

The most time-consuming Step 1 of Algorithm 1 can be
done in O(n1.5) time [9].

Theorem 3.1. If s1 ¸ 12s2 and s2 = s3 = s4 then Algorithm 1
returns an optimal solution.

Proof. Let G be an n-vertex incompatibility graph G of degree
∆ ∙ 4 and let I1 be a maximum cardinality independent set in G.

First notice that if exactly one of the components of G ¡ I1
is isomorphic to K3,3 then I1 must contain 6 vertices from the
neighborhood of K3,3, since otherwise I1 would not be the max-
imum independent set. Therefore, we have to interchange one
of them, say u, with its neighbor v belonging to K3,3, i.e. set
I1 := I1 [ fvg ¡ fug.

Now, we will show that G ¡ I1 is of degree at most 3. If
∆(G) ∙ 3, there is nothing to prove. So suppose that ∆(G) = 4
and let v be any vertex of degree 4. If each such v 2 I1 then
∆(G ¡ I1) ∙ 3. If v 2/ I1 then at least one of its neighbors, say u,
belongs to I1 since otherwise edge fu, vg would not be covered
by a minimal vertex cover and, due to König’s theorem [11], I1
would not be maximal.

Let C(Mi be the schedule length on machine Mi, i = 1, …, 4.
Without loss of generality we may assume that s1 = 12s2. Then
the ideal schedule is of length n/s = 1_

15 n/s2. By inequality (1)
it follows that jI1j ∙ 5

_4 n. Thus C(M1) ∙ 5
_4 n/(12s2), which is

equal to the ideal schedule length. Since G ¡ I1 is a collec-
tion of subcubic bipartite graphs different from K3,3, we can
find an optimal scheduling on M2, M3, and M4 by equitable
3-coloring of G ¡ I1. In this way the remaining jobs are
spread evenly among the three machines Mi, i ¸ 2 which gives
maxfC(Mi) : i = 2, 3, 4g = C*max, because one cannot do better
by moving a job from Mi to M1 as I1 is maximal. This completes
the proof of Theorem 3.1. □

Corollary 3.2. If s1 ¸ 2s2 and s2 = s3 = s4 then Algorithm 1
returns a solution of value at most 2 times C*max.

Proof. Without loss of generality we may assume that s1 = 2s2.
In this case the ideal schedule length is n/s = n/(5s2) = 5

_2 n/ s1.
Let us consider two extremal cases given in inequality (1).

Case 1: jI1j = dn/2e.
Algorithm 1 returns a solution on M1 of length C(M1) =
= dn/2e/s1 which is less than 5

_4 n/s1, i.e. twice the ideal
schedule length. The remaining jobs are spread evenly
among three machines Mi, i ¸ 2, which gives C(M1) =' bn/2c
/(s2 + s3 + s4) = bn/2c/(1.5s1) = 3

_2bn/2c/s1 which is less
than 5

_4 n/s1, i.e. twice the ideal schedule length. The thesis
holds in Case 1.

Fig. 3. K3,3 and its neighborhood (vertices in black belong to I1):
(a) before interchange; (b) after interchange

Fig. 2. Gantt chart of a schedule for graph of Fig. 1} when s1 = 12,
s2 = s3 = s4 = 1: (a) ideal; (b) optimal

Algorithm 1. Scheduling in case s2 = s3 = s4

Input: n-vertex graph G with ∆(G) ∙ 4 and machine
speeds s1 À s2 = s3 = s4.

Output: Optimal/suboptimal schedule.
1. Find a maximum independent set I1 in G.
2. If exactly one of components of G ¡ I1 is isomor-

phic to K3,3, then set I1 = I1 [ fvg ¡ fug as shown
in Fig. 3.

3. Assign M1 Ã I1.
4. Find an equitable (A, B, C)-coloring of G ¡ I1 ac-

cording to [8].
5. Assign M2 Ã A, M3 Ã B, M4 Ã C.

(a)(a)

(b)

(b)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

32 Bull. Pol. Ac.: Tech. 65(1) 2017

H. Furmańczyk and M. Kubale

Case 2: jI1j = b4n/5c.
Then C(M1) = b4n/5c/s1 which is less than or equal to 5

_4 n/s1,
i.e. twice the ideal schedule length. The remaining jobs are
spread evenly among Mi, i ¸ 2, which gives C(Mi) =' dn/5e/
(3s2) = dn/5e/(1.5s1) = 3

_2dn/5e/s1 < 5
_4 n/s1, i.e. twice the

ideal schedule length. The thesis holds in Case 2.
The reader can check that the thesis holds in the remaining

cases as well. □

The worst-case instance for Algorithm 1 when s1 = 2s2 and
G = 3K1,4 is shown in Fig. 5.

Lemma 4.1. If s1 ¸ s2 ¸ 3s3 = 3s4 then Algorithm 2 runs in
time O(n1.5) to find a solution of value at most 32/15 times
C*max.

Proof. The complexity of Algorithm 2 is obvious since both
Steps 1 and 2 can be done in time O(n1.5) [9] while Step 3 is
linear.

Let us consider the accuracy of Algorithm 2. For this reason
we may assume, without loss of generality, that s1 = s2 = 3s3.
In this case the ideal schedule length is n/ (8s3). Note that the
subgraph G ¡ I1 is of degree at most 3. This subgraph may be
connected or disconnected. Its order is between bn/5c and dn/2e.
Since it is bipartite, we have dn/10e ∙ α(G ¡ I1) ∙ bn/2c. Let
I2 be a maximum cardinality independent set in G ¡ I1. The
subgraph G ¡ I1 ¡ I2 can be equitably colored with 2 colors,
since ∆(G ¡ I1 ¡ I2) ∙ 2. In this way we can get a 4-coloring
ranging from [b4n/5c, dn/5e, 0, 0] through [dn/2e, bn/2c, 0, 0] till
[dn/2e, d3n/8e, dn/16e, bn/16c]. Therefore the schedule length is
at most b4n/5c/s1. Thus

H. Furmańczyk, M. Kubale

Fig. 4. Example of incompatibility graph G = 3K1,4.

Fig. 5. Gantt chart of a schedule for Algorithm 1 with graph of
Fig. 4 when s1 = 2si, 2 ≤ i ≤ 4 (a) worst-case schedule; (b) optimal
schedule.

results in a set I1, and then towards G− I1. This idea leads us
to an approximation Algorithm 2.

Algorithm 2 Scheduling in case s3 = s4

Input: n-vertex graph G with ∆(G) ≤ 4 and machine speeds
s1 ≥ s2 ≥ s3 = s4.

Output: Suboptimal schedule.

1. Find I1 a maximum independent set in G.

2. Find I2 a maximum independent set in G− I1.

3. Find an equitable (C,D)-coloring of G− I1 − I2.

4. Assign M1 ← I1,M2 ← I2,M3 ←C,M4 ← D.

LEMMA 4.1. If s1 ≥ s2 ≥ 3s3 = 3s4 then Algorithm 2 runs
in time O(n1.5) to find a solution of value at most 32/15 times
C∗

max.

Proof. The complexity of Algorithm 2 is obvious since both
Steps 1 and 2 can be done in time O(n1.5) [9] while Step 3 is
linear.

Let us consider the accuracy of Algorithm 2. For this
reason we may assume, without loss of generality, that
s1 = s2 = 3s3. In this case the ideal schedule length is
n/(8s3). Note that the subgraph G− I1 is of degree at most

Fig. 6. Graph G with two colorings: (a) of type [6,1,1,0]; (b) of type
[4,4,0,0].

3. This subgraph may be connected or disconnected. Its
order is between ⌊n/5⌋ and ⌈n/2⌉. Since it is bipartite,
we have ⌈n/10⌉ ≤ α(G − I1) ≤ ⌊n/2⌋. Let I2 be a maxi-
mum cardinality independent set in G − I1. The subgraph
G − I1 − I2 can be equitably colored with 2 colors, since
∆(G − I1 − I2) ≤ 2. In this way we can get a 4-coloring
ranging from [⌊4n/5⌋,⌈n/5⌉,0,0] through [⌈n/2⌉,⌊n/2⌋,0,0]
till [⌈n/2⌉,⌈3n/8⌉,⌈n/16⌉,⌊n/16⌋]. Therefore the schedule
length is at most ⌊4n/5⌋/s1. Thus

Alg2
C∗

max
≤ ⌊4n/5⌋/s1

n/(8s3)
≤ 4n/(5s1)

n/(8s3)
=

4/15
1/8

=
32
15

.

In contrast to Algorithm 1, which guarantees an optimal
solution to our scheduling problem if s1 ≥ 12s2, no such a
guarantee exists for Algorithm 2. In other words, there is
no bound on s2/s3 which guarantees that Algorithm 2 solves
the problem to optimality. In fact, consider graph G depicted in
Fig. 6 and assume that s1 = s2. Algorithm 2 when applied to G
finds a coloring of type [6,1,1,0], which leads to a schedule of
length max{6/s1,1/s3}. A better coloring is [4,4,0,0] which
results in the schedule length of value 4/s2 = 4/s1 < 6/s1, ir-
respective of s3.

Now let us consider an approach based on equitable 4-
coloring of G. The fact that every bipartite graph of degree
≤ 4 is equitably 4-colorable was proved by Chen and Yen [8].
In this case we get a coloring of type [⌈n/4⌉,⌈(n−1)/4⌉,⌈(n−
2)/4⌉,⌈(n− 3)/4⌉]. Hence the schedule length is determined
by C(M3) = ⌈(n−2)/4⌉/s3. The algorithm of this kind is pre-
sented as Algorithm 3 below.

Algorithm 3 Scheduling in case s3 = s4

Input: n-vertex graph G with ∆(G) ≤ 4 and machine speeds
s1 ≥ s2 ≥ s3 = s4.

Output: Suboptimal schedule.

1. Find an equitable (A,B,C,D)-coloring of G by apply-
ing a procedure described in [8].

2. Order the independent sets so that |A| ≥ |B| ≥ |C| ≥
|D| ≥ |A|−1.

3. Assign M1 ← A,M2 ← B,M3 ←C,M4 ← D.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

. □

In contrast to Algorithm 1, which guarantees an optimal
solution to our scheduling problem if s1 ¸ 12s2, no such a guar-
antee exists for Algorithm 2. In other words, there is no bound
on s2/s3 which guarantees that Algorithm 2 solves the problem
to optimality. In fact, consider graph G depicted in Fig. 6 and
assume that s1 = s2. Algorithm 2 when applied to G finds a col-

Fig. 4. Example of incompatibility graph G = 3K1,4

Fig. 5. Gantt chart of a schedule for Algorithm 1 with graph from Fig. 4
when s1 = 2si, 2 ∙ i ∙ 4 (a) worst-case schedule; (b) optimal schedule

4. Algorithms for the case s3 = s4

In this case we have two fast machines M1, M2, and two slow
machines M3, M4. Therefore it is reasonable to apply a max-
imum independent set algorithm twice: first towards G, which
results in a set I1, and then towards G ¡ I1. This idea leads us
to an approximation Algorithm 2.

(a)

(b)

Algorithm 2. Scheduling in case s3 = s4

Input: n-vertex graph G with ∆(G) ∙ 4 and machine
speeds s1 ¸ s2 ¸ s3 = s4.

Output: Suboptimal schedule.
1. Find I1 a maximum independent set in G.
2. Find I2 a maximum independent set in G ¡ I1.
3. Find an equitable (C, D)-coloring of G ¡ I1 ¡ I2.
4. Assign M1 Ã I1, M2 Ã I2, M3 Ã C, M4 Ã D.

Fig. 6. Graph G with two colorings: (a) of type [6, 1, 1, 0]; (b) of type
[4, 4, 0, 0]

(a) (b)

33Bull. Pol. Ac.: Tech. 65(1) 2017

Scheduling of unit-length jobs with bipartite incompatibility graphs on four uniform machines

oring of type [6, 1, 1, 0], which leads to a schedule of length
maxf6/s1, 1/s3g. A better coloring is [4, 4, 0, 0] which results
in the schedule length of value 4/s2 = 4/s1 < 6/s1, irrespective
of s3.

Now let us consider an approach based on equitable 4-col-
oring of G. The fact that every bipartite graph of degree ∙ 4 is
equitably 4-colorable was proved by Chen and Yen [8]. In this
case we get a coloring of type [dn/4e, d(n ¡ 1)/4e, d(n ¡ 2)/4e,
d(n ¡ 3)/4e]. Hence the schedule length is determined by
C(M3) = d(n ¡ 2)/4e/s3. The algorithm of this kind is presented
as Algorithm 3 below.

If n = 8k + 1 then an optimal solution corresponds to
a coloring of G of type [3k + 1, 3k, k, k]. That is why
C(M3) = d(8k ¡ 1)/4e/s3 = 2k/s3 < 2(k + 3

_1)/s3 = 2C*max.

If n = 8k + 3 then an optimal solution corresponds to a col-
oring of G of type [3k + 2, 3k + 1, k, k]. Thus C(M3) =
= d(8k + 1)/4e/s3 = (2k + 1)/s3 < 2(k + 3

_2)/s3 = 2C*max.

If n = 8k + 5 then an optimal solution corresponds to a col-
oring of G of type [3k + 3, 3k + 2, k, k]. Therefore C(M3) =
= d(8k + 3)/4e/s3 = (2k + 1)/s3 < 2(k + 1)/s3 = 2C*max.

 □

The above considerations lead us to the following universal
algorithm

Algorithm 3. Scheduling in case s3 = s4

Input: n-vertex graph G with ∆(G) ∙ 4 and machine
speeds s1 ¸ s2 ¸ s3 = s4.

Output: Suboptimal schedule.

1. Find an equitable (A, B, C, D)-coloring of G by ap-
plying a procedure described in [8]..

2. Order the independent sets so that jAj ¸ jBj ¸ jCj ¸
¸ jAj ¡ 1.

3. Assign M1 Ã A, M2 Ã B, M3 Ã C, M4 Ã D.

Algorithm 4. Scheduling in case s3 = s4

Input: n-vertex graph G with ∆(G) ∙ 4 and machine
speeds s1 ¸ s2 ¸ s3 = s4.

Output: 2-approximate schedule.

1. If s2 < 3s3 then call Algorithm 2 else call
Algorithm 3.

The worst-case ratio of Algorithm 3 is bounded above by
Scheduling of unit-length jobs on four uniform machines

The worst-case ratio of Algorithm 3 is bounded above by

C(M3)

C(M2)
=

⌈(n−2)/4⌉/s3

⌈(n−1)/4⌉/s2
∼=

s2

s3
,

which can be arbitrarily large if s3 is constant and s2 tends to
infinity. We have the following Lemma 4.2.

LEMMA 4.2. If s1 ≥ s2 and s2 ≤ 3s3 = 3s4 then Algorithm
3 runs in time O(n) to find a solution of value at most 2C∗

max.

Proof. Without loss of generality we may assume that s1 =
s2 = 3s3 = 3s4. In this case the length of ideal schedule is
n/(8s3). In the following we consider two cases depending on
the parity of n.

Case 1: n = 2k.
We have C(M3) = ⌈(n − 2)/4⌉/s3 = ⌈(k − 1)/2⌉/s3 ≤
1
2 k/s3 = 2n/(8s3)≤ 2C∗

max.
Case 2: n = 8k−1,8k+1,8k+3,8k+5.

In this case the ideal schedule is not optimal, since its length
is not an integer. The example of the schedule for the case
n = 8k−1 is shown in Fig. 7.
If n = 8k − 1 then an optimal solution corresponds to a
coloring of G of type [3k,3k,k,k − 1]. Hence C(M3) =
⌈(8k−3)/4⌉/s3 = 2k/s3 = 2C∗

max.
If n = 8k+1 then an optimal solution corresponds to a col-
oring of G of type [3k + 1,3k,k,k]. That is why C(M3) =
⌈(8k−1)/4⌉/s3 = 2k/s3 < 2(k+ 1

3)/s3 = 2C∗
max.

If n = 8k + 3 then an optimal solution corresponds to a
coloring of G of type [3k + 2,3k + 1,k,k]. Thus C(M3) =
⌈(8k+1)/4⌉/s3 = (2k+1)/s3 < 2(k+ 2

3)/s3 = 2C∗
max.

If n = 8k+5 then an optimal solution corresponds to a col-
oring of G of type [3k+ 3,3k+ 2,k,k]. Therefore C(M3) =
⌈(8k+3)/4⌉/s3 = (2k+1)/s3 < 2(k+1)/s3 = 2C∗

max.

The above considerations lead us to the following universal
algorithm

Algorithm 4 Scheduling in case s3 = s4

Input: n-vertex graph G with ∆(G) ≤ 4 and machine speeds
s1 ≥ s2 ≥ s3 = s4.

Output: 2-approximate schedule.

1. If s2 > 3s3 then call Algorithm 2 else call
Algorithm 3.

THEOREM 4.3. Algorithm 4 runs in time O(n1.5) to pro-
duce a solution of value at most 32/15 times C∗

max. □

5. Final remarks
Our results can be generalized to more than 4 machines. First,
suppose that the number of machines m > 4. Then the gen-
eral problem Qm|pi = 1,G = bipartite|Cmax remains NP-hard
if s1 = s2 = s3. In fact, if s4 = · · · = sm ≪ 1/mn then by the
same argument as that used in the proof of Theorem 2.1 we get
the desired result.

Fig. 7. Gantt chart of a schedule for Algorithm 3 with graph of
Fig. 4 when s1 = s2 = 3s3 = 3s4: (a) worst-case schedule; (b) optimal
schedule.

Secondly, the problem Qm|pi = 1,G = bipartite|Cmax can
be solved to optimality in time O(mn1.5) by using an algorithm
similar to Algorithm 1, if s1 ≥ m(m−1)s2, s2 = · · ·= sm and
∆ ≤ m. This is so because under these assumptions the ideal
schedule length is n/(s1 + s2 + · · ·+ sm) ≥ n/(s1 + s1/m) =
n/((1+m−1)s1) = nm/((m+ 1)s1). On the other hand, since
α(G) ≤ n∆/(∆ + 1) ≤ nm/(m + 1) so C(M1) ≤ nm/((m +
1)s1). It follows that the schedule length on M1 is not longer
than the ideal schedule length. Thus an optimal solution to the
whole system is determined by the optimal schedule on ma-
chines M2, . . . ,Mm, since we cannot do better by moving any
job from Mi to M1 as the load on the first machine is maximal.

Thirdly, the above algorithm produces a schedule of length
at most m/2 times optimal, if 1

2 s1 ≥ s2 = · · · = sm and ∆ ≤ m.
This is so because C(M1) ≤ nm/((m+ 1)s1), while the ideal
schedule length in this case is n/(s1 + s2 + · · ·+ sm)≥ n/(s1 +
1
2 (m−1)s1) = 2n/((m+1)s1).

Another way of extending our model is allowing time win-
dow constraints imposed on the machines. In this direction of
study the model of graph coloring with forbidden colors would
be useful [12].

Acknowledgements. Project has been partially sup-
ported by Narodowe Centrum Nauki under contract DEC-
2011/02/A/ST6/00201.

REFERENCES

[1] M. Boudhar, "Scheduling a batch processing machine with bi-
partite compatibility graphs", Math. Methods Oper. Res. 57,
513–527 (2003).

[2] M. Boudhar, "Scheduling on a batch processing machine with
split compatibility graphs", J. Math. Modell. Algorithms 4, 391–
407 (2005).

[3] G. Finke, V. Jost, M. Queyranne, A. Sebó, "Batch processing

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

,

which can be arbitrarily large if s3 is constant and s2 tends to
infinity. We have the following Lemma 4.2.

Lemma 4.2. If s1 ¸ s2 and s2 ∙ 3s3 = 3s4 then Algorithm 3 runs
in time O(n) to find a solution of value at most 2C*max.

Proof. Without loss of generality we may assume that s1 = s2 =
= 3s3 = 3s4. In this case the length of ideal schedule is n/(8s3).
In the following we consider two cases depending on the parity
of n.

Case 1: n = 2k.
We have C(M3) = d(n ¡ 2)/4e/s3 = d(k ¡ 1)/2e/s3 ∙ 2

_1 k/s3 =
= 2n/(8s3) ∙ 2C*max.

Case 2: n = 8k ¡ 1, 8k + 3, 8k + 5.
In this case the ideal schedule is not optimal, since its length
is not an integer. The example of the schedule for the case
n = 8k ¡ 1 is shown in Fig. 7.

If n = 8k ¡ 1 then an optimal solution corresponds to
a coloring of G of type [3k, 3k, k, k ¡ 1]. Hence C(M3) =
= d(8k ¡ 3)/4e/s3 = 2k/s3 = 2C*max.

Fig. 7. Gantt chart of a schedule for Algorithm 3 with graph of
Fig. 4 when s1 = s2 = 3s3 = 3s4: (a) worst-case schedule; (b) optimal

schedule

(a)

(b)

Theorem 4.3. Algorithm 4 runs in time O(n1.5) to produce
a solution of value at most 32/15 times C*max. □

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

34 Bull. Pol. Ac.: Tech. 65(1) 2017

H. Furmańczyk and M. Kubale

5. Final remarks

Our results can be generalized to more than 4 machines. First,
suppose that the number of machines m > 4. Then the general
problem Qmjpi  = 1, G = bipartite|Cmax remains NP-hard if
s1 = s2 = s3. In fact, if s4 = ¢¢¢ = sm ¿ 1/mn then by the same
argument as that used in the proof of Theorem 2.1 we get the
desired result.

Secondly, the problem Qmjpi  = 1, G = bipartite|Cmax can
be solved to optimality in time O(n1.5) by using an algorithm
similar to Algorithm 1, if s1 ¸ m(m ¡ 1)s2, s2 = ¢¢¢ = sm and
∆ ∙ m. This is so because under these assumptions the ideal
schedule length is n/(s1 + s2 + ¢¢¢ + sm) ¸ n/(s1 + s1/m) =
= n/((1 + m–1)s1) = nm/((m + 1)s1). On the other hand, since
α(G) ∙ n∆/(∆+1)∙nm/((m + 1)s1) so C(M1) ∙ nm/((m + 1)s1).
It follows that the schedule length on M1 is not longer than the
ideal schedule length. Thus an optimal solution to the whole
system is determined by the optimal schedule on machines
M2, …, Mm, since we cannot do better by moving any job from
Mi to M1 as the load on the first machine is maximal.

Thirdly, the above algorithm produces a schedule of length
at most m/2 times optimal, if 2

_1 s1 ¸ s2 = ¢¢¢ = sm. This is so be-
cause C(M1) ∙ nm/((m + 1)s1), while the ideal schedule length
in this case is n/(s1 + s2 + ¢¢¢ + sm) ¸ n/(s1 + 2

_1 (m ¡ 1)s1) =
= 2n/((m + 1)s1).

Another way of extending our model is allowing time
window constraints imposed on the machines. In this direction
of study the model of graph coloring with forbidden colors
would be useful [12].

Acknowledgements. The project has been partially supported
by Narodowe Centrum Nauki under contract DEC-2011/02/A/
ST6/00201.

References

 [1] M. Boudhar, “Scheduling a batch processing machine with bi-
partite compatibility graphs”, Math. Methods Oper. Res. 57,
513–527 (2003).

 [2] M. Boudhar, “Scheduling on a batch processing machine with
split compatibility graphs”, J. Math. Modell. Algorithms 4,
391– 407 (2005).

 [3] G. Finke, V. Jost, M. Queyranne, A. Sebó, “Batch processing
with interval graph compatibilities between tasks”, Disc. Appl.
Math. 156, 556–568 (2008).

 [4] M. Demange, D. de Werra, J. Monnot, V.Th. Paschos, “Time
slot scheduling of compatible jobs”, J. Scheduling 10, 111–127
(2007).

 [5] D. de Werra, M. Demange, J. Monnot, V.Th. Paschos, “A hypo-
coloring model for batch scheduling”, Disc. Appl. Math. 146,
3–26 (2005).

 [6] H. Furmańczyk, M. Kubale, “Scheduling of unit-length jobs with
cubic incompatibility graphs on three uniform machines”, Disc.
Appl. Math., in print, available online 22 Feb. 2016.

 [7] S.-S. Li, Y.-Z. Zhang, “Serial batch scheduling on uniform par-
allel machines to minimize total completion time”, Inf. Process.
Lett. 114, 692–695 (2014).

 [8] B.-L. Chen, C.-H. Yen, “Equitable Δ-coloring of graphs”, Disc.
Math. 312, 1512–1517 (2012).

 [9] J.E. Hopcroft, R.M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs”, SIAM J. Comput. 2, 225–231
(1973).

 [10] H.L. Bodlaender, K. Jansen, “On the complexity of sched-
uling incompatible jobs with unit-times”, LNCS 711, 291–300
(1993).

 [11] D. König, “Gráfok és mátrixok”, Matematikai és Fizikai Lapok
38, 116–119 (1931), [in Hungarian].

 [12] M. Kubale, “Interval vertex-coloring of a graph with forbidden
colors”, Disc. Math. 74, 125–136 (1989).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

