
Discrete Applied Mathematics 234 (2018) 210–217

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Scheduling of unit-length jobs with cubic incompatibility
graphs on three uniform machines✩

Hanna Furmańczyk a,∗, Marek Kubale b

a Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
b Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12,
80-233 Gdańsk, Poland

a r t i c l e i n f o

Article history:
Received 24 May 2015
Received in revised form 14 November
2015
Accepted 27 January 2016
Available online 22 February 2016

Keywords:
Cubic graph
Equitable coloring
NP-hardness
Polynomial algorithm
Scheduling
Uniform machine

a b s t r a c t

In the paper we consider the problem of scheduling n identical jobs on 3 uniformmachines
with speeds s1, s2, and s3 to minimize the schedule length. We assume that jobs are
subjected to some kind ofmutual exclusion constraints,modeled by a cubic incompatibility
graph. We show that if the graph is 2-chromatic then the problem can be solved in O(n2)
time. If the graph is 3-chromatic, the problem becomes NP-hard even if s1 > s2 = s3.
However, in this case there exists a 10/7-approximation algorithm running in O(n3) time.
Moreover, this algorithmsolves the problemalmost surely to optimality if 3s1/4 ≤ s2 = s3.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Imagine you have to arrange a dinner for, say 30, people and you have at your disposal 3 round tables with different
numbers of seats (not greater than 15). You know that each of your guests is in bad relations with exactly 3 other people.
Your task is to assign the people to the tables in such a way that no two of them being in bad relations seat at the same table.
In the paper we show how to solve this and related problems.

Our problem can be expressed as the following scheduling problem. Suppose we have n identical jobs j1, . . . , jn, so we
assume that they all have unit execution times, in symbols pi = 1, to be processed on three non-identical machinesM1,M2,
and M3. These machines run at different speeds s1, s2, and s3, respectively. However, they are uniform in the sense that if a
job is executed on machine Mi, it takes 1/si time units to be completed. It refers to the situation where the machines are of
different generations, e.g. old and slow, new and fast, etc.

Our scheduling model would be trivial if all the jobs were compatible. Therefore we assume that some pairs of jobs
cannot be processed on the same machine due to some technological constraints. More precisely, we assume that each job
is in conflict with exactly three other jobs. Thus the underlying incompatibility graph G whose vertices are jobs and edges
correspond to pairs of jobs being in conflict is cubic. For example, all graphs in our figures are cubic. The number of jobs
n must be even, since the sum of degrees of all vertices in G, i.e. 3n, must be even. A load Li on machine Mi requires the
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processing time P(Li) = |Li|/si, and all the jobs are ready for processing at the same time. By definition, each load forms
an independent set (color) in G. Therefore, in what follows we will be using the terms job/vertex and color/independent
set interchangeably. Since all tasks have to be executed, the problem is to find a 3-coloring, i.e. a decomposition of G into
3 independent sets I1, I2, and I3 such that the schedule length Cmax = max{P(Ii) : i = 1, 2, 3} is minimized, in symbols
Q3|pi = 1,G = cubic|Cmax.

In this paper we assume threemachines for the following reason. If there is only onemachine then there is no solution. If
there are two machines, the problem becomes trivial because it is solvable only if G is bipartite and it has only one solution
since there is just one decomposition of G into sets I1 and I2, each of size n/2. If, however, there are three machines and G is
3-chromatic, our problem becomes NP-hard. Again, if G is 4-chromatic (andm = 3), there is no solution.

There are several papers devoted to chromatic scheduling in the presence of mutual exclusion constraints. Boudhar in [1,
2] studied the problem of batch scheduling with complements of bipartite and split graphs, respectively. Finke et al. [8]
considered the problem with complements of interval graphs. Other models of batch scheduling with incompatibility
constraints were studied in [5,6]. Our problem can also be viewed as a particular variant of scheduling with conflicts [7]. In
all the papers the authors assumed identical parallel machines. However, to the best of our knowledge little work has been
done on scheduling problems with uniform machines involved (cf. Li and Zhang [12]).

The rest of this paper is split into two parts depending on the chromaticity of cubic graphs. In Section 2 we consider
2-chromatic graphs. In particular, we give an O(n2)-time algorithm for optimal scheduling of such graphs. Section 3 is
devoted to 3-chromatic graphs. In particular, we give an NP-hardness proof and an approximation algorithm with good
performance guarantee. Our algorithm runs in O(n3) time to produce a solution of value less than 10/7 times optimal,
provided that s1 > s2 = s3. Moreover, this algorithm solves the problem almost surely to optimality if 3s1/4 ≤ s2 = s3.
Finally, we discuss possible extensions of ourmodel to arbitrary job lengths, to disconnected graphs, and tomore than three
machines.

2. Scheduling of 2-chromatic graphs

We begin with introducing some basic notions concerning graph coloring. A graph G = (V , E) is said to be equitably
k-colorable if and only if its vertex set can be partitioned into independent sets V1, . . . , Vk ⊂ V such that ∥Vi| − |Vj∥ ≤ 1 for
all i, j = 1, . . . , k. The smallest k forwhichG admits such a coloring is called the equitable chromatic number ofG and denoted
χ=(G). Graph G has a semi-equitable k-coloring, if there exists a partition of its vertices into independent sets V1, . . . , Vk ⊂ V
such that one of these subsets, say Vi, is of size ∉ {⌊n/k⌋, ⌈n/k⌉}, and the remaining subgraph G − Vi is equitably (k − 1)-
colorable. In the following we will say that graph G has (V1, . . . , Vk)-coloring to express explicitly a partition of V into k
independent sets. If, however, only cardinalities of color classes are important, we will use the notation [|V1|, . . . , |Vk|].

Let us recall somebasic facts concerning colorability of cubic graphs. It iswell known fromBrooks theorem [3] that for any
cubic graph G ≠ K4 we have χ(G) ≤ 3, where χ(G) is the classical chromatic number of G and K4 is the complete graph on
four vertices. On the other hand, Chen et al. [4] proved that every 3-chromatic cubic graph can be equitably colored without
introducing a new color. Moreover, since a connected cubic graph G with χ(G) = 2 is a bipartite graph with partition sets
of equal size, we have the equivalence of the classical and equitable chromatic numbers for 2-chromatic cubic graphs. Since
the only cubic graph for which the chromatic number is equal to 4 is K4, we have

2 ≤ χ=(G) = χ(G) ≤ 4 (1)

for any cubic graph. Moreover, from (1) it follows that for any cubic graph G ≠ K4, we have

n/3 ≤ α(G) ≤ n/2 (2)

where α(G) is the independence number of G. Note that the upper bound is tight only if G is bipartite.
Let Qk denote the class of connected k-chromatic cubic graphs and let Qk(n) ⊂ Qk stand for the subclass of cubic graphs

on n vertices, k = 2, 3, 4. Clearly, Q4 = {K4}. In what follows we will call the graphs belonging to Q2 bicubic, and the graphs
belonging to Q3- tricubic.

Asmentioned, ifG is bicubic then any 2-coloring of it is equitable and theremay be no equitable 3-coloring (cf. K3,3 shown
in Fig. 1). On the other hand, all graphs in Q2(n) have a semi-equitable 3-coloring of type [n/2, ⌈n/4⌉, ⌊n/4⌋]. Moreover,
they are easy colorable in linear time while traversing them in a depth-first search (DFS) manner.

Let si be the speed of machine Mi for i = 1, 2, 3, and let s = s1 + s2 + s3. Without loss of generality we assume that
s1 ≥ s2 ≥ s3. If there are just 6 jobs to schedule then the incompatibility graph G = K3,3 and there is only one decomposition
of it into 3 independent sets shown in Fig. 1(a), aswell as there is only one decomposition ofG into 2 independent sets shown
in Fig. 1(b), of course up to isomorphism. The length of minimal schedule is min{max{3/s1, 2/s2, 1/s3}, 3/s2}. Therefore, we
assume that our graphs have at least 8 vertices.

By an ideal schedulewe mean a schedule in which:

(i) machineM1 performs as many jobs as possible andM2 andM3 finish at the same time, if s1 ≥ s2 + s3, or
(ii) machinesM1,M2, and M3 all finish at the same time, if s1 < s2 + s3.

An example of ideal schedule is shown in Fig. 2(a).
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Fig. 1. Two decompositions of K3,3: (a) into 3 independent sets, (b) into 2 independent sets.

Fig. 2. Gantt chart of a schedule for n = 14 and s1 = 2s2 = 4s3: (a) ideal; (b) optimal.

Lemma 1. If s1 ≥ s2 ≥ s3 then the length of ideal schedule is determined by the length of schedule on M2, that is

C(M2) =

1
2
n/(s2 + s3) if s1 ≥ s2 + s3,

n/s if s1 < s2 + s3.

Proof. (i) If s1 ≥ s2+ s3 then, by definition, as many as possible jobs should be allocated toM1. The maximal number of jobs
on the first machine is n1 = n/2. The remaining n/2 jobs should be assigned to M2 and M3. Suppose we merge M2 with M3
into one machineM23. Its speed is (s2 + s3)/2. Hence the time needed to process n/2 jobs onM23 is 1

2n · 2/(s2 + s3). Now, if
we splitM23 intoM2 and M3, we get C(M2) = C(M3) =

1
2n/(s2 + s3).

(ii) If s1 < s2 + s3 then the total load of n jobs must be balanced evenly among all the machines. Hence the time needed
to process all the jobs is 1

3n · 3/(s1 + s2 + s3) = n/s. �

Obviously, the numbers of jobs on machines must be integer. Therefore, we must check which of the three variants of
a schedule, i.e. with round-up and/or round-down on M1 and M2, guarantees a better solution. This leads to the following
Algorithm 1 for optimal scheduling of bicubic graphs.

A crucial point of Algorithm 1 is Step 7 where we use a modified procedure due to Chen, Lih, and Wu [4], which we
call a CLW procedure. In the nutshell, we first check if there is a pair of vertices one from the largest and the other from the
smallest class whose colors can be simply swapped. If there is no such pair, we have to consider such a bipartite subgraph
that swapping the vertices between its partition sets (possibly with another subset being involved in the swapping) results
in decreasing the width of coloring, i.e. the difference between the cardinality of the largest and smallest independent set.
CLW procedure was used by its authors to prove that every tricubic graph can be equitably colored without introducing
a new color. The proof relies on successive decreasing the width of coloring one by one until a coloring is equitable. At
first, they choose a vertex that must be recolored. Then the three authors consider numerous cases. In most of them the
above-mentioned swappings between all three color classes are required. For details, we refer the reader to [4].

Actually, their procedure works for every 3-coloring of any bicubic graph, except for K3,3. More precisely, in Step 7
of Algorithm 1, where we want to receive an (A, B, C)-coloring (named as OPT) with cardinalities of color classes
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Algorithm 1 Scheduling of bicubic graphs
Input: Graph G ∈ Q2(n), G ≠ K3,3 and machine speeds s1, s2, s3 such that s1 ≥ s2 ≥ s3.
Output: Optimal schedule.

1. If s1 < s2 + s3 then go to Step 5.
2. Find an (I, J)-coloring of graph G, where I, J are partition sets.
3. Split color J into 2 subsets: B of size n2 = ⌈.5n/(s2 + s3)⌉ and C of size n3 = n/2− n2.
4. Assign M1 ← I , M2 ← B, M3 ← C and stop.
5. Calculate approximate numbers of jobs n1, n2, and n3 to be processed on M1,M2, and M3 in an ideal schedule, as

follows:
n1 = ns1/s, n2 = ns2/s, n3 = ns3/s, where s = s1 + s2 + s3.

6. Verify which of the following types of colorings:

[⌊n1⌋, ⌈n2⌉, n− ⌊n1⌋ − ⌈n2⌉], [⌈n1⌉, ⌊n2⌋, n− ⌈n1⌉ − ⌊n2⌋] or [⌈n1⌉, ⌈n2⌉, n− ⌈n1⌉ − ⌈n2⌉]

guarantees a better solution and call it OPT.
7. Let (A, B, C) be a coloring of G realizing OPT obtained by using a modified CLWmethod described in Procedure 1.
8. Assign M1 ← A, M2 ← B,M3 ← C .

|A| ≥ |B| ≥ |C |, we have to start with 2-coloring of bicubic graph G, i.e. (I, J)-coloring, where I , J are its partition sets.
Next we split the color class J into two: B of cardinality |B| and C ′ of size n/2 − |B|. Hence, we initially have (A′, B, C ′)-
coloring with |A′| = n/2, |C ′| = n/2− |B|, where the largest class is clearly A′, while the smallest class is C ′. If this coloring
with the width of |B| is not the desirable (A, B, C)-coloring with the width of |A| − |C |, then we use CLW for decreasing the
width from |B| to |A− C |. Let us notice that such a width decreasing step is applied only to the first and the third color class,
without changing the cardinality of the second class which is still equal to |B|. The whole modified CLW procedure is given
below as Procedure 1. The complexity of modified CLW is the same as the complexity of the original CLW procedure for
making any 3-coloring of tricubic graph equitable, namely O(n2). This is so because the part of the algorithm responsible for
decreasing the width of coloring by one may be done in linear time. Since this step must be repeated at most n/6 times, the
complexity of modified CLW procedure follows. This complexity dominates the running time of Algorithm 1.

Procedure 1Modified CLW algorithm
Input: Graph G ∈ Q2(n), G ≠ K3,3 and integers a ≥ b ≥ c such that a+ b+ c = n.
Output: (A, B, C)-coloring of G such that |A| = a, |B| = b, |C | = c.

1. Find an (I, J)-coloring of graph G.
2. Split J into 2 subsets: B of size b and C of size n/2− b.
3. While |C | < c do

decrease the width of coloring by one using the CLWmethod [4].

The above considerations lead us to the following

Theorem 1. Algorithm 1 runs in O(n2) time to produce an optimal schedule. �

3. Scheduling of 3-chromatic graphs

First of all notice that if s1 = s2 = s3 then the scheduling problem becomes trivial since any equitable coloring of G
solves the problem to optimality. Therefore we assume that only two possible speeds are allowed for machines to run, more
precisely that s1 > s2 = s3.

In the following we take advantage of the following

Lemma 2 (Furmańczyk, Kubale [10]). Let G ∈ Q3(n) and let k = n/10, where 10|n. The problem of deciding whether G has a
semi-equitable coloring of type [4k, 3k, 3k] is NP-complete. �

Now we are ready to prove

Theorem 2. The Q3|pi = 1,G ∈ Q3(n)|Cmax problem is NP-hard even if s1 > s2 = s3.

Proof. In the proof we will use a reduction of the coloring problem from Lemma 2 to our scheduling problem.
So suppose that we have a tricubic graph G on n = 10k vertices and we want to know whether there exists a 3-coloring

of G of type [4k, 3k, 3k]. Given such an instance we construct the following instance for a scheduling decision problem:
machine speeds for M1,M2, and M3 are s1 = 4/3, s2 = s3 = 1 and the limit on schedule length is 3k. The question is
whether there is a schedule of length at most 3k. The membership of this problem in class NP is obvious.
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Fig. 3. Graph G for which the Greedy procedure (with ties broken by choosing the vertex with smallest index) finds an independent set I (vertices in
black) such that G− I contains K3 .

If there is a schedule of length≤ 3k then it is of length exactly 3k since it cannot be shorter. Such a schedule implies the
existence of a semi-equitable coloring of G of type [4k, 3k, 3k].

If G has a coloring of type [4k, 3k, 3k] then our scheduling problem has clearly a solution of length 3k.
The NP-hardness of Q3|pi = 1,G ∈ Q3(n)|Cmax follows from the fact that its decision version is NP-complete. �

Since our scheduling problem is NP-hard, we have to propose an approximation algorithm for it. The general idea behind
our heuristics is to find a big bipartizing independent set in G and allocate its job vertices to the fastest machine M1. Then
the remaining vertices are split evenly amongM2 andM3. If, however, we fail to find such an independent set then we look
for a semi-equitable or equitable coloring of G depending on the relative speeds ofM1 and M2.

Procedure Greedy repeatedly chooses a vertex v of minimum degree, adds it to its current independent set and then
deletes v and all its neighbors. Its complexity is linear. The following Procedure 2 gives a more formal description of it.

Note that Greedy does not guarantee that G − I is bipartite. It may happen that there remain some odd cycles in the
subgraph, even if a big independent set is found. An example of such situation is given in Fig. 3. Nevertheless, the authors
proved in [11] that given a graph G ∈ Q3(n) with α(G) ≥ 0.4n, there exists an independent set I of size k in G such that
G− I is bipartite for ⌊(n− α(G))/2⌋ ≤ k ≤ α(G).

Now we have to prove that if for an independent set I the inequality |I| ≥ 0.4n holds and graph G − I is bipartite then
G − I is equitably 2-colorable. Indeed, assume that |I| = 0.4n. Notice that 0.6n vertices of G − I induce binary trees (some
of themmay be trivial) and/or graphs whose 2-core is equibipartite (even cycle possibly with chords). Note that deleting an
independent set I of cardinality 0.4n from a cubic graph G means also that we remove 1.2n edges from the set of all 1.5n
edges of G. The resulting graph G− I has 0.6n vertices and 0.3n edges. Let di, 0 ≤ i ≤ 3, be the number of vertices in G− I
of degree i. Certainly, d0 + · · · + d3 = 0.6n. Since the number of edges is half of the number of vertices, the number of
isolated vertices, d0, is equal to d2 + 2d3. If d0 = 0, then G − I is a perfect matching and its equitable coloring is obvious.
Suppose that d0 > 0. Let S denote the set of isolated vertices in G − I . Let us consider subgraph G − I − S. Each vertex of
degree 3 causes the difference between cardinalities of color classes which is ≤2, similarly each vertex of degree 2 causes
the difference at most 1. The difference between the cardinalities of color classes in any coloring fulfilling these conditions
does not exceed d2 + 2d3 in G− I − S. Thus, the appropriate assignment of colors to isolated vertices in S makes the whole
graph G− I equitably 2-colored. Therefore, an equitable coloring of G− I required in Step 3 of Algorithm 2 can be obtained
as follows. First we color non-isolated vertices greedily by using for example a DFS method. In the second phase we color
isolated vertices with this color that has been used fewer times in the first phase. This can be accomplished in O(n) time.

However, the most time consuming is Step 2, where the FKR procedure is invoked. This procedure is too complicated to
be described here. The general idea is as follows: given G ∈ Q3(n) and an independent set I of size at least 0.4n such that
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Algorithm 2 Scheduling of tricubic graphs
Input: Graph G ∈ Q3(n) and machine speeds s1, s2, s3 such that s1 > s2 = s3.
Output: Suboptimal schedule.

1. Apply procedure Greedy (described in Procedure 2) to find an independent set I of G. If |I| < 0.4n then go to Step
5.

2. If G − I is not bipartite then apply procedure FKR (cf. [11]) to get an independent set A, |A| = |I|, which bipartizes G
and put I = A.

3. Find an equitable 2-coloring (B, C) of G− I .
4. If s1 ≥ 2s2 then assign M1 ← I , M2 ← B, M3 ← C and stop else go to Step 6.
5. Find any 3-coloring of G (cf. [13]) and apply procedure CLW in order to obtain an equitable coloring (A, B, C) of G. Go

to Step 9.
6. Calculate approximate numbers of jobs n1, n2, and n3 to be processed on M1,M2, and M3 in an ideal schedule, as

follows:
n1 = ns1/s, n2 = n3 = ns2/s, where s = s1 + s2 + s3.

7. Verify which of the following types of colorings guarantees a better legal solution:

[⌊n1⌋, ⌈n2⌉, n− ⌊n1⌋ − ⌈n2⌉] or [⌈n1⌉, ⌊n2⌋, n− ⌈n1⌉ − ⌊n2⌋]

If this is the first type then let n∗ = ⌊n1⌋ else n∗ = ⌈n1⌉.
8. If n∗ < |I| then starting from a semi-equitable coloring (A, B, C) find a semi- equitable/equitable coloring (A′, B′, C ′),

where |A′| = n∗, using the modified CLW procedure. Treat the new 3-coloring as (A, B, C).
9. AssignM1 ← A, M2 ← B,M3 ← C .

Procedure 2 Greedy
Input: Graph G ∈ Q3(n).
Output: Independent set I of G.

1. Set I = ∅.
2. While V (G) ≠ ∅ do

set G = G− N[v] and I = I ∪ {v}, where v is a minimum degree vertex in G and N[v] is its closed neighborhood.

G − I is 3-chromatic, we transform it step by step into an independent set I ′ such that |I ′| = |I| and G − I ′ is 2-chromatic
(see [11] for details). Since one step of swapping two vertices between I and V − I requires O(n2) time, the complexity of
FKR is O(n3).

The above considerations lead us to the following

Theorem 3. Algorithm 2 runs in O(n3) time. �

Note that if there are just 6 jobs to schedule then the incompatibility graph G = TP , where TP is the triangular prism
shown in Fig. 4. There is only one decomposition of TP into 3 independent sets and the length of minimal schedule is 2/s2.
Similarly, if n = 8 then each of tricubic graphs has a 3-coloring of type [3, 2, 2] only, and the length of minimal schedule
is max{3/s1, 2/s2}. If n = 10 then all we can get is a 3-coloring of type [4, 4, 2] or a 3-coloring of type [4, 3, 3]. The latter
leads to an optimal solution of value max{4/s1, 3/s2}. If, however, n = 12 then three types of colorings are possible: a non-
equitable with [5, 5, 2], a semi-equitable with [5, 4, 3] and an equitable of type [4, 4, 4]. It is easy to see that only the last
one guarantees optimal solution whose length is 4/s2. The reader may check by inspection that all the above mentioned
tricubic graphs on 12 or fewer vertices are scheduled to optimality by Algorithm 2. Having this in mind we shall prove
two facts concerning the performance guarantees for this algorithm.

Theorem 4. Algorithm 2 returns a solution of value less than 10
7 C∗max.

Proof. Let Alg2(G) be the length of a schedule produced by Algorithm 2when applied to incompatibility graph G, and let
C∗max(G) be the length of an optimal schedule.

If s1 ≥ 2s2 then it is natural to load as many jobs as possible on the fastest machine M1 (cf. Lemma 1 and Fig. 2). By
inequality (2) the maximal possible number of jobs on M1 is less than n/2, because G is tricubic. Therefore, the schedule
length on M1 is less than 1

2n/s1 ≤
1
4n/s2. In the ideal solution the remaining jobs must be split evenly between M2 and

M3, because s2 = s3 (cf. Fig. 2(a)). This means that optimal schedule cannot be shorter than ⌈(n + 1)/4⌉/s2 on M2. Hence
C∗max(G) ≥ ⌈(n + 1)/4⌉/s2. On the other hand, in the worst case Algorithm 2 returns a schedule corresponding to an
equitable coloring of G (Step 5), (cf. [13]) which means that Alg2(G) ≤ ⌊(n+ 1)/3⌋/s2. Therefore

Alg2(G)

C∗max(G)
≤
⌊(n+ 1)/3⌋/s2

C∗max(G)
≤
⌊(n+ 1)/3⌋/s2
⌈(n+ 1)/4⌉/s2

<
(n+ 1)/3
(n+ 1)/4

=
4
3
.
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Fig. 4. The prism TP and its decompositions into 3 independent sets.

If s1 < 2s2 then the faster machine M1 performs the bigger difference between the worst and best case is. In the worst
case s1 ∼= 2s2. By Lemma 1 the length of ideal schedule is n/s. Therefore, C∗max(G) ≥ n

s . As previously, at worst our algorithm
produces a schedule based on equitable coloring ofGwhose length is atmost ⌊(n+1)/3⌋/s2. Hence Alg2(G) ≤ ⌊(n+1)/3⌋/s2
and

Alg2(G)

C∗max(G)
≤
⌊(n+ 1)/3⌋/s2

C∗max(G)
≤
⌊(n+ 1)/3⌋/s2

n/s
=

s⌊(n+ 1)/3⌋
s2n

<
4s2⌊(n+ 1)/3⌋

s2n
≤

4 · 5
14
=

10
7

,

since Algorithm 2 performs optimally for n ≤ 12 and ⌊(n+ 1)/3⌋/n has maximum as n = 14. �

Theorem 5. If 3s1/4 ≤ s2 = s3 then Algorithm 2 almost always returns an optimal solution.

Proof. Frieze and Suen [9] showed that procedure Greedy finds an independent set of size |I| ≥ 0.432n− ϵn in almost all
cubic graphs on n vertices, where ϵ is any constant greater than 0. In practice this means that a random graph from Q3(n)
is very likely to have an independent set of size |I| ≥ 0.4n and the probability of this fact tends to 1 as n tends to infinity.
Notice that if it is really the case then calculated in Step 7 the optimal number of jobs to be allocated to M1 fulfills n∗ < |I|.
Therefore Algorithm 2 at first finds in Steps 2 and 3 a semi-equitable coloring of type [|I|, ⌈(n − |I|)/2⌉, ⌊(n − |I|)/2⌋]
and then transforms it into a semi-equitable coloring of type [n∗, ⌈(n− n∗)/2⌉, ⌊(n− n∗)/2⌋] in Step 8. This completes the
proof. �

4. Final remarks

Can our results be generalized without changing the complexity status of the scheduling problem? The answer is . . .
sometimes. Let us consider bicubic graphs for example. If arbitrary job lengths are allowed then the problemQ3|G ∈ Q2|Cmax
becomes NP-hard even if s1 = 2s2 = 2s3. In fact, let I1, I2 be a decomposition of G and suppose that the processing time
P(I1) = 2P(I2). Then all the jobs of I1 should be assigned to M1, which results in a schedule of length C(M1) = P(I1) on
machine M1. This schedule length equals C∗max if and only if there is partition of the remaining jobs. Thus a solution to our
scheduling problem solves an NP-complete PARTITION problem.

On the other hand, if all n jobs are identical but G is disconnected bicubic and K3,3-free then Algorithm 1 can be
modified to obtain an optimal schedule in O(n2) time. First, we treat G = G1 ∪ G2 ∪ · · · ∪ Gk as a connected graph and
calculate the color sizes, say n1, n2, and n, where n1 + n2 + n3 = n, that guarantee an optimal solution for G. Next, for each
i = 1, . . . , kwe split Gi into independent sets Ai, Bi and Ci, so that

i
j=1 |Bj|/

i
j=1 |Gj| is as close to n2/n as possible, where

|Gj| is the order of subgraph Gj. The same should hold for sets Ai and Ci with n1/n and n3/n, respectively. Similarly, we can
extend Algorithm 2 to deal with disconnected tricubic graphs in O(n3) time.

Finally note that if there are more than three machines then our problem remains NP-hard. To show this suppose that
m = 4 and that machine M4 is extremely slow, i.e. s1 > s2 = s3 ≫ s4 ∼= 0 (say s4 ≪ 4s2/n). Then none of jobs should be
assigned to M4. Hence, scheduling on the four machines is NP-hard by the same argument that was used in order to prove
Theorem 2.
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