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Superadditivity effects in the classical capacity of discrete multiaccess channels and continuous variable (CV)
Gaussian MACs are analyzed. Several examples of the manifestation of superadditivity in the discrete case are
provided, including, in particular, a channel which is fully symmetric with respect to all senders. Furthermore,
we consider a class of channels for which input entanglement across more than two copies of the channels is
necessary to saturate the asymptotic rate of transmission from one of the senders to the receiver. The five-input
entanglement of Shor error correction codewords surpass the capacity attainable by using arbitrary two-input
entanglement for these channels. In the CV case, we consider the properties of the two channels (a beam-splitter
channel and a “nondemolition” quadratures coupling sum (XP) gate channel) analyzed in Czekaj et al. [Phys.
Rev. A 82, 020302(R) (2010)] in greater detail and also consider the sensitivity of capacity superadditivity effects
to thermal noise. We observe that the estimates of the amount of two-mode squeezing required to achieve capacity
superadditivity are more optimistic than previously reported.
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I. INTRODUCTION

Quantum communication is a dynamically developing
branch of quantum information theory [1]. One of its central
notions is that of a quantum communication channel [1,2],
which models information transfer from senders to receivers
using quantum resources. The amount of information which
can be encoded in quantum states and reliably sent through
a quantum channel is measured, depending on the commu-
nication scenario, by various channel capacities: (i) classical
capacity (C), defined as the maximal rate at which classical
information can be transmitted through the channel; (ii)
classical private capacity (P ), which is the classical capacity
pertaining to the case when the transmitted bits are hidden
from an environment; (iii) quantum capacity (Q) character-
izing the size of the Hilbert space of states which can be
transmitted through the channel. Quantum effects, associated
with quantum channels, that have recently attracted much
attention are so-called “activations” and “superadditivities.”
For the quantum capacity Q, various activations were based
on bound entanglement, but the most spectacular result was
recently obtained in Ref. [3], where an activation of the type
0 ⊗ 0 > 0 was shown. In the case of private capacity P , the
corresponding superadditivity was found in Ref. [4] (see also
Ref. [5]). Quantum superadditivity of the classical capacity C

in the case of multiple access channels (MACs) was shown in
the Ref. [6] for discrete variables and in Ref. [7] for continuous
variables. The question of additivity of C is still open for
the one-sender one-receiver scenario, although a substantial
breakthrough on the superadditivity of the Holevo function
has recently been achieved in [8].

*lczekaj@mif.pg.gda.pl

In the present paper we study a variety of quantum MACs
exhibiting superadditivity effects for classical capacity. We do
this for both discrete and continuous variable (CV) systems.
In particular, for the discrete variable case, we provide a
new symmetric scenario where both senders can benefit from
capacity superadditivity. This is in contrast to earlier examples
studied in Ref. [6], where one of the senders only played a
role of an assistant with respect to the other fixed sender. We
furthermore go beyond the standard dense coding protocol,
which is based on two-particle entanglement and present
examples of channels where multipartite entanglement is
required to achieve the optimum channel capacity. The use
of multipartite entanglement can be seen as the next step in the
direction of optimization of the classical capacity of quantum
channels. In particular, it is shown that the five-qubit error
correction codeword [1] entangled across five inputs beats any
two-input-based entanglement encodings for these channels.

In the CV context, we study the examples of Gaussian
channels, introduced in Ref. [7] in greater detail. We extend
the analysis of nonadditive capacity regions and also study
the dependence of the classical capacity of the channels
on the choice of the set of input states. We show that for
low energies, protocols using two-mode entanglement surpass
both coherent state and standard single-mode squeezed-state
encodings. Furthermore, we analyze the sensitivity of the
superadditivity effects to thermal noise and show that the
protocols are relatively sensitive to thermal noise or losses
in that 15% of power loss is sufficient to destroy the effect.

The work is organized as follows. All necessary definitions
are introduced in Sec. II. Sections III A–III D are devoted to the
discrete variable case where we provide a proof of the classical
additivity of capacity regions (Sec. III A), an example of a
symmetric MAC, exhibiting superadditivity of the classical
capacity (Sec. III C), an analysis of the influence of multipartite
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entanglement on the capacity regularization (Sec. III D), and
an example of the supperadditivity of regularized capacity
regions (Sec. III E). Continuous variable MACs are studied
in Secs. IV A–IV C, wherein the locality rule for continuous
variable MACs is presented Sec. IV A, the dependence of the
classical channel capacities on the choice of input states is
studied in Sec. IV B, while the influence of thermal noise is
analyzed in Sec. IV C.

II. BASIC DEFINITIONS

The transmission of classical information through a quan-
tum channel corresponds to the following communication
sequence [1]:

x �→ ρx �→ �(ρx) �→ tr[�(ρx)Ey] �→ y. (1)

The sender maps the message x taken from some alphabet, into
a state ρx of a quantum system, which in turn is sent through a
quantum channel � to the receiver. The quantum channel mod-
els the interaction of ρx with the environment. It is assumed
that none of the users have access to the environment. The
receiver obtains the state �(ρx) and performs a measurement
{Ey}, yielding some output result y from which he tries to
infer the message sent by the sender. The receiver knows the
set of states {ρx} as well as the respective probabilities px with
which they are input to the channel. We distinguish two cases:
(i) The states {ρx} belong to a finite-dimensional quantum
space and x is a discrete variable (DV); (ii) the states {ρx} are
states of a bosonic system and x is a CV. In the latter situation, a
restriction on the average energy sent through the channel must
be imposed to obtain a meaningful concept of channel capacity,
since cranking up the power of transmission indefinitely allows
perfect transfer of information. The restriction usually takes
the form of a constraint on the average photon number of the
input ensemble {px,ρx}: tr[N̂

∫
pxρxdx] � N , where N̂ is the

photon number operator.
The sender may perform an encoding of his messages into

code states to reduce the probability that a message deciphered
from the measurement outcome disagrees with the one sent
through the channel. Code states belong to the Hilbert space
H⊗n, describing the input of n copies of channel �, that is,
�⊗n. As n → ∞ the probability of a decoding error can be
made arbitrarily small.

The maximal rate at which information can be reliably
transmitted through a quantum channel is defined as its
classical capacity C. By the well-known result [9], the
“single-shot” classical capacity C(1)(�) is bounded by the
Holevo quantity:

C(1)(�) � χ (�) = max
{px,ρx }

(
S(�(ρ̄)) −

∑
x

pxS(�(ρx))

)
,

(2)

where ρ̄ =∑x pxρx is the mean input state and S(ρ) =
−tr[ρ log ρ] is the von Neuman entropy. It can be shown that
the above capacity can be achieved by product code states over
the copies of H (Holevo-Schumacher-Westmoreland coding
theorem [10]).

However, the input Hilbert space H⊗n allows also for
entangled states, which may be useful for overcoming the

above bound. This possibility is quantitatively taken into
account by considering the so-called regularized classical
capacity:

C(∞)(�) = lim
n→∞

1

n
χ (�⊗n). (3)

The importance of considering entangled encodings is high-
lighted by Hastings’ recent work [8], which showed that there
do exist channels for which C(∞)(�) > χ (�).

In this paper we consider MACs, where there are at least
two senders (we denote them as A,B, . . . , transmitting to one
receiver R. Each sender sends his message independently
of the other senders; that is, their inputs are completely
uncorrelated. They know only the input ensembles and agree
upon a set of rules governing the use of the channel: The first
n1 uses of the channel consist of sending states from a fixed
first ensemble, the next n2 uses of the channel consist of states
chosen from a second ensemble, and so on. This procedure is
called time sharing [11].

For the case of two senders, a MAC acts as a mapping:

ρxA
⊗ ρxB

�→ �(ρxA
⊗ ρxB

). (4)

Here xA and xB are messages pertaining to senders A and B,
respectively.

The capacity region R(�) of the classical MAC �

characterized by the conditional probability distribution of
output symbols p(Y |XA,XB ) is defined as a set of vectors
R = {RA,RB} of rates, simultaneously achievable by adequate
coding and time sharing. The capacity region R(�) of a
classical two-sender MAC is given by the convex hull of the
rates {RA,RB} for which there exist probability distributions
p(XA),p(XB) of transmitted symbols and a joint probability
distribution in the form:

p(Y,XA,XB ) = p(Y |XA,XB)p(XA)p(XB), (5)

such that [11]:

RA � I (XA : Y |XB), (6)

RB � I (XB : Y |XA), (7)

RA + RB � I (XA,XB : Y ), (8)

where I (XA,XB : Y ) denotes the mutual information and
I (XA : Y |XB) and I (XB : Y |XA) are conditional mutual
information quantities. These quantities are related to the
Shannon entropy H (X) = −∑x px log px and conditional
entropy H (Y |X) = H (X,Y ) − H (X) as follows: I (X : Y ) =
H (Y ) − H (Y |X), I (X : Y |Z) = H (Y |Z) − H (Y |X,Z). In
the opposite way, for each vector of rates R ∈ R(�)
there exist joint probability distribution p(XA,XB,Y,Q) =
p(Y |XA,XB)p(XA,XB,Q) with input symbols probability
distribution in the form:

p(XA,XB,Q) = p(Q)p(XA|Q)p(XB |Q), (9)

that following set of inequalities is fulfilled:

RA � I (XA : Y |XB,Q), (10)

RB � I (XB : Y |XA,Q), (11)

RA + RB � I (XA,XB : Y |Q). (12)

Auxiliary random variable Q refers to time sharing procedure.
Special form of the input symbols probability distribution
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given by Eq. (9) is connected to the fact that in given moment
of time sharing procedure, senders transmit their messages
independently.

For the case of a quantum MAC � with two senders, a
useful notion is that of a “classical-quantum” state: ρABR =∑

xA,xB
pxA

pxB
exA

⊗ exB
⊗ �(ρxA

⊗ ρxB
) where {exA

}, ({exB
})

are projectors onto the standard basis of the Hilbert space
controlled by sender A (B) and {pxA

,ρxA
} ({pxB

,ρxB
}) is the

ensemble of code states of A (B). �(ρxA
⊗ ρxB

) represents
state obtained by reciver as the result of transmission.

The single-shot capacity region R(1)(�) is obtained as a
convex closure of all rates (RA,RB), for which there exist
classical-quantum states ρ fulfilling the following set of
inequalities:

RA � I (XA : Y |XB), (13)

RB � I (XB : Y |XA), (14)

RT = RA + RB � I (XA,XB : Y ). (15)

In distinction to the case of classical channels, the mutual
information is now given in terms of the von Neuman
entropy I (XA,XB : Y ) = S(ρAB) + S(ρR) − S(ρABR) and
I (XA : Y |XB) =∑xB

pxB
I (XA : Y |XB = ρxB

). Von Neuman
entropy is defined as S(ρ) = −tr[ρ log ρ]. RT denotes the total
capacity and is defined as RT =∑i Ri . In the following, we
often refer to the notion of the regularized capacity region
R(∞)(�) = limn→∞ R(�⊗n)/n.

Finally, we use the notion of parallel composition of MACs,
which we illustrate here by an example of two classical
channels (denoted by �I and �II ) and two senders (A and
B). In parallel composition sender A has access to input ports
XI

A(XII
A ) of the first (second) channel. XI

B,XII
B denote input

ports controlled by sender B. For each input port X
j

i there
is a set of possible signals which can be sent through the
channel. The channels operate synchronously, which means
that the communication process can be divided into steps. In
each step, user A sends the vector of symbols xA = {xI

A,xII
A }

while sender B sends symbols xB = {xI
B,xII

B }. In each step
a given channel is used by every user exactly once. At the
end of the communication step the receiver obtains the output
y = {yI ,yII }.

Let p(Y I |XI
AXI

B),(p(Y II |XII
A XII

B )) be the transition proba-
bilities for the MAC’s �I (�II ), then the transition probability
for the parallel composition is given by:

p(Y |XA,XB) = p
(
Y I
∣∣XI

A,XI
B

)
p
(
Y II
∣∣XII

A ,XII
B

)
. (16)

The parallel composition of quantum MACs is defined as
the straightforward generalization of the above concept.

III. QUANTUM MACS IN FINITE DIMENSIONAL SPACES

A. Additivity theorem for classical discrete multiaccess channels

We state the additivity theorem for capacity regions of
classical discrete MACs in full generality. First recall that
the capacity region R(�) for a classical MAC with arbitrary
number of senders is given by the convex hull of the rates {Ri}
which fulfill

RS � I (XS : R|SC), (17)

0
10

1

RA

RB
(a)

0
10

1

RA

RB

(b)

0
0

1

RA

RB

(c)
1

V

W

V+W

2

FIG. 1. Additivity of the capacity regions for classical MACs.
Capacity regions for channels �I and �II are presented, respectively,
in panels (a) and (b). The capacity region of the parallel composition
�I ⊗ �II of channels �I and �II is presented in panel (c) and it is
given by the geometrical sum of capacities regions from panels (a)
and (b) (see Ref. [6]).

where S enumerates all subsets of senders and RS =∑i∈S Ri ,
while SC is the complement of the set S [11]. For 2-to-1
channels this reduces to the simple form of Eqs. (6)–(8).
The capacity region evaluated for fixed probability distribution
of input symbols p̃ = p(Q)

∏
i p(XI

i ,X
II
i |Q) has a form [cf.

Eq. (17)]

R̃ = {R ∈ Rn : ∀S⊆ERS � I (XS : Y |XSC ,Q), ∀i∈ERi � 0}.
(18)

Pay attention on specific product structure of p̃ which reflect
independency of senders.

The additivity theorem states that the achievable capacity
region R of a channel being the parallel composition of MACs
is the geometrical sum of capacity regions of the constituting
channels. More formally, suppose n MACs are used in parallel,
with each channel having m senders. Let R̃ = {R1, . . . ,Rm} be
the vector of achievable rates for the composite channel; then
the capacity additivity theorem states that R̃ can be written as
a sum of vectors R̃(j ) describing the capacity region of the j th
MAC [12]:

R
(⊗

i

�i

)
=
∑

i

R(�i). (19)

The additivity theorem for the case of channels with two
senders is graphically depicted in Fig. 1.

Here we prove the theorem only for a simple 2-to-1
case R(�I ⊗ �II ) = R(�I ) + R(�II ), a complete proof is
postponed to the Appendix. We start with the inclusion (⊆).
The outline of the proof is as follows: For an arbitrary
chosen vector of rates R̃ = (RA,RB) ∈ R(�I ⊗ �II ) from
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the definition of the capacity region we know that there ex-
ists a probability distribution: p̃ = p(XI

A,XII
A ,XI

B,XII
B ,Q) =

p(Q)p(XI
A,XII

A |Q)p(XI
B,XII

B |Q) and a corresponding fixed
probability capacity such region that R̃ ∈ R̃(�I ⊗ �II ).
We will use p̃ to construct probability distribution
p̄ = p̃I p̃II where p̃I = p(QI )p(XI

A|QI )p(XI
B |QI ) [p̃II =

p(QII )p(XII
A |QII )p(XII

B |QII )] is the marginal probability
distribution of input symbols of channel �I (�II ). p̃I is
obtained from p̃ by tracing out variables XII

A ,XII
B and

changing the name of time sharing auxiliary variable Q �→ QI .
In the same way we obtain p̃II . Notice that in the case of p̄ the
channels are used independently. Fixed probability capacity
region corresponding to p̄ will be denoted by R̄(�I ⊗ �II ).
Since input symbols probability distribution p̄ has suitable
form [see Eqs. (5) and (9)], it determines the valid fixed
probability capacity region R̄(�I ⊗ �II ) ⊆ R(�I ⊗ �II ).

We first show that R̃(�I ⊗ �II ) ⊆ R̄(�I ⊗ �II ) ⊆
R(�I ⊗ �II ). Then we show that R̄(�I ⊗ �II ) = R̃(�I ) +
R̃(�II ), where R̃(�I ) is the fixed probability capacity region
obtained for channel �I for input symbols probability distribu-
tion p̃I and R̃(�II ) has a similar meaning for �II . From the
relation R̄(�I ⊗ �II ) = R̃(�I ) + R̃(�II ) we infer that the
rate vector R̃ may be presented in the form R̃ = R̃I + R̃II ,
where R̃I (II ) ∈ R̃(�I (II )) ⊆ R(�I (II )), which finishes the
proof.

The following facts will be useful in further considerations:

H (Y |Q) � H (Y I |QI ) + H (Y II |QI ), (20)

H (Y |XB,Q) � H
(
Y I
∣∣XI

B,QI
)+ H

(
Y II
∣∣XII

B ,QII
)
, (21)

H (Y |XA,XB,Q) = H
(
Y I
∣∣XI

A,XI
B,QI

)
+H

(
Y II
∣∣XII

A ,XII
B ,QII

)
. (22)

Equation (20) can be proven in the following way:

H (Y |Q) =
∑

q

p(q)H (Y |Q = q) (23)

�
∑

q

p(q)(H (Y I |Q = q) (24)

+H (Y II |Q = q))

=
∑

q

p(q)H (Y I |Q = q) (25)

+
∑

q

p(q)H (Y II |Q = q)

=
∑
qI

p(qI )H (Y I |QI = qI ) (26)

+
∑
qII

p(qII )H (Y II |QI = qII )

= H (Y I |QI ) + H (Y II |QII ), (27)

where in Eq. (24) we used entropy subadditivity and in Eq. (26)
we simply renamed auxiliary time sharing variable. This is
allowed since q is used as an index in two independent
summations. In a similar way one can derive Eq. (21). To
prove Eq. (22) it is enough to observe that the conditional

transition probability describing the setup �I ⊗ �II factorizes
[see Eq. (16)]; hence, we can write

H (Y |XA,XB,Q)

= −
∑

xA,xB ,y,q

p log p(y|xA,xB,q) (28)

= −
∑

xI
A,xI

B ,yI ,qI

pI log p
(
yI
∣∣xI

A,xI
B

)
(29)

−
∑

xII
A ,xII

B ,yII ,qII

pII log p
(
yII
∣∣xII

A ,xII
B

)
(30)

= H
(
Y I
∣∣XI

A,XI
B,QI

)+ H
(
Y II
∣∣XII

A ,XII
B ,QII

)
, (31)

where

p = p(XA,XB,Y,Q)

= p
({

xI
A,xII

A

}
,
{
xI

B,xII
B

}
,{yI ,yII },q)

= p(Y |XA,XB)p̃

= p(Y |XA,XB)p(Q)p
(
XI

A,XII
A

∣∣Q)p(XI
B,XII

B

∣∣Q) (32)

pI = p
(
XI

A,XI
B,Y I ,QI

)
= p

(
Y I
∣∣XI

A,XI
B

)
p̃I

= p
(
Y I
∣∣XI

A,XI
B

)
p(QI )p

(
XI

A

∣∣QI
)
p
(
XI

B

∣∣QI
)

(33)

pII = p
(
XII

A ,XII
B ,Y II ,QII

)
= p

(
Y II
∣∣XII

A ,XII
B

)
p̃II

= p
(
Y II
∣∣XII

A ,XII
B

)
p(QII )p

(
XII

A

∣∣QII
)
p
(
XII

B

∣∣QII
)

(34)

Now we show that R̃(�I ⊗ �II ) ⊆ R̄(�I ⊗ �II ).
By the definition of the capacity region, there exists the

input symbol probability distribution p̃ that the rate vector R̃

satisfies Eqs. (6)–(8). Using Eqs. (20)–(22) we can bound the
right-hand side of Eqs. (6)–(8) in the following way:

RA � I (XA : Y |XB,Q) (35)

= H (Y |XB,Q) − H (Y |XA,XB,Q) (36)

� H
(
Y I
∣∣XI

B,QI
)+ H

(
Y II
∣∣XII

B ,QII
)

−H (Y |XA,XB,Q) (37)

= H
(
Y I
∣∣XI

B,QI
)+ H

(
Y II
∣∣XII

B ,QII
)

−H
(
Y I
∣∣XI

A,XI
B,QI

)− H
(
Y II
∣∣XII

A ,XII
B ,QII

)
(38)

= I
(
XI

A : Y I
∣∣XI

B,QI
)+ I

(
XII

A : Y II
∣∣XII

B ,QII
)
. (39)

An analogous expression can be written for RB . Then,

RA + RB

� I (XA,XB : Y |Q) (40)

= H (Y |Q) − H (Y |XA,XB,Q) (41)

� H (Y I |QI ) + H (Y II |QII ) − H (Y |XA,XB,Q) (42)

= H (Y I |QI ) + H (Y II |QII ) − H
(
Y I
∣∣XI

A,XI
B,QI

)
−H

(
Y II
∣∣XII

A ,XII
B ,QII

)
(43)

= I
(
XI

A,XI
B : Y I |QI

)+ I
(
XII

A ,XII
B : Y II |QII

)
. (44)
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I (XI
A:Y I |XI

B,QI ),I (XI
B : Y I |XI

A,QI ),I (XI
A,XI

B : Y I |QI )
are calculated for the marginal distribution p̃I (analogically
for p̃II ). Summing up, R̃ belongs to the region given by the
set of inequalities:

RA � I
(
XI

A : Y I
∣∣XI

B,QI
)+ I

(
XII

A : Y II
∣∣XII

B ,QII
)
, (45)

RB � I
(
XI

B : Y I
∣∣XI

A,QI
)+ I

(
XII

B : Y II
∣∣XII

A ,QII
)
, (46)

RA + RB � I
(
XI

A,XI
B : Y I

∣∣QI
)+ I

(
XII

A ,XII
B : Y II

∣∣QII
)
.

(47)

However these inequalities define a region R̄(�I ⊗ �II ),
which can be easily checked by evaluation of I (XA :
Y |XB,Q), I (XB : Y |XA,Q) and I (XA,XB : Y |Q) on proba-
bility distribution p̄. Hence R̃ ∈ R̄(�I ⊗ �II ) and in this way
we have shown the capacity region inclusion.

We move to R̄(�I ⊗ �II ) = R̃(�I ) + R̃(�II ). Fixed
probability capacity region R̃I obtained for input symbol
probability distribution p̃I is given by

RA � I
(
XI

A : Y I
∣∣XI

B,QI
)
, (48)

RB � I
(
XI

B : Y I
∣∣XI

A,QI
)
, (49)

RA + RB � I
(
XI

A,XI
B : Y I

∣∣QI
)
. (50)

Geometrical sum R̃I + R̃II can be easy obtained as a convex
hull of sums of vertices of the fixed probability capacity
regions R̃I ,R̃II and is equal to the region R̄. Because R̃

was chosen arbitrary, we have proven that R(�I ⊗ �II ) ⊆
R(�I ) + R(�II ).

We move to the opposite inclusion (⊇). Let R̃I ∈ R(�I )
belong to the fixed probability capacity region associated with
the input distribution p̃I and similarly for R̃II . It is easy to
check by direct evaluation of Eqs. (10)–(12) that the rate vector
R̃I + R̃II belongs to the fixed probability capacity region of
�I ⊗ �II obtained for the input distribution p̃ = p̃I p̃II . That
proves R̃I + R̃II ∈ R(�I ⊗ �II ).

B. Supperadditivity

Supperadditivity is defined as the situation when for a
certain type of capacity C̃ and two channels �I ,�II , the
following holds:

C̃(�I ⊗ �II ) > C̃(�I ) + C̃(�II ). (51)

One may distinguish the following types of superadditivities:
(a) superaddivity of channel capacity, when C̃ = C(∞) [see
Eq. (3)]; (b) superadditivity of Holevo capacity, when C̃ = χ ;
(c) self-superadditivity, if C̃ = χ and �I = �II . For self-
superadditivity, C(∞) > C(1). Note that the right-hand side
of (51) expresses the capacity achieved with product inputs
on �I and �II . Superadditivity means that using encoded
states that are correlated (entangled) across uses of channels
is advantageous.

In the context of MACs superadditivity effects are identified
in terms of the capacity regions: R(�I ⊗ �II )R 
⊇ (�I ) +
R(�II ), where + denotes the geometrical sum of two regions.
Superadditivity occurs if there exists a vector in the region
R(�I ⊗ �II ) which cannot be expressed as a sum of two
vectors from R(�I ),R(�II ). To prove supperadditivty effects
in terms of the capacity regions it is enough to show that the

maximal rate achieved by one of the senders (say sender A)
exhibits superadditivity. This means that we may concentrate
only on the rate of a single sender or, in other words, show the
effect only by analysis of its “coordinate” (or “dimension”) in
the multidimensional geometric regions C(�I ⊗ �II ), C(�I ),
and C(�II ).

C. Superadditivity effect in symmetric channels

Examples of channels presented in [6,7], which exhibit
superadditivity effects, are highly unsymmetrical. One of the
senders performs a “remote” dense coding on the part of
an entangled state transmitted by the other. In the described
communication schemes one sender is a true sender who
transmits messages, while the role of the others is only to
help in the communication process since their transmission
rates are zero. It might suggest that in the channels based on
the dense coding scheme there is only a single supersender
who takes advantage of the entangled state transmission. This
is not the case as shown here. A channel can be constructed
that is symmetric with respect to the exchange of senders,
facilitating a superadditivity effect for all of them.

Here we consider a channel � (see Fig. 2) with two senders:
A and B. Each of the senders controls two one-qubit lines. The
channel operates in two modes: F and S. Each occurs with a
probability 1/2. In the first mode, the operation of the channel
is depicted in Fig. 2(b). In the second mode, A and B are
swapped; that is, lines A1 and A2 now belong to B while
B1 and B2 belong to A. The channel is explicitly symmetric
with respect to the senders. Information that the first (second)
case occurred is sent to the receiver as a label |F 〉(|S〉). The
crosses at the ends of the lines denote replacement of the
transmitted state by a completely mixed state. The action

A
1

B
1

B
2

A
2

A’

B’

(b)

(c)

(a)

label
E

A
1

B
1

B
2

A
2

σ
i

F

A
1

B
1

B
2

A
2

σ
i

S

FIG. 2. Channel � from Sec. III C. (a) Channel � working in
parallel with identity channel I; waved line denotes entangled state.
(b),(c) Two modes of work of channel �.
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3

2

1

0
10 2 3

R
A

R
B

FIG. 3. Lower bound for achieved capacity region for channel �

from Sec. III C working in parallel with the identity channel. Thick
lines refer to the upper bound for geometrical sum of capacity regions
of component channels.

of the controlled σi gate is |00〉〈00| ⊗ I + |01〉〈01| ⊗ σx +
|10〉〈10| ⊗ σz + |11〉〈11| ⊗ σy . The capacity region R(�) is
upper bounded by the inequalities RA � 1,RB � 1,RA +
RB � 1 as a direct consequence of the dimensionality of the
output space (one-qubit space).

Each user is supplied with an additional one-qubit identity
connection with the receiver. These two channels are jointly
referred to as I. Note that its capacity region R(I) is given by
RA � 1,RB � 1,RA + RB � 2.

The upper bound for R(�) + R(I) thus becomes RA �
2,RB � 2,RA + RB � 3. On the other hand, the lower bound
for the achievable capacity region of the composite channel
R(� ⊗ I) can be seen in Fig. 3. To see this, we present a
protocol which achieves the capacity (2.5,0). Due to symmetry
of the channel, it follows that the rates (0,2.5) are also
achievable. Notice immediately that the rates (1,2) and (2,1)
can be obtained by product code states. All the other rates
presented in Fig. 3 are obtained by time sharing.

Consider the following protocol: Sender A sends states
|i〉|i ′〉 with a probability 1/8, where |i〉 ∈ {|00〉, . . . ,|11〉} are
all possible standard basis states of two qubits, while |i ′〉 ∈
{|0〉,|1〉}. The two-qubit states |i〉 are input to � while |i ′〉
are input to the supporting identity channel I. B sends a fixed
state 1/

√
2|0〉(|00〉 + |11〉) with one qubit of the Bell state sent

through line B2 and the other through the supporting channel.
For a given {i,i ′} the receiver obtains

ρi,i ′ = 1
2 |F 〉〈F | ⊗ 1

2 I ⊗ |iA2〉〈iA2 | ⊗ 1
8 I⊗3 ⊗ |i ′〉〈i ′|

+ 1
2 |S〉〈S| ⊗ 1

8 I⊗3 ⊗ |ψi〉〈ψi | ⊗ |i ′〉〈i ′|,
where |F 〉,|S〉 denote the mode of operation of channel �. The
output state consists of the mode label and six qubits. The first
four qubits are output by channel �, while the fifth and sixth
qubits are outputs pertaining to I. If channel � works in mode
F , either the identity operation I or σx is performed on line
A2. However, states sent by sender A (|0〉 and |1〉) are invariant
under the mentioned operations since the receiver obtains an
unchanged state from line A2. If channel � operates in the
mode S, the controlled σi gate, triggered by the state |i〉 from
sender A, is performed on a half of the Bell state input by
sender B. The result of this operation is denoted by |ψi〉. The
entropy of the conditional output state ρi,i ′ is equal to 4.5. Note
that the entropy has the same value for each input state |i〉|i ′〉.

The mean output state is ρ̄ = 1
8

∑
i,i ′ ρi,i ′ and can be written

as
ρ = 1

2

(|F 〉〈F | 1
64 I⊗6 + |S〉〈S| 1

64 I⊗6
)

(52)

= 1
128 I⊗7. (53)

Its entropy is S(ρ) = 7. In the presented scheme, sender B

always transmits the same state and, hence, his rate is zero.
Since the setup � ⊗ I can be viewed as a channel with the
single sender A, while the state from the helper-sender B is
formally included to the environment, by Holevo’s theorem
[cf. Eq. (2)], we obtain that the rate that sender A can attain is
2.5 bits.

Although rates (2.5,0) and (0,2.5) are achieved in the
protocol where there is still one true sender, while the other is
a helper-sender and there is no superadditivity of the total
rate RT = RA + RB , potentially both of senders can take
advantage of entangled state transmission.

D. Multiparticle entanglement
and the regularized capacity region

In this section we give an example of a channel where
senders must use multiparticle entangled states to achieve the
regularized capacity region.

We start by describing the class of channels �n,n′ that will be
used in the search for supperadditivity effects. The channels
have one distinguished sender A and n helper-senders Bi .
Sender A controls n′ of two-qubit lines which are measured
in the standard basis by the channel (alternatively, it can be
seen as a control of n′ 2-bit lines), while senders Bi control
only one-qubit lines. Each time the channel is used, one of the
helper-senders is attributed to each 2-bit line of sender A. One
helper-sender can be attributed to only one line of sender A. Se-
lected helper-senders become active helper-senders. It means
that they participate in a transmission of messages from sender
A. The state from the active helper-sender is modified by the
unitary operation from the set I,σx,σy,σz, which is triggered
by the state of the appropriate line of sender A. The states
of the other helper-senders remain unchanged. The described
selection of active helper-senders is performed in a random
way. Each selection can be chosen with equal probability.
States transmitted by A are absorbed (i.e., the output degrees
of freedom of A are traced out). The receiver obtains only the
states coming from senders Bi and a label w with information
about attribution of active helper-senders to the lines of A.
For example, if n = 3,n′ = 2, the label w = {2,3} tells the
receiver that states from senders B2 and B3 were chosen as
the targets of the unitaries controlled by the first and the
second two-qubit lines of sender A, respectively. This channel
is schematically depicted in Fig. 4. Note that the message
included in the label w may be represented as a n′�log2 n�-
qubit state |w〉 = |(i1)b,...,(in′ )b〉, where ik is the number of the
helper-senders chosen to be the target of the unitary operation
controlled by kth line of sender A and (·)b denotes the binary
representation of the value ik . For example, in the above-
mentioned case of n = 3 the label w = 2,3 corresponds to
|w〉 = |10,11〉. We use this notation in the analysis of a specific
example.

Here we study a parallel setup of m copies of the channel
�n,n′=1 from the class described above. For simplicity we
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active 
helper-senders

A

B
1

B
2

B
3

B
4

B
5

label with list of 
active helper-senders

FIG. 4. The channel described in Sec. III D with n = 5 helper-
senders and n′ = 3 lines belonging to sender A. The message
represented by the label w = 1,2,4 is additionally sent to the receiver,
which may be represented as a “flag” state |w〉 = |001,010,100〉.

denote the channel by �. Note that in what follows we have
chosen n′ = 1. In the setup �⊗m, senders Bi can send at most
m-particle entangled states through their inputs. We assume
that entanglement cannot be used throughout inputs of two
different senders (see Fig. 5).

We focus on the upper bound for the achievable rate for
sender A. We restrict ourselves to the scheme where helper-
senders Bi send one state at all times. Vectors of rates for such
schemes take the form (RA,0). Formally, we can consider the
channel �⊗m in the setup as a 1-to-1 channel and determine
the capacity CA(�⊗m) of sender A. Now we prove that the
upper bound for the capacity CA(�⊗m) has the form

CA(�⊗m) � n

m∑
i=0

pi(1 − p)m−i

(
m

i

)
min(2i,m), (54)

where n is the number of helper-senders, m is the number of
channels used for transmission that is equivalent to the number
of parties in the entangled state pertaining to Bi , and p = 1/n.

Proof. First we find an upper bound for the Holevo capacity
of the setup �⊗m in the case when the helper-sender Bi was
active li times. Then we use these results to calculate the upper
bound for the capacity of �⊗m.

The orthogonal label |wj 〉 describes which sender Bi was
active in the j th copy of �. Label |w〉 = |w1, . . . ,wm〉 =
|w1〉 ⊗ · · · ⊗ |wm〉 is the complete list of the active helper-
senders in the setup. Given the label we know that sender
Bi was active li times. The probability of occurrence of the
situation described in |w〉 is given by pw = pm.

Suppose that |w〉 is obtained as the result of the action of
�⊗m. This fixes the attribution of senders Bi to the lines of A.
We denote this case as �⊗m

w . Now, the m uses of the channel
� can be thought as n separate channels �i . The input of each
channel �i consists of the subset of lines from A and all lines

En
ta

ng
le

d 
in

pu
ts

Uses of channel

B1

B2

A

FIG. 5. The parallel setup of channels described in Sec. III D.
The inputs of the channels used for transmission of entangled states
are shown. The presented case consists of channels with two helper-
senders n = 2, each of which can send three particle entangled states
m = 3.

from Bi . None of the �i share input lines with any other �j .
Each channel �i has a 2li-qubit input from sender A, a m-qubit
input from sender Bi , and a m-qubit output. The equivalence
�⊗m

w = ⊗i�i is depicted in Fig. 6.
Taking into account the dimensionality, one can infer that

A can transmit at most min(2li ,m) classical bits of information
through �i . Given |w〉, the channels �i work independently.
There cannot be entanglement shared between �i and �j

because sender A transmits only classical states and users
Bi and Bj cannot share entanglement due to the definition of
a MAC. This leads to the total conditional capacity:

CA

(
�⊗m

w

) =
n∑

i=1

C(�i) =
∑

i

min(2li ,m). (55)

The following observation is helpful for the calculation of
CA(�⊗m). Consider a channel �(ρ) =∑w pw�w(ρ)|w〉〈w|,
which acts with probability pw as some channel �w. Assume

A

B
1

B
2

Φ
w=1 Φ

w=2Φ
w=1

Γ1

1 1 2

FIG. 6. Equivalence �⊗m
w = ⊗i�i on example of channel

�⊗3
w={1,1,2}. The dashed line delimits channel �1; waved lines denote

entangled states from by senders B1 and B2; labels with active
helper-sender are in the circles.
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again that the label |w〉 is sent to the receiver which identifies
the case that occurs. For this channel we have

C(�) = max
{px,ρx }

S
[
�
(∑

pxρx

)]
−
∑

x

pxS(�(ρx)) (56)

= max
{px,ρx }

S

(∑
w

pw�w

(∑
pxρx

)
|w〉〈w|

)

−
∑

x

pxS

(∑
w

pw�w(ρx)|w〉〈w|
)

(57)

= max
{px,ρx }

∑
w

pw

{
S
[
�w

(∑
pxρx

)]
+ H ({pw})

−
∑

x

pxS(�w(ρx)) − H ({pw})
}

(58)

�
∑
w

pw max
{pw

x ,ρw
x }

{
S
[
�w

(∑
pw

x ρw
x

)]

−
∑

x

pw
x S

(
�w

(
ρw

x

))}
(59)

=
∑
w

pwC(�w), (60)

where equality occurs if the same ensemble achieves the
capacity of each channel �w. A similar argument can be used
to show that the rates achieved for the channel � in a certain
protocol obey

R(�) =
∑
w

pwR(�w), (61)

where R(�w) are the rates achieved by this protocol for �w’s.
Using the above observation with � = �⊗n

w , pw = pm, and
C(�w) substituted by CA(�⊗m

w ) from Eq. (55), we obtain

CA(�⊗m) � pm
∑
w

[min(2l1(w),m) (62)

+ · · · + min(2ln(w),m)], (63)

where li(w) denotes value of li encoded in label w. After some
rearrangement:

CA(�⊗m) � pm
∑
w

[min(2l1(w),m) + · · · ] (64)

= pm
∑

l1+...+ln=m

m!

l1! · · · · · ln!

× [min(2l1,m) + · · · + min(2ln,m)] (65)

= npm

m∑
l=0

(
m

l

)
min(2l,m)αl (66)

= n

m∑
l=0

(
m

l

)
min(2l,m)pm(n−1)m−l (67)

= n

m∑
l=0

pl(1 − p)m−l

(
m

l

)
min(2l,m). (68)

In Eq. (65) we collected in the common factor all
w with the same {l1, . . . ,ln}. Because formulas with

1

5

10

15
20

1.5

2.0

2
3

4
5

6
0

n
m

C
A     

(Φ)(m)

FIG. 7. Upper bound for the regularized capacity C
(m)
A =

1
m
CA(�⊗m) as a function of m—the number of channel copies the

capacity is evaluated on—and the number of helper senders n in the
channel �.

min(l2,m), . . . , min(ln,m) in Eq. (65) have the same form
as the one with min(l1,m), we omitted them and introduced
in Eq. (66) a factor n. Moreover, we introduced αl =∑

l2+...+ln=m−l ( m − l
l2, . . . ,ln

). In Eq. (67) we used the relation

∑
k1+···+kn=m

(
m

k1, . . . ,kn

)
= nm. (69)

Recalling that p = 1/n, one has (n − 1)p = (n − 1)/n = 1 −
p, which was used in Eq. (68). Upper bound for the regularized
capacity C

(m)
A = 1

m
C

(m)
A (�⊗m) is presented in Fig. 7.

The upper bound given by (54) is achieved in the case of
m ∈ {1,2,5} by the protocols which run as follows: A transmits
with an equal probability all states from the standard basis of
his 2m-qubit input space of �⊗m, while all Bi’s transmit either
the state |0〉 from the standard base, one of the Bell states |�+〉
or |0L〉, a five-qubit correction codeword (see [1]) for m = 1,
m = 2 or m = 5, respectively:

|0L〉 = 1
4 [|00000〉 + |10010〉 + |01001〉 + |10100〉
+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉]. (70)

To prove this, we show that for each w, an ensemble used
in the protocol gives the capacity (55). Equality in Eq. (54)
then becomes a simple consequence of relation Eq. (61).

Assuming the knowledge of w, the output entropy of
the channel is equal to 0 for each state transmitted in the
described protocol. Hence, we have to check if, under the
condition of w, the mean output state entropy S(ρw) reaches∑

i min[2 li(w),m]. Since senders Bi are uncorrelated, we can
focus only on one sender Bi and consider only the value li .
Let the set e contain all positions where the state coming from
sender Bi was affected by the channel � (|e| = li). We denote
by Ek(ρ) the completely depolarizing channel acting on the
kth qubit of the state ρ. For a given e, part of the mean output
state coming from Bi has the form ρe = (

⊗li
j=1 E (ej ))[|φ〉 〈φ|]

where ej denotes the j th element of e and |φ〉 is |0〉, |�+〉 or
|0L〉. The condition of whether S(ρe) = min(2li ,m) occurs for
all e was checked numerically. The program enumerated all
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e’s, then for each e it computed the state ρe and its entropy
S(ρe). Obtained results confirmed that S(ρe) = min(2li ,m) for
|0〉, |�+〉 and |0L〉.

In the presented protocol, entanglement increases diversity
of the mean output state. An important feature of the code
state from the five-qubit correction code is that the increase
of entropy of the output state depends only on the number
of qubits affected by the unitary. It does not depend on a
localization of the affected qubits. We cannot exceed m bits
of entropy per state; hence, the closer li is to m the smaller
is the entropy increase. Due to the asymptotical equipartition
property, for n > 1 the larger the entanglement in the state, the
smaller is the chance that li will be close to the m.

The above analysis opens a possibility of further study of a
type of entanglement which is the best in a case of various
channels. The possible classification of noise with respect
to classes of entanglement seems especially interesting. For
instance, one can ask whether there are any channels for
which cluster-type entanglement is the best in saturating the
asymptotic rates of the channel. We leave those questions for
further research.

E. Supperadditivity of the regularized capacity

We now turn to the study of the supperadditivity effect for
the regularized capacity. We investigate a setup which consists
of two channels of the type already described in Sec. III D. For
the channel �I we choose n = 10,n′ = 9 and for the channel
�II we choose n = 10,n′ = 1. We are interested in maximal
transmission rate from sender A, that is, the case when all
senders Bi help sender A by transmitting the same state all the
time. Senders Bi transmits with rates equal zero. Formally we
can include senders B to the environment and view channels
�I and �II as 1-to-1 channels.

First, we show that for channels �I and �II , the upper
bounds CA for the rates achievable by sender A fulfill C

(∞)
A >

C
(1)
A . For this, we consider a protocol where senders Bi transmit

one of the Bell states and show that this protocol achieves
a regularized rate strictly greater than C

(1)
A . Calculation is

performed for general sizes of the set of selected helper-senders
equal to n′. The single-shot capacity is given by the joint
dimensionality of the states of the selected helper-senders
and it reads C

(1)
A = n′. In case of two uses of the channel

and Bell states transmission, the probability that the same set

of selected helper-senders was chosen twice is p = 1/( n
n′ ).

With probability 1 − p sets of the selected helper-senders in
the first and second uses of the channel differ in at least one
sender Bi . It means that the input Bell state of two senders,
say B1 and B2, was affected by the channel only once and, due
to the dense coding, the states carry full information from
appropriate two-qubit input lines of A (lines 1 and 2). In
this case sender A takes advantage of a transmission of an
additional 2 bits of information. Under condition of output
label w, the output entropy of the channel is 0; therefore,
the rate achievable by the protocol for given w is equal to
entropy of the mean output state (strictly speaking, entropy
of the part coming from senders B). As usual, sender A

transmits with equal probability all states from the standard
basis. From Eq. (61), the rate achievable by sender A is at

least RA = p2n′ + (1 − p)(2n′ + 2) = 2[n′ + (1 − p)]. This
leads to C

(∞)
A � (1/2)RA = n′ + (1 − p) > n′ = n′ � C(1).

Now we pass to the supperadditivity of the regularized
capacities [cf. Eq. (51)]. We show that C

(1)
A (�I ⊗ �II ) >

C
(∞)
A (�I ) + C

(∞)
A (�II ). We first provide upper bounds for

C
(∞)
A (�I ) and C

(∞)
A (�II ).

Recall that entangled states can be transmitted only through
the inputs controlled by the same users. Channel capacity is
upper bounded by the minimum value of the logarithm of its
input and output spaces. Therefore, for the channel �n,n′ , we
have C

(m)
A � 1/m min(2n′m,nm) = min(2n′,n) and it leads to

C
(∞)
A (�I ) � min(2 × 9,10) = 10 and C

(∞)
A (�II ) � min(2 ×

1,10) = 2.
Now we move to the case �I ⊗ �II , that is, the case

where entanglement between the inputs of the channels �I

and �II controlled by the same user is allowed. One can
use the following protocol to provide a lower bound for
C

(1)
A (�I ⊗ �II ): Sender A only uses the inputs of �I and

sends each state from the standard basis of the input space
of �I with the same probability; through channel �II , he
sends only one chosen state |00〉 all the time. It is easy to
see that the channel �II does not change the states coming
from senders Bi and in fact it can be seen as an identity
channel. Senders Bi send one chosen Bell state |�+〉. The
first qubit of the Bell state goes through channel �I while
the second through channel �II . If the qubit is affected by
the channel �I , the dense coding scheme is reproduced. Each
time the setup �I ⊗ �II is used, all the lines controlled by
A find as a target different Bell states. Therefore, the rate
achieved by the protocol is given by the dimensionality of
input space of the channel �I controlled by sender A and
reads 18 bits. It is a lower bound for C

(1)
A (�I ⊗ �II ) and

shows that C
(∞)
A (�I ⊗ �II ) � C

(1)
A (�I ⊗ �II ) � 18 > 12 �

C
(∞)
A (�I ) + C

(∞)
A (�II ) and proves that the supperadditivity

effect indeed occurs.

IV. QUANTUM GAUSSIAN MACS

We now consider the capacity properties of Gaussian
multiaccess channels. Before going further, we first collect
certain basic notions and definitions that will be subsequently
useful.

Recall first the concept of classical Gaussian multiaccess
channels [11]. Inputs and outputs of classical CV Gaussian
MACs are real numbers. A Gaussian MAC models the
influence of an additive Gaussian noise Z (with a variance
N ) on the total input signal; that is, the output is

Y =
∑

i

Xi + Z. (71)

To prevent unphysical infinite capacities, power constraints
are imposed on the input signals 〈X2

i 〉 � Pi . Under these
constraints, the capacity region for a classical Gaussian MAC
is given by [11]

∑
i

Ri � C

(∑
i

Pi/N

)
, (72)

where C(x) = 1/2 log(1 + x).

012316-9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


CZEKAJ, KORBICZ, CHHAJLANY, AND HORODECKI PHYSICAL REVIEW A 85, 012316 (2012)

For a quantum Gaussian MAC, the input and the output
spaces are described by infinite dimensional Hilbert spaces,
isomorphic to those describing a finite number of bosonic
modes [13]. The latter are equipped with the “position” and
“momentum” canonical observables {x̂1, . . . ,x̂n,p̂1, . . . ,p̂n}
fulfilling the standard commutation relations [x̂i ,p̂j ] = iδi,j ,
where i,j enumerate the modes of the system. States of a
bosonic system can be expressed in terms of characteristic
functions χρ(ξ ) = Tr[ρWξ ], where Wξ = exp(−iξT R) is the
so-called Weyl operator and R̂ = (x̂1,p̂1, . . . ,x̂n,p̂n)T is the
vector of canonical observables [13,14]. Gaussian states are
the states whose characteristic functions are Gaussian:

χ (ξ ) = exp
[− 1

4ξT γ ξ + idT ξ
]
, (73)

where d is the displacement vector [with dj = tr(ρR̂j )] and
γ is the covariance matrix with entries γjk = 2tr[ρ(R̂j −
dj )(R̂k − dk)] − iJ

(n)
jk that completely define the Gaussian

state. J (n) is the symplectic form for the multimode system:

J (n) =
n⊕

i=1

J, J =
(

0 1

−1 0

)
. (74)

Gaussian channels are defined as mappings that transform
Gaussian states into Gaussian states. They can be expressed as
transformations of γ and d:

γ �→ XγXT + Y, (75)

d �→ Xd. (76)

Complete positivity of the channel is guaranteed by the
condition

Y + iJ − iXT JX � 0. (77)

We now show how to determine X,Y for an arbitrary
Gaussian channel �. Recall that the action of any general
channel is given by: �(ρs) = tre[Û (ρs ⊗ ρe)Û †], where Û =
exp(−iĤ ) is a unitary operation generated by a Hamiltonian
Ĥ . Gaussian channels are generated by Hamiltonians Ĥ that
are quadratic in the canonical operators: Ĥ = iR̂T hR̂, where
h is a 2n × 2n Hermitian matrix [15]. Here ρs is the input
state and ρe is a state of the environment. Now, for Gaussian
channels, both ρs and ρe are Gaussian states with covariance
matrices γs , γe and displacement vectors ds , de, respectively.
The displacement of the output state depends linearly on de.
As any displacement of output states by a constant vector
is a unitary operation and as such it does not influence the
channel capacity, we assume that de = 0. The action of Û

on the canonical observables can be identified with the linear
transformation Û †R̂T Û = MR̂T . Now we express M in block
form with respect to the system-environment partition:

M =
(

Mss Mse

Mes Mee

)
.

From the latter one obtains X = Mss and Y = MseγeM
T
se.

Finally, note that in the context of quantum Gaussian chan-
nels, power constraints are usually expressed as a limitation
on a mean number of photons transmitted per channel use.

Squeezed states represent an important class of Gaussian
states for communication tasks. A one-mode squeezed state
saturates the Heisenberg uncertainty principle, with lower
quantum noise (variance) in one of the quadratures as

compared with a coherent state. In the photon number basis a
one-mode vacuum squeezed state has the following form:

|ζ ; 0〉 =
√

sech r

∞∑
n=0

√
(2n)!

n!

[
−1

2
eiφ tanh r

]n

|2n〉, (78)

where r is the squeezing parameter. In terms of the covari-
ance matrix formalism, the φ = 0 squeezed vacuum state is
described by

γ =
(

e−2r 0

0 e2r

)
(79)

and the displacement vector d = 0. Displacing a squeezed
vacuum state using the displacement operator Dd̃ leads to
a state with an unchanged covariance matrix but with the
displacement vector d = d̃ . In the two-mode case, we utilize
the two-mode squeezed vacuum state, with squeezing of the
relative position x1 − x2 and the total momentum p1 + p2.
The covariance matrix of this state takes the form [15]

γ = HT diag(e−2r ,e2r ,e2r ,e−2r )H, (80)

where

H = 1√
2

⎛
⎜⎜⎜⎝

1 0 −1 0

1 0 1 0

0 1 0 −1

0 1 0 1

⎞
⎟⎟⎟⎠ , (81)

while the displacement vector d = 0.
Last, for a calculation of channel capacities we need the

entropy of n-mode Gaussian states ρ. This is given by the
formula [15]

S(ρ) =
n∑

j=1

g

(
vj − 1

2

)
(82)

in terms of normal modes of the system. Here g(x) = (x +
1) ln(x + 1) − x ln x is the entropy of a normal mode with
average occupation number x. The vj ’s are the symplectic
eigenvalues of the covariance matrix γ corresponding to the
state ρ, that is, the square roots of the eigenvalues of the
matrix −J (n)γ J (n)γ . (Note that the symplectic spectrum for
each mode is doubly degenerate and that in the entropy formula
each value is taken only once).

A. Locality rule for classical Gaussian MACs

The analysis of capacity regions is more intricate in the
CV case than in the DV case, already for classical channels.
This is intimately related to the fact that the capacities are
dependent on power constraints which may lead to various
scenarios. To see this, consider an example of two 1-to-1
classical channels �1 and �2 with noise levels N1 and N2

and the same power constraints P̃ . We assume that N1 < N2.
Suppose each channel works separately; then �i achieves the
capacity C̃i = 1

2 log[1 + P̃ /Ni] [11]. Now suppose the chan-
nels work in a parallel setup. The sender aims to maximize the
total capacity CT = C1 + C2 = 1

2 (log[1 + P1/N1] + log[1 +
P2/N2]), where Pi is the power allocated to the channel �i .
One demands that the total power available to the user in this
case is identical to the total power used when the channels
were utilized separately; that is, P1 and P2 obey the constraint
P1 + P2 � 2P̃ . Now since the noise levels N1,N2 are different,
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the senders can increase the total capacity by allocating more
power in the transmission through the channel with the lower
level of noise. When N1 + 2P̃ < N2, the optimal choice is
to put P1 = 2P̃ . In the other case, the optimal allocation
is determined from the relation N1 + P1 = N2 + P2. Using
this power redistribution, the sender can achieve capacity
C̃ > C1 + C2. This process of optimization is the so-called
water-filling scheme (see, e.g., [11]).

Thus, we see that for Gasussian channels the additivity
theorem of Sec. III A cannot be stated as such. However,
observe that the local rates depend only on the local power
constraints [cf. Eq. (72)]. This means that, in a multiuser
scenario, adding a resource (channel or energy) to one sender
never helps the others beat their maximal achievable rates
(power constraints pertaining to different users are not allowed
to be combined; hence, no interuser water-filling effect can take
place). We call this observation the locality rule for classical
Gaussian MACs [7] and treat it as the appropriate analog of
the additivity rule for classical capacities for discrete channels.

B. A comparison of strategies which lead to increased
transmission rates for Gaussian state encoding

and homodyne detection

We first study the setup presented in Fig. 8(a). It consists of
a channel �θ , which is an asymmetrical beam spliter with two
one-mode input lines and a one-mode output. The channel �θ

works in parallel with a one-mode ideal (identity) channel I.
Sender A has access to the input A of channel �θ and sender B

to the input B of channel �θ and B ′ of channel I. The signals
from the input lines A and B are mixed in channel �θ on the
beam splitter, which has transitivity T = cos2 θ . The receiver
has access to only one output mode of the beam splitter, the
second being blocked. The channel �θ is thus characterized
by a loss NA cos2 θ of the power input NA through line A.

We place the following power constraints, expressed in
terms of mean number of photons used by the senders:

{sender A average number of photons } = NA, (83)

{sender B average number of photons} = NB. (84)

We now compare how the choice of quantum states used in
the communication protocol influences the transmission rate
RA(�θ ⊗ I) for sender A, while sender B is a helper-sender
all the time and his rate is RB(�θ ⊗ I) = 0. We also point
out cases where the locality rule is broken. We consider only
transmission of Gaussian states. We focus on the following
protocols.

(1) Senders A and B transmit coherent states. A encodes
messages as displacements of both canonical variables of
the vacuum state while the probability of displacement is
chosen, as is standard, to be a Gaussian distribution p(x,p) =

1
2πσ 2 exp(− x2+p2

2σ 2 ) with σ 2 = 2N1. Sender B transmits a fixed
chosen coherent state all the time. The receiver performs
homodyne detection on both quadratures to decode the
message. This is a typical setup for transmission of information
through optical fibers [16]. The achievable rate depends only
on the output power corresponding to user A and reads

Rcoherent
A � log(1 + NA sin2 θ ). (85)

50:50

B’

|α〉

ψ

θ

r

50:50

A X

A P

B’
ψ
r

U

(a)

(b)

A

B

B

FIG. 8. Gaussian channels exhibiting violation of locality rule
on individual transmission rates. (a) Beam-splitter channel �θ ; (b)
triple QND sum gate channel �. The channels were first presented in
Ref. [7].

This rate refers to the case of a lossy channel with transmitivity
T = sin2 θ in case when sender performs encoding in coherent
states and receiver performs homodyne detection on the output
[17]. It depends only on the power constraints for A and
manifestly obeys the locality rule.

(2) Senders A and B use single-mode squeezed vacuum
states. Both users transmit states which are squeezed in the
same canonical variable, say x. A encodes his message in the
displacement of the variable x of his state, whose value is
Gaussian distributed with variance σ 2

x . The receiver performs
homodyne detection only on x. This setup was studied in [18].
The rate is given by

R
squeezed
A = 1

2
log

[
1 + σ 2

x sin2 θ

e−2R sin2 θ + e−2r cos2 θ

]
, (86)

where R and r denote the squeezing parameters of the x

quadrature for senders A and B, respectively. The energy
constraints can be written as σ 2

x � 4(NA − sinh2 R), sinh2 r �
NB . User A performs optimization of the parameter R; that
is, he optimizes the power allocation between the squeezing
and the mean-square displacement. For fixed θ , in the limit
NA → ∞,NB → ∞ we get asymptotically

R
squeezed
A = log[1 + NA]. (87)

(3) Sender A again sends coherent states, encoding his
message in the displacement of both canonical variables. The
displacement has a probability density distribution as in the
case (IV B). Sender B transmits a two-mode squeezed state,
one mode through �θ and the second one through the extra
resource I. The receiver has access to the output of �θ and I.
The decoding consists of a joint measurement of the canonical
variables x�θ

− xI and p�θ
+ pI on the output modes of the

setup. To achieve this, the output modes of �θ and I are mixed
on a 50:50 beam splitter followed by homodyne measurements
of x1 and p2 on the output modes of the 50:50 beam splitter.
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In this setup, sender B is assumed to make use of entangled
states. The formula for the transmission rate is now given by

Rent
A = log

[
1 + σ 2 sin2 θ

2(cosh r − cos θ sinh r)2

]
. (88)

Here σ 2 = 2NA is the variance in the displacement of
canonical variables in A’s mode and r denotes the squeezing
parameter of the two-mode squeezed state sent by B. The
imposed power constraints imply that sinh2 r = NB/2. For a
given NA, the optimal values of (88) lie on a curve,

cos θ = tanh r, (89)

which leads to the following maximal rate formula:

R
ent-opt
A = log[1 + NA]. (90)

R
ent-opt
A is, in fact, equal to the rate achievable by a one-mode

ideal channel when the sender performs encoding in coherent
states and the receiver performs homodyne detection on
the output. Thus, entanglement can be used to completely
overcome the power loss in the case of coherent state encoding.
The same effect is also obtained in the second case, without
entanglement, as described above, but only in the asymptotic
regime of infinite power [see Eq. (87)].

It is indeed worth noting, for comparison, that the limit
NA → ∞,NB → ∞ of Eq. (86) under the constraint Eq. (89)
leads to

R
squeezed
A � 1

2 log[1 + 16NA] ≈ 1
2 log[1 + NA] = 1

2R
ent-opt
A .

(91)

Comparison of this result with Eq. (87) shows that one-mode
squeezed states transmission requires much higher squeezing
to reach the rates achievable by the two-mode squeezed-state
transmission.

We can also calculate two upper bounds RA(�θ ) for the
transmission rates only through the channel �θ .

(1) A bound based on the maximal entropy of a state with a
mean number of photons equal to the mean number of photons
in the output mode of the channel �θ . We refer to it as to
the output entropy bound. This tells us how large a rate is
achievable if no entanglement is allowed in the communication
protocol and is given by

R
prod-bound
A = g(Nout) (92)

= g(
√

NA sin2 θ +
√

NB cos2 θ ). (93)

(2) A bound based on the maximal entropy of a state with a
mean number of photons equal to the mean number of photons
in the input mode A of the channel �θ . This may be referred
to as the input entropy bound. This bound cannot be violated
by any type of communication protocol, entanglement-free or
entanglement-aided, and it tells us how much information can
be transmitted with given energy constraints if sender A is
connected to the receiver by a one-mode ideal line. We check
how close the protocols described above approach this bound,
which is given by

Rmax
A � g(NA). (94)

The bounds R
prod-bound
A and Rmax

A allow us to express
the theoretical maximum rate for sender A in the form
min(Rprod-bound

A ,Rmax
A ).

Figure 9 shows the behavior of the rates achievable by
the different encoding schemes and parameter regimes as
a function of the energy constraint NB for sender B [the
schemes and bound correspond directly to the points (1–5)
in the main text]. Figure 9(a) represents the situation where
using entangled states quickly becomes more efficient than
using any product state encoding, while on the other hand
Fig. 9(b) represents a situation where entanglement cannot
beat the upper bound for the rates achievable by the product
states encoding. In Fig. 9(c) we consider the behavior of rates
for a large range of values of NB . We can observe that in the
low NB range, the strategy using entanglement states is the best
among the three considered approaches. However, increasing
NB leads to a maximal value of Rent

A after which further growth
leads to a diminishing rate. This can be explained by increasing
of the entanglement of the output state with the erased mode.
In the case of R

squeezed
A the situation looks different. It was

shown in Ref. [18] that in the limit NA → ∞,NB → ∞ the
rate R

squeezed
A asymptotically approaches the upper bound for

the transmission rate for sender A expressed by Rmax
A . It has

to be stated again here that this strategy requires extremely
high squeezing to approach the maximal rate achieved by the
protocol using a two-mode squeezing scenario.

In case of the protocol using two-mode squeezed states it is
interesting to ask about the lower limit of squeezing for which
the rate achieved starts to be higher than the rate achieved
by any protocol based only on product-state encoding.
Figure 10(a) presents demarcation curves Rent

A /R
prod-bound
A = 1

in the θ − NB parameter plane for three different values
of the parameter NA. For a fixed NA, with increasing NB ,
we move above the demarcation curve and fall into the
area where Rent

A > R
prod-bound
A . The minimal mean photon

number in the entangled state, required to approach this area,
amounts to around NB = 1,0.6,0.55 for NA = 103,106,109.
These values of NB refer to the following squeezing levels,
which are experimentally realistic: 5.72 dB,4.55 dB,4.37 dB.
The demarcation curve is crossed as θ equals 0.28,0.1,0.02
or transmissivity 0.077,0.01,0.0004. For a large NA, the
locality rule is broken for θ ≈ 0. In this regime the setup
reproduces the CV dense coding scheme. NB = 1 means that
we use a two-mode squeezed state with squeezing equal to
5.72 dB, which is a reasonable value for experimental setup.
In Fig. 10(b). we change the scale of observation and show
that breaking of the locality rule occurs for quite a large range
of the parameter NB and θ .

C. Realization of XP gate by linear optics and one-mode
squeezed states: Influence of noise

on the superadditivity effect

In this section, we start with details of realization of the
three input quantum nondemolition channel � presented in
Fig. 8(b). This leads naturally to a discussion of the interplay
between noise (or imperfections) and superadditivity.

The channel � : AXAP B �→ R acts as follows: �(ρAXAP
⊗

ρB) = trAXAP
[Û (ρAXAP

⊗ ρB)Û †]. Sender A holds lines AX
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FIG. 9. Rates which are achievable by the
different encoding schemes for the beam-splitter
channel �θ as a function of the energy constraint
NB for sender B. The rates are evaluated for the
following values of θ and the energy constraints
NA for sender A: (a) θ = π/4,NA = 106; (b) θ =
0.2,NA = 106; (c) θ = 0.5,NA = 103.

and AP , while sender B holds line B. Û is a unitary
operator of the form Û = exp[−i(x̂Xp̂B − p̂P x̂B)], which can
be factorized as follows:

Û = exp[−i(x̂Xp̂B − p̂P x̂B)] (95)

= exp

[
i

2
x̂Xp̂P

]
exp[−ix̂Xp̂B] exp[ip̂P x̂B]. (96)

The XP interaction, appearing here, can be obtained by
measurement-induced CV quantum interactions as described

2.0

1.5

1.0

0.5

5

0.1 0.2 0.3 0.4 0.5

N
B N

A
=103

N
A
=106

N
A
=109

θ

0.1 0.2 0.3 0.4 0.5 θ

N
B

15

10

0

(b)

(a)

FIG. 10. (a) Lines present bounds of the areas where Rent
A >

R
prod-bound
A . They are given by the condition Rent

A /R
prod-bound
A = 1.

Lines refer to the cases of NA = 103,106,109. For a given NA the
superadditive region lies above the corresponding line. (b) The dotted
line delimits the area where Rent

A > R
prod-bound
A for NA = 103. Notice

that the superadditive region is considered in a large scale of NB . The
figure shows that there is large window of parameters NB,θ for which
Rent

A > R
prod-bound
A can be observed.

in Ref. [19]. An experimental proof of concept has been
presented in Ref. [20].

The superadditive effect of the single user capacity (break-
ing of the locality rule) for this channel was considered by
us in [7], where the XP interaction was assumed to be
ideally implemented. However, the method of measurement-
induced CV quantum interactions is, in practice, imperfect
and introduces errors in the output states. To study such
errors it is useful to write down how canonical observables
are transformed by the realization of the XP gate [19,20]:

x̂out
1 = x̂ in

1 − √
αx̂0 −

√
βx̂S1 , (97)

p̂out
1 = p̂in

1 − 1 − T√
T

p̂in
2 +

√
α/T p̂0 +

√
Tβp̂S2 , (98)

x̂out
2 = x̂ in

2 + 1 − T√
T

x̂ in
1 −

√
α/T p̂0 +

√
Tβx̂S1 , (99)

p̂out
2 = p̂in

2 − √
αp̂0 +

√
βp̂S2 , (100)

where α = (1 − T )(1 − η)/(1 + T )η,β = (1 − T )/(1 + T ),
x̂S1 ,p̂S2 are canonical observables of two different modes in
squeezed states, η is efficiency of the homodyne detectors
inside the XP gate realization, and x̂0,p̂0 are canonical
observables of two different modes in the coherent states
used that homodyne detectors. Parameter T depends on
the configuration of the XP gate realization and can be
manipulated. Choosing T = 1

2 (3 − √
5), the coefficients of p̂in

2
and x̂ in

1 in Eqs. (98) and (99) become −1 and 1, respectively.
We hereby represent this XP gate realization as a quantum
noisy channel described by transformation matrices X,Y ,
using the method outlined in Sec. IV. Here we assume that
errors introduced by linear optical elements can be neglected
in comparison with natural noise due to the physical generation
of highly squeezed states. Then

X =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 −1

1 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎝

σ 2
1 0 0 0

0 σ 2
2 0 0

0 0 σ 2
2 0

0 0 0 σ 2
1

⎞
⎟⎟⎟⎠ ,

(101)
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with σ 2
1 = α + βe−2s ,σ 2

2 = α/T + βT e−2s . We assumed that
squeezed states in both modes have the same squeezing level.
This gate reproduces the ideal XP gate in the limit of infinite
squeezing s → ∞ and ideal homodyne detection η → 1. If
all XP gates used in the implementation of the considered
channel have the same parameters, we can collect all noise
components under the common factor σ 2

noise = σ 2
1 + σ 2

2 .
Now suppose that sender B also has access to the input

B ′ of a one mode ideal channel I [see Fig. 8(b)]. We are
interested in the maximal rate R

(1)
A (� ⊗ I) for sender A under

the following protocol [7] when sender A transmits displaced
squeezed one-mode vacuum states. States transmitted through
line AX (AP ) are squeezed in the canonical observable x̂ (p̂),
where the squeezing parameter is R. Sender A encodes his
message in the displacement of the canonical observables
x̂ (p̂) for line AX (AP ). As usual, the displacement has a
Gaussian distribution with variance σ 2. Sender B continuously
transmits a constant fixed two-mode squeezed vacuum state,
with squeezing parameter r . One mode is transmitted through
the B and the other through line B ′. The receiver performs
joint homodyne detection of xB − xB ′ and pB + pB ′ on the
output of the channels � and I to decode the message. The
rate in this case is now calculated to be

R
(1)
A = log

(
1 + σ 2

e−2R + e−2r

2 + σ 2
noise
2

)
. (102)

The imperfections in the implementation of the desired unitary
evolution appear in the form of the extra noise term σ 2

noise/2 in
the expression for maximal rate, as compared to the ideal case
described in [7].

For a more realistic description, we model the influence of
various unavoidable imperfections, associated, for example,
with the implementation of displacement during encoding, the
measurement process realized by the receiver for decoding,
and the interaction with the environment at a nonzero tem-
perature, by thermal noise channels. This type of a channel is
a 1-to-1 lossy channel mixing an input state with a thermal
state ρNT h

containing an average of NT photons, at a beam
splitter with transmissivity T = cos2 ω. The receiver receives
only one of the output modes of this mixing beam splitter. The
covariance matrix γ of an input state is transformed by this
channel as follows:

γ �→ T γ + (1 − T )γNTh , (103)

where γNTh = NThI. Below we assume that the XP gate is
perfect and put the thermal noise channels parameterized by ω

and NTh at two places: between the output of the nondemolition
channel � and the receiver and between the output of the
supporting channel I and the receiver. Now the transmission
rate for the upper sender, using the same protocol as described
earlier in the noiseless case, is modified and is calculated here
to be

R
(1)
A = log

(
1+ σ 2 cos2 ω(

e−2R + e−2r

2

)
cos2 ω + (1 + NTh) sin2 ω

)
.

(104)

In a similar way, we now also model effects of noise on
the beam-splitter MAC channel �θ discussed earlier [see
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A

FIG. 11. Influence of thermal noise on capacity R
(1)
A (�θ ⊗ I) of

the BS channel �θ working with parameters θ = 0.25,NA = 103.
(a) Dependence on the transitivity T of the thermal noise channel,
here NTh = 0; rates R

(1)
A (�θ ⊗ I) (solid) are compared with output

entropy bound R
prod-bound
A (dashed). (b) Dependency on the mean

photon number NTh in the thermal state for NTh = 0,2,10,20 and
an exemplary value T = 0.95; here we provide output entropy bound
R

prod-bound
A only for NTh = 0 since additional thermal noise increases

output entropy and makes the bound less tight.

Fig. 8(a)]) of Sec. IV B. We again place the thermal noise
channels (parameterized by ω,NTh) between the output of
the �θ channel and the receiver and between the output of
the supporting channel I and the receiver. In this case, we
obtain the following rate of the upper sender:

RA1 = log

(
1 + T σ 2 sin2 θ

T (coshr− cosθ sinhr)2+(1−T )(1 +2NT h)

)
.

(105)

Here θ is the parameter of the BS channel �θ , T = cos2 ω is
the transmissivity of the thermal noise channel, and NTh is the
mean photon number of the environment. In Fig. 11 we use
this result to illustrate how the capacity R

(1)
A (�θ ⊗ I) changes

with the parameters of the thermal noise channel. Even if the
effect of thermal noise channel is small—its transmissivity
is large and NTh = 0—the capacity gain becomes negligible
and from T = 0.85 no enhancement over the upper bound for
rates obtained using product codes is observed. This scenario
corresponds to the case where there are only losses in the
thermal channel.

Now we use the presented results to discuss the possibility
of an experimental verification of the considered superadditive
effects in the context of available technological resources
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[21,22]. For homodyne detection we assume quantum effi-
ciency at the level η = 99% as in [23] and the dark noise level at
20 dB below the shot noise of the local oscillator. For the power
constraint of sender A we assume NA = 1000 and we remain
in the regime of linear approximation of homodyne detection
(mean number of photons of local oscillator is on the level
4 × 106). Note finally that the highest observed value of a
single-mode squeezing [21] is at the level of 10 dB, which
corresponds to the mean photon number of 2.025.

We start with a discussion of the setup � ⊗ I in the context
of the implementation of the XP gate presented in [20].
In that experiment, squeezing of 5.6 dB and detectors with
quantum efficiency η = 98% were used. A quadrature transfer
coefficient of TP = SNRout/SNRin = 0.4 was reported, where
SNRin(out) is the signal-to-noise ratio for the signal input
(output) of the gate. This coefficient TP can be translated to
σ 2

noise = 5 in the model of the � gate. Assuming this value
in Eq. (102) and comparing the rate with the output entropy
bound leads to the conclusion that the superadditivity effect
described here cannot be achieved for these parameters. On
the other hand, implementation of the XP gate with the use
of 10 dB squeezing leads to σ 2

noise = 0.098 and moves the
transmission into the supperadditivity regime.

For the setup �θ ⊗ I the situation is more optimistic. With a
realistic loss level of 5% on the optical elements and homodyne
detection efficiency as described above one gets cos2 ω =
0.94,NT = 0.09. Our results show that the superadditivity
effect can be observed for θ = 0.25 for squeezing upward
of 7.8 dB (the mean photon number of 2.1). Thus, one can
draw a conclusion that a loop-hole free verification of the
superadditivity effect can be done with the present state-of-
the-art quantum optical experimental techniques.

Formulas (102), (104), and (105) can be understood
in a generic signal-to-noise “phenomenological” scheme as
RA = log(1 + σ 2

signal/σ
2
noise). The variance σ 2

signal describes
how spread out are the input states of the sender in phase space
and σ 2

noise describes the effective noise level associated with
measurement of the displacement, which here is the carrier
of classical information. Senders can manipulate σ 2

signal and
σ 2

noise by changing energy allocation used for displacement and
squeezing, and in this way approach the bound for the channel
capacity. Noise introduced by imperfections of elements of the
communication setup plays the role of a lower bound for σ 2

noise
and the user cannot decrease measurement errors below this
level.

V. CONCLUSIONS

The superadditivity of classical capacity regions has been
previously reported in the case of discrete [6] and CV
(Gaussian) [7] cases. Here we have analyzed these problems
in more detail. We have been able to show that channel asym-
metry is not crucial for the occurrence of the superadditivity
effect. Even more interestingly, we have proven explicitly that
two-input entanglement is not sufficient in some cases and
have provided an example analytically showing that at least
five-input entanglement is required. It is interesting that here
the five-qubit code error correction code has been used (see [1])
to beat the C-type (classical) multiaccess capacity, which so
far was a tool related to Q-type (quantum) bipartite capacity.

Moreover, we do not know of any example related to bipartite
classical capacity where more than two-input entanglement is
needed to achieve the asymptotic bound. In fact, the celebrated
effect of breaking of additivity of Holevo function [8] needs
two copies of the channel. We believe that our result will
inspire the search for requirement of multipartite entanglement
for achieving the asymptotic Holevo capacity in the bipartite
case. In both bipartite and multiuser cases, this opens the
intriguing question concerning which types of multipartite
entanglement (bipartite quantum codewords, cluster, Dicke-
type, etc.) are the best for achieving asymptotic classical
capacities. We leave these types of questions for further
research.

In the CV case, we carefully compared different commu-
nication scenarios including the one described by Yen and
Shapiro [18]. We explicitly incorporated imperfections of the
schemes into the calculations. The success of superadditivity
depends on the power of light used and may be destroyed by
the thermal noise or even by large-enough losses. On the other
hand, we found that the condition for two-mode squeezing
used for the effect may not be very demanding (4.55 dB).
This opens the possibility of an experimental confirmation of
the effect in the near future. Again the question of channels
that require multipartite CV-type entanglement for gaining
quantum advantage in communication protocols appears quite
naturally and is an interesting area for further research.
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APPENDIX

Here we prove that capacity regions of discrete classical
n-to-1 channels are additive:

R(�I ⊗ �II ) = R(�I ) + R(�II ), (A1)

where R(�I ) + R(�II ) = {uI + uII : uI ∈ R(�I ),uII ∈
R(�II )}. For simplicity it is assumed that both channels,
�I ,�II , have the same number of senders. This situation
is easy to obtain by formal extension of the set of senders
for one of the channels. The messages transmitted by these
additional senders are then always lost. We use short-hand
notation RS =∑i∈S Ri for vector of rates R ∈ Rn, where
Ri is ith element of R and S ⊆ E is a subset of senders E.
The proof for the n-to-1 case follows the same principles as
for 2-to-1 channels. Here we provide only the parts that are
distinct from the latter case.

We start with R̃(�I ⊗ �II ) ⊆ R̄(�I ⊗ �II ) ⊆ R(�I ⊗
�II ). Let us assume that the senders transmit with rates given
by a vector R̃. As in the 2-to-1 case, these vectors have
to belong to the fixed probability capacity region for input
symbol probability distribution p̃ = p(Q)

∏
i p(XI

i ,X
II
i |Q).

On the basis of p̃, we again construct p̄ = p̃I p̃II , where
p̃I = p(QI )

∏
i p(XI

i |QI ) and p̃II = p(QII )
∏

i p(XII
i |QII )

are marginal distributions obtained from p̃ by tracing out
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proper variables and renaming Q �→ QI,Q �→ QII . Below
we provide an upper bound for this region:

R̃S � I (XS : Y |XSC ,Q)

= H (Y |XSC ,Q) − H (Y |XS,XSC ,Q) (A2a)

= H (Y |XSC ,Q) − H
(
Y I
∣∣XI

S,X
I
SC ,QI

)
−H

(
Y II
∣∣XII

S ,XII
SC ,QII

)
(A2b)

� H
(
Y I
∣∣XI

SC ,QI
)+ H

(
Y II
∣∣XII

SC ,QII
)

−H
(
Y I
∣∣XI

S,X
I
SC ,QI

)− H
(
Y II
∣∣XII

S ,XII
SC ,QII

)
(A2c)

= I
(
XI

S : Y I
∣∣XI

SC ,QI
)+ I

(
XII

S : Y II
∣∣XII

SC ,QII
)
,

(A2d)

where Eq. (A2b) is based on the factorization of con-
ditional probabilities defining the channel action for the
product channel, while in Eq. (A2c) we use entropy sub-
additivity. On the other hand, evaluation of Eq. (18) for
input symbols probability distribution p̄ = p̃I p̃II = [p(QI )∏

i p(XI
i |QI )][p(QII )

∏
i p(XII

i |QII )] leads to the region

R̄ = {R ∈ Rn : ∀i∈ERi � 0,

∀S⊆E RS � I
(
XI

S : Y I
∣∣XI

SC ,QI
)

+ I
(
XII

S : Y II
∣∣XII

SC ,QII
)}

. (A3)

Combining this result with the bound from Eq. (A2d), it is
easy to see that R̃(�I ⊗ �II ) ⊆ R̄(�I ⊗ �II ) holds.

It remains to be shown now that

R̄(�I ⊗ �II ) = R̃(�I ) + R̃(�II ), (A4)

where again R̃(�I ) [R̃(�II )] is evaluated for the marginal
probability distribution p̃I [p̃II ]. The following argument is
based on a fact that the fixed probability capacity region
[cf. Eq. (16)] is a polymatroid [24].

Definition 1. Let E = {1, . . . ,n} and f : 2E �→ R+ be a set
function (i.e., a function that maps subsets of E into R+. The
polyhedron,

B(f ) = {x ∈ Rn : ∀S⊆ExS � f (s),∀i∈Exi � 0}, (A5)

is a polymatroid if the set function f satisfies (i) f (∅) = 0,
(ii) S ⊆ T ⇒ f (S) � f (T ), (iii) f (S) + f (T ) � f (S ∩ T ) +
f (S ∪ T ).

Lemma 1. The fixed probability capacity region [cf.
Eq. (16)] is a polymatroid.

Proof. Observe that the conditional mutual information
I (XS : Y |XSC ,Q) plays a role of the set function f (S) in the
above definition. All we have to do now is to check conditions
(i)–(iii) defining the polymatroid. By definition, if there is no
sender, mutual information is equal to 0, which proves (i). Now
let us write

f (T ) = I (XT : Y |XT C ,Q) (A6a)

= H (Y |XT C ,Q) − H (Y |XT ,XT C ,Q) (A6b)

� H (Y |XSC ,Q) − H (Y |XS,XSC ,Q) (A6c)

= I (XS : Y |XSC ,Q) (A6d)

= f (S), (A6e)

where in Eq. (A6c) we use the fact that additional information
reduces entropy (S ⊆ T ⇒ T C ⊆ SC) and S ∪ SC = T ∪
T C = E. Since subsets S,T are arbitrary, the condition (ii)
is satisfied. Similarly, can check the condition (iii):

f (S) + f (T ) = I (XS : Y |XSC ,Q) + I (XT : Y |XT C ,Q)

= H (Y |XSC ,Q) − H (Y |XS,XSC ,Q) + H (Y |XT C ,Q) − H (Y |XT ,XT C ,Q)

= H (Y,XSC ,Q) − H (XSC ,Q) − H (Y |XS,XSC ,Q) + H (Y,XT C ,Q) − H (XT C ,Q) − H (Y |XT ,XT C ,Q) (A7a)

= H (Y,XSC ,Q) + H (Y,XT C ,Q) −
∑
i∈SC

H (Xi |Q) − H (Q) −
∑
i∈T C

H (Xi |Q) − H (Q) − 2H (Y |XE,Q) (A7b)

� H (Y,XSC∪T C ,Q) + H (Y,XSC∩T C ,Q) −
∑
i∈SC

H (Xi |Q) − H (Q)

−
∑
i∈T C

H (Xi |Q) − H (Q) − 2H (Y |XE,Q) (A7c)

= H (Y,XSC∪T C ,Q) + H (Y,XSC∩T C ,Q) −
∑

i∈SC∩T C

H (Xi |Q) − H (Q)

−
∑

i∈SC∪T C

H (Xi |Q) − H (Q) − 2H (Y |XE,Q) (A7d)

= H (Y,XSC∪T C ,Q) + H (Y,XSC∩T C ,Q) − H (XSC∩T C ,Q) − H (XSC∪T C ,Q) − 2H (Y |XE,Q) (A7e)

= I (XS∩T : Y |X(S∩T )C ,Q) + I (XS∪T : Y |X(S∪T )C ,Q) (A7f)

= f (S ∩ T ) + f (S ∪ T ), (A7g)

where in Eqs. (A7b), (A7e) we used the chanin rule [i.e., H (A,B,C) = H (A|B,C) + H (B|C) + H (C)] together with the
independency of the senders [i.e., H (A|B) = H (A)] and in Eq. (A7c) we used the strong subadditivity of entropy [i.e., H (A,B) +
H (A,C) � H (A,B,C) + H (A)]. In Eq. (A7f) we use de Morgan’s laws SC ∪ T C = (S ∩ T )C,SC ∩ T C = (S ∪ T )C . �
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We go back to Eq. (A4) and verify that R̄(�I ⊗ �II ) ⊇
R̃(�I ) + R̃(�II ). This can be done by a direct coordinate
sum, that is,

R̃I
S + R̃II

S � I
(
XI

S : Y I
∣∣XI

SC ,QI
)+ I

(
XII

S : Y II
∣∣XII

SC ,QII
)
,

(A8)

where R̃I
S ∈ R̃(�I ),R̃II

S ∈ R̃(�II ) and by definition obey
Eq. (16).

Finally, we show that R̄(�I ⊗ �II ) ⊆ R̃(�I ) + R̃(�II ).
Since there is an equivalence between the vertex and the half
space representation [25] of a convex polyhedron, we only have
to show that each vertex v ∈ R̄(�I ⊗ �II ) can be expressed
as v = u + w, where u and w are suitable vertices of R̃I and
R̃II , respectively.

As we have seen, the fixed probability capacity region is
a polymatroid. This leads to a key property of the set of its
vertices [26]. Let π be an ordered choice from the set of senders
E. For each ordered choice π , there is a vertex v with entries
vπ1 = f (π1), vπi

= f ({π1, . . . ,πi}) − f ({1, . . . ,πi−1}), and
∀i /∈πvi = 0. On the other hand, we can always find an ordered
choice π which defines a given vertex. It may happen that more
than one ordered choice gives the vertex with the same entries.
For example, in the 2-to-1 case, fixed probability capacity
region is given by the vertices:

π = ∅ :

(
0

0

)
, (A9)

π ={1} :

(
I
(
XI

1 : Y I
∣∣XI

2 ,Q
I
)+ I

(
XII

1 : Y II
∣∣XII

2 ,QII
)

0

)
,

(A10)

π ={2} :

(
0

I
(
XI

2 : Y I
∣∣XI

1 ,Q
I
)+ I

(
XII

2 : Y II
∣∣XII

1 ,QII
)) ,

(A11)

π ={1,2} :

(
I
(
XI

1 : Y I
∣∣XI

2 ,Q
I
)+I

(
XII

1 : Y II
∣∣XII

2 ,QII
)

I
(
XI

2 : Y I
∣∣QI
)+ I

(
XII

2 : Y II
∣∣QII

) )
,

(A12)

π = {2,1}:
(

I
(
XI

1 : Y I
∣∣QI
)+ I

(
XII

1 : Y II
∣∣QII

)
I
(
XI

2 : Y I
∣∣XI

1 ,Q
I
)+ I

(
XII

2 : Y II
∣∣XII

1 ,QII
)) .

(A13)

Using the chain rule, we obtain that for a given ordered choice
π , rates achieved in vertex v(π ) are

Rπi
= I

(
XI

πi
: Y I

∣∣XI
πi+1

, . . . ,XI
πn

,QI
)

+ I
(
XII

πi
: Y II

∣∣XII
πi+1

, . . . ,XII
πn

,QII
)

(A14)

and can be viewed as a sum of the vectors of rates u(π ) and
w(π ) with entries

RI
πi

= I
(
XI

πi
: Y I

∣∣XI
πi+1

, . . . ,XI
πn

,QI
)
,

(A15)
RII

πi
= I

(
XII

πi
: Y II

∣∣XII
πi+1

, . . . ,XII
πn

,QII
)
,

which in an obvious way belong to fixed probability capacity
regions R̃I and R̃II , respectively. This completes the proof.

The proof for n MACs can be obtained through an induction
of the above proof. Indeed, it suffices to divide the set of
n MACs into two MACs—one composite MAC consisting of
n − 1 MACs and a second channel consisting of the remaining
MAC—and apply the above procedure to them.
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