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A B S T R A C T   

Nowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, 
to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings 
after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, 
e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to provide a compre-
hensive tool for estimating seismic responses of Interstory Drift (ID) and RID with novel approaches to fulfill the 
shortcomings of existing formulas. The Machine Learning (ML) method is an interdisciplinary approach that 
makes it possible to solve these types of engineering problems. Therefore, the current study proposes ML al-
gorithms to provide a prediction model for determining the seismic response, seismic performance curve, and 
seismic failure probability curve of BRBFs. To train ML-based prediction models, Nonlinear Time-History 
Analysis (NTHA) and Incremental Dynamic Analysis (IDA) were performed on the 2-, to 12-Story BRBFs sub-
jected to 78 far-field ground motions, and 606944 data points were prepared for different prediction purposes. 
The results indicate that the considered approaches are justified. For instance, the proposed ML methods have the 
ability to predict the maximum ID, maximum RID and maximum roof ID with the accuracy of even 98.7%, 
95.2%, and 93.8%, respectively, for the 4-Story BRBF. Moreover, a general preliminary estimation tool is 
introduced to provide predictions based on the input parameters considered in the study.   

1. Introduction 

Buildings that are designed following the seismic codes can be pre-
vented from failure during earthquakes due to excessive deformation, 
thereby, ensuring that residents are safe (Giugliano et al., 2010). During 
seismic events, the plastic deformation of structural components (i.e., 
beams, columns, and braces) leads to residual deformation of the 
building, known as Residual Interstory Drift (RID). The ratio of RID 
plays a significant role in deciding between repairing buildings after 
seismic excitation and the cost of retrofitting (Yahyazadeh and Yakh-
chalian, 2020). Following the 2011 Christchurch earthquake, it is 
evident that repairing buildings with large RID is extremely difficult, 
and most of the buildings should be demolished due to the high cost of 
retrofitting (Cole et al., 2012). According to the study conducted by 
McCormick et al. (2008), reconstructing is more cost-effective than 
repairing buildings having a maximum RID larger than 0.5%. Hence, 
owing to its importance, some researchers assessed this characteristic of 

the buildings and proposed a formula to estimate the RID for some types 
of structures. Estimating RID can facilitate the process of design and 
analysis while improving the knowledge of engineers about the current 
state of the building. Different formulas have been proposed so far to 
evaluate the RID of buildings. For instance, Ruiz-García and Miranda 
(Ruiz-Garcia and Miranda, 2010) conducted a probabilistic approach to 
predict the RID demands of multi-story buildings approximately in 
seismic evaluation. They showed that there is a relationship between the 
maximum Interstory Drift (ID) and RID based on the mean annual fre-
quency of exceedance and the number of floor levels. Moreover, there is 
a formula defined in FEMA P-58 (FEMA P-58, 2012) that can be used to 
calculate the median RID of different stories in a building. Although a 
building can experience unpredicted values of RID during seismic 
events, it is possible to increase the performance of the building by 
improving its capabilities, such as enhancing the beam-to-column con-
nections, using outer frame infills to resist lateral deformations, and 
implementing viscous dampers as dissipative devices. While there is still 

* Corresponding author. Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland. 
E-mail address: neda.asgarkhani@pg.edu.pl (N. Asgarkhani).  

Contents lists available at ScienceDirect 

Engineering Applications of Artificial Intelligence 

journal homepage: www.elsevier.com/locate/engappai 

https://doi.org/10.1016/j.engappai.2023.107388 
Received 27 April 2023; Received in revised form 3 October 2023; Accepted 26 October 2023   

mailto:neda.asgarkhani@pg.edu.pl
www.sciencedirect.com/science/journal/09521976
https://www.elsevier.com/locate/engappai
https://doi.org/10.1016/j.engappai.2023.107388
https://doi.org/10.1016/j.engappai.2023.107388
https://doi.org/10.1016/j.engappai.2023.107388
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.107388&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Engineering Applications of Artificial Intelligence 128 (2024) 107388

2

a need to provide a comprehensive tool for estimating seismic responses 
of ID and RID, existing formulas have limitations and cannot effectively 
help civil engineers. Therefore, this study investigates novel approaches 
to fulfill the shortcomings of existing formulas. 

The Buckling-Restrained Brace (BRB) is a kind of bracing system with 
the capability of good energy dissipation through stable hysteretic cycles 
in both tension and compression. As an alternative to steel Moment 
Resisting Frames (MRFs) and concentric braced frames, BRBs can be 
able to overcome the limitations of both of them, providing the struc-
tural system with adequate stiffness and ductility (Jia et al., 2017; Xie 
et al., 2020). This system consists of a central steel core surrounded by 
steel tubes filled with concrete. This prevents the core from buckling and 
the brace is capable of yielding in tension as well as in compression 
(Barbagallo et al., 2019). The main concern of this system is the low 
post-yield stiffness of the core that leads to a large RID after the occur-
rence of an earthquake and a higher weight of the device (Sabelli et al., 
2003; Erochko et al., 2011). Therefore, several studies have been 
focused on evaluating the RID of structures equipped with BRBs. To 
reduce the amount of RID in these systems, some researchers used shape 
memory alloys (Ghowsi and Sahoo, 2020), and others implemented it as 
dual-frame lateral resistance (Maley et al., 2010; Deylami and Mahda-
vipour, 2016; Baiguera et al., 2016; Montuori et al., 2016). Xie et al. 
(2020) assessed the hysteretic performance of self-centering BRBs using 
friction fuses empirically and showed that reducing the RID by imple-
menting the friction fuses is possible. 

Recent studies confirm that the modeling process, design and anal-
ysis of Buckling-Restrained Brace Frames (BRBFs) may impose an 
additional cost while predicting the seismic responses such as ID and 
RID can help civil engineers to find out the current performance of the 
BRBFs, reducing the time of modeling, and provides a preliminary 
estimation. To do this, some researchers tried to estimate the RID of 
BRBFs by proposing some formulas. Erochko et al. (2011) evaluated the 
RID of BRBFs and steel MRFs, and then, introduced a formula for pre-
dicting the mean RID of different stories of these systems. Ruiz-García 
and Chora (2015) designed three-, and thirteen-story steel MRFs to es-
timate RID demands using FEMA P-58 (FEMA P-58, 2012) and Erochko 
et al. (2011) methods. Finally, they introduced a procedure, named the 
coefficients method, for predicting the RID of steel MRFs. Asgarkhani 
et al. (2020) evaluated the approximate methods to predict the RID of 
BRBFs considering the effects of strain hardening ratio in different 
ground motion intensity-levels. To estimate the median RID of BRBFs, 
they proposed a new method based on the analysis results. Yakhchalian 
et al., 2020, 2021 investigated the efficiency and sufficiency of some 
traditional and advanced intensity measures for predicting the 
maximum RID capacity of BRBFs. 

Recently, earthquake engineering has begun to implement emerging 
soft computing techniques, such as Machine Learning (ML) models, and 
the use of these techniques is expected to expand in this field over the 
coming years (Shafighfard et al., 2022; Zhang and Burton, 2019). A 
range of methods for seismic response estimation in buildings is envi-
sioned, spanning from fundamental mechanics-based approaches to 
purely data-driven ML models. Mechanics-based approaches rely on 
engineering principles, while data-driven models utilize parametric 
datasets from nonlinear analyses. To summarize the recent works 
related to seismic response assessment of BRBFs, Table 1 has been 
provided (Gholami et al., 2021; Sun et al., 2020; Jagruthi et al., 2022; 
Tamimi et al., 2023; Asgarkhani et al., 2023) (see Table A-1 in Appendix 
that presents the abbreviations and acronyms list used in this research). 
It can be seen that while most contributions only focused on the ID and 
RID, this study aims to provide a wide range of seismic responses and 
performance curves that can be used for retrofitting buildings. The re-
sults of predictions can be used to evaluate the current performance of 
the building, and then, it would be possible to evaluate the economical 
aspect, possibility of retrofitting, and cost of retrofitting based on the 
performance curve. Moreover, the literature review showed that previ-
ous studies relied on the conventional ML algorithms, while in this 

research the Stacked model is proposed. 
In this research, ML-based prediction models are introduced with the 

capability of estimating the maximum ID and RID of BRBFs, the distri-
bution of ID and RID at floor levels of BRBFs, and the number of floor 
level with maximum ID and RID, which can be used to effectively esti-
mate the behavior of BRBFs and recognizing the weak floor level. This 
can be considered as a preliminary evaluation of buildings that can help 
designers for retrofitting of buildings. Moreover, this study aims to 
provide a wide range of seismic evaluations, such as seismic perfor-
mance curves, which can determine the seismic performance levels, and 
seismic failure probability, which can be used for seismic risk assess-
ment of BRBFs. In addition, the preliminary tool has been introduced to 
easily modify and improve BRBFs without additional computational 
analysis, which significantly decreases the time of analysis. It should be 
noted that this tool could be updated since it uses a database and future 
capabilities will be added. This research includes six sections, in which 
the first section explains the literature reviews and the research gap in 
existing studies. The second section has been devoted to the modeling of 
BRBFs and procedures used for preparing numerical models, and the 
third section explains the nonlinear analysis used in this study. The ML 
methods used in this research, results, and discussions are explained in 
section four, and the general use of the proposed ML-based model is 
described in section five. 

The innovation and operational success of this work are centered on 

Table 1 
Summarized literature review related to seismic response estimation of 
buildings.  

Ref. Structure Response 
evaluation 

Modeling Description 

Erochko et al. 
(2011) 

BRBFs 
and 
MRFs 

RID Numerical 
models of 2-, 
12-story 
BRBFs and 
MRFs 

Introduced a 
formula for 
estimating the RID 
of the structures 

Ruiz-García 
and Chora 
(2015) 

MRFs RID Numerical 
models of 3-, 
13-story 
MRFs 

Introduced a 
formula based on 
the maximum 
drift, elastic drift, 
and the drift 
concentration 
factor 

Asgarkhani 
et al. 
(2020) 

BRBFs RID, 
coefficient of 
distortion for 
RID 

Numerical 
models of 2-, 
12-story 
BRBFs 

Proposed method 
is more accurate 
than the FEMA P- 
58 (FEMA P-58, 
2012) and Erochko 
et al. (Erochko 
et al., 2011) 
methods 

Gholami 
et al. 
(2021) 

BRBFs RID ABAQUS 
software 
model for 6- 
story BRBF 

Adding post- 
tensioned frame to 
control RID of 
BRBFs 

Sun et al. 
(2020) 

BRBF ID 48-story 
building was 
modeled 

ANNs was used to 
estimate ID of 
building. 

Jagruthi 
et al. 
(2022) 

BRBF ID 8-story 
building was 
modeled in 
OpenSees 

KNN, DT, RF, 
AdaBoost, 
XGBoost, 
LightGBM, and 
CatBoost 
algorithms have 
been used 

Tamimi et al. 
(2023) 

BRB Reliability 
assessment 
of gap size 

12000 
samples of 
BRB 

ANNs and Monte 
Carlo simulations 
have been used 

Asgarkhani 
et al. 
(2023) 

MRFs ID, RID, 
seismic risk 
assessment 

1034976 
data points 
from 2-, to 9- 
story 
buildings 

32 ML algorithms 
have been used for 
estimating seismic 
response of 384 
MRFs  
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the development of a sophisticated Graphical User Interface (GUI) that 
significantly enhances seismic performance assessments for BRBFs. This 
innovation transcends traditional formulas and approaches, providing a 
forward-thinking solution to prevalent challenges in seismic engineer-
ing. In terms of innovation, the GUI incorporates ML-based prediction 
models, a ground-breaking approach that revolutionizes seismic 
response estimation. By leveraging ML, the interface can predict various 
seismic responses of BRBFs accurately, allowing civil engineers to assess 
buildings swiftly and efficiently. This departure from conventional 
methods marks a paradigm shift, displaying the adaptability and 
modernization of seismic analysis. 

The operational success of the GUI lies in its practical utility and 
user-friendly design. Civil engineers can effortlessly navigate the inter-
face, input relevant parameters, and swiftly obtain essential seismic 
response predictions. The tool’s efficiency in handling diverse input 
parameters and generating reliable predictions in real-time significantly 
streamlines the design and analysis process. Engineers can readily access 
crucial data and insights to make informed decisions, expediting 
building design or retrofitting projects. 

To optimize operational success further, the GUI’s adaptability and 
future-proofing mechanisms come into play. The ability to use a data-
base and the potential for future updates to overcome limitations un-
derscore the forward-thinking nature of this tool. Engineers can 
continually improve and expand the GUI’s capabilities to accommodate 
evolving building specifications, ensuring its relevance and effectiveness 
in the ever-changing field of seismic engineering. 

2. Modeling methods 

In this study, two groups of buildings with floor levels of 2-, to 12- 
Story were designed, which the first group has five spans with a 
length of 7.32 m and the second group has four bays with a length of 
9.14 m in X direction. The outer frame of buddings is equipped with 
BRBF as the lateral-resisting system and other frames designed for 
gravity loads. All connections were assumed as pin connections; then, 
each BRBF should be able to resist the proper loads of floor levels 
divided equally between outer systems. Fig. 1 presents the regular plan 
of the two assumed groups with the tributary load area of BRBFs that are 
shown with shaded parts in the figure. 

The floor height in all structures was considered equal to 3.96 m. 
Buildings were located in California with a latitude of 37.88◦ N and a 
longitude of 122.08◦ W, which soil D is considered for them following 
ASCE 7–16 (ASCE/SEI 7-16, 2017). Therefore, the values of spectral 
acceleration for the considered design site (i.e., SDS and SD1) can be 
determined as 1.25 g and 0.60 g, respectively. It is noteworthy that 

gravity loads in GCR 10-917-8 report (GCR 10-917-8, 2010) were 
selected for designing the buildings using ETABS 2016 software. Fig. 2 
illustrates the 3D view of the 6-Story building modeled in ETABS 2016 
software. To determine lateral loads, the equivalent lateral load manner 
was utilized according to AISC 360-16 (ANSI/AISC 360–16, 2016) and 
AISC 341-16 (AISC 341-16, 2016) considering the values of R = 8.0 and 
I = 1.0, respectively. Given that, the plan of buildings is regular, the 
models include one bay of the four bays (i.e., building with four bays in 
X direction) and five bays (i.e., building with five bays in X direction) 
that were modeled by OpenSees (McKenna et al., 2015) for conducting 
nonlinear analyses. It should be noted that the details of structural ele-
ments of braced spans were obtained from ETABS 2018 software to be 
used for 2D modeling, which is presented in Figs. A-1 and A-2 in 
Appendix. 

Fig. 3 illustrates the considered modeling method of the BRBF in 
OpenSees (McKenna et al., 2015). The yielding segment of each brace (i. 
e., brace core) was assumed 0.7 times the length of the work 
point-to-work point of the brace, which is defined based on the central 
nodes of structural elements depicted in Fig. 3. A beam-column element 
having five integration points was used for modelling beams, columns, 
and brace cores. A fiber section based on the Giuffre-Menegotto-Pinto 
model was defined for each element using Steel02 material (Mazzoni 
et al., 2006). Beams and columns were assumed to have a yield stress of 
379.2 MPa, while this value for the brace cores was considered 289.6 
MPa. The structural members were assumed to have an elastic modulus 
of 200 GPa. Different values of strain hardening ratio, α, have a great 
influence on the residual deformation of BFBFs; therefore, strain hard-
ening ratios of 0.003, 0.01, and 0.02 were used for modeling 2D models 
(Asgarkhani et al., 2020; Yakhchalian et al., 2020, 2021). Guerrero et al. 
(2016) proposed values for the parameters of Steel02 that can be applied 
to monitor the material transition from plastic to elastic states and its 
hysteretic response. This transition is controlled by parameters of R0, 
CR1 and CR2 having values of 20.0, 0.925, and 0.15, respectively. 
Additionally, the default values for the isotropic hardening parameters 
of Steel02 material for columns and beams were a1 = 0.0, a2 = 1.0, a3 =

0.0, and a4 = 1.0. Assuming the higher strength of BRBs in the 
compression compared to the tension, Guerrero et al. (2016) performed 
a calibration for a1 = 0.07 and a3 = 0.05 parameters of the Steel02 
material (see more detail (Asgarkhani et al., 2020)). The verification of 
the behavior of BRB element and the procedure used for modeling was 
conducted by Asgarkhani et al. (2020). Moreover, the other gravity 
column effects were modeled as a leaning column to take into account 
the P-Δ effects (Asgarkhani et al., 2020; Yakhchalian et al., 2020, 2021). 

3. Nonlinear analysis 

In this research, two nonlinear dynamic analyses of Nonlinear Time- 

Fig. 1. Two regular plans used for modeling of BRBFs.  Fig. 2. The 3D view of the 6-Story building modeled in ETABS 2016 software.  
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History Analysis (NTHA) and Incremental Dynamic Analysis (IDA) were 
performed to achieve the seismic response of ID, RID, seismic perfor-
mance, and seismic failure probability of BRBFs. The procedure used for 
the analysis and the results of each analysis are discussed in the 
following subsections. 

3.1. Nonlinear time-history analysis 

In the NTHA, each seismic record is applied to BRBFs with a specific 
scale factor. To have a reference for comparison of the responses, a 
procedure is introduced for achieving the scale factor of the analysis. In 
this research, seven intensity levels of R = 1.25, 1.5, 2.0, 3.0, 4.0, 5.0, 
and 6.0 were considered, which could be determined as follows: 

R=
Sa(T1)

γ
, γ =

Vy

WSeismic
(1)  

where Sa(T1) known as the spectral acceleration at the first period of 
BRBF, and Vy and WSeismic are determined by base shear at the first 
yielding point of the pushover curve and seismic weight of BRBF, 
respectively. Since the Vy is determined in the first yielding point of the 
pushover curve, the values of Vy do not depend on α value. Therefore, in 
each value of R, a scaled seismic record should have the same spectral 
acceleration at the first period Sa(T1) = R× γ. In this research, all 
assumed BRBFs were analyzed based on the assumed values of R, and 78 
seismic ground motions. Then, the results of RID and ID in each story 
level and top floor level, and the story number of the maximum values of 
RID and ID were determined to be defined as data points for the ML 
algorithms. 

3.2. Incremental dynamic analysis 

The IDA is a well-known analysis for estimating the performance 
curve of the structure that can be used for seismic performance level 
assessment. This analysis includes some NTHA with increasing the in-
tensity of the ground motion records (i.e., Sa(T1)) until reaching the total 

Fig. 3. Considered modeling method of the BRBF in OpenSees (McKenna et al., 
2015) software. 

Fig. 4. IDA curves of 2-, to 12-Story BRBFs with the bay length of 7.32 m and strain hardening ratio of 0.003.  
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collapse of the structure. Due to the importance of this curve, there is a 
need to provide a big computational effort for analysis; therefore, the 
hunt & fill method was used, which can reduce the time of analysis 
(Haselton, 2006; Kazemi et al., 2023a). Since the constructional site of 
buildings was classified as far-field site, a set of 78 far-field ground 
motions was considered according to Haselton (Haselton and Deierlein, 
2007). Fig. 4 illustrates the IDA curves of BRBFs with a bay length of 
7.32 m and strain hardening ratio of 0.003. 

4. Machine learning methods 

Recently, a growing number of disciplines have employed artificial 
intelligence techniques for predicting processes in a variety of fields. The 
ML is a subset of artificial intelligence, which identifies patterns in data 
to predict or classify them. In comparison to conventional approaches, 
ML methods are considered a powerful tool for solving complex prob-
lems, with the ability to facilitate the process of making decisions by 
improving computational efficiency and propagating uncertainties and 
treating them. Nowadays, ML methods are widely used by researchers to 
provide a prediction model that can be employed to facilitate the esti-
mation of structural responses and optimization problems (Panagant 
et al., 2021). According to the literature review, Artificial Neural Net-
works (ANNs) have the ability to train and learn during the process that 
has been conducted in two main procedures of feed-forward and 
feed-backward propagation, which can be used for reliability analysis 
and optimization problems (Meng et al., 2023). Using this procedure 
helps the method to be rectified during the training and improves the 
prediction accuracy. In feed-forward propagation, the input features are 
defined and activation functions between the hidden layers are deter-
mined to finally achieve the output. Differences between the actual 
value of output and the predicted one, which is known as the error value, 
cause the algorithm to be rectified using feed-backward propagation. 
This loop can be repeated many times to achieve the best prediction 
value with the lowest error value. Fig. 5 illustrates the architecture of the 
feed-forward and backward propagation method in ANNs (Oh et al., 
2020; Kazemi et al., 2023b). 

Recurrent Neural Networks (RNNs) are a type of neural network 
architecture designed to process sequential and temporal data. Unlike 
traditional feed-forward ANNs, the RNNs have connections between 
nodes form directed cycles for allowing them to retain and utilize in-
formation from previous time steps. This recurrent connection allows 
the network to capture dependencies and patterns across time, making 
RNNs particularly effective for tasks involving sequential data, such as 
time series analysis. Unlike RNNs, ANNs do not have cyclic connections 
and process input data independently without considering temporal 
relationships. ANNs are effective for tasks where the order of the input 
does not matter or is irrelevant. 

Although the decision tree algorithm has the ability to divide the tree 
according to thresholds, using the Random Forest (RF) method with 

regulation parameters can improve the accuracy and speed of calcula-
tions. The RF method can employ a forest for specific training data that 
spreads the decision trees for each part of the training data, and finally, 
it cumulates the prediction results of all decision trees using randomly 
selected subsets of the main dataset. The Extra-Trees Regressor (ETR) is 
a developed version of the RF method that selects a random threshold in 
each tree. The Bagging Regressor (BR) is another improved algorithm 
that has the ability to fit the predicted value in each random subset and 
aggregates the result based on the individual predictions (see more de-
tails (Kazemi et al., 2023b; Kiani et al., 2019; Todorov and Billah, 
2022)). 

Boosting methods have become the mainstream of ML algorithms 
since they have the ability to improve weak learners into strong learners 
using a combination of models. Boosting algorithms can be categorized 
into five methods, namely, Gradient Boosting Machine (GBM), Adaptive 
Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Light GBM, 
and CatBoost. The GBM employs a primary predictive model to estimate 
the output, then, uses the second predictive model for improving the 
prediction values and reducing the error. This procedure is continued to 
find the best-fitted model. The Histogram-based Gradient Boosting 
Regression (HGBR) uses the quantization procedure to split the features 
and improves the speed of calculations compared to the GBM. The 
AdaBoost method uses a combination of strong base learners to create a 
prediction model based on the weight of data (Shafighfard et al., 2022; 
Kazemi and Jankowski, 2023; Kazemi et al., 2023c). 

To reduce the overfitting or underfitting issues of the GBM, various 
regularization methods have been used by the XGBoost algorithm that 
enhances the performance of the predictive model while increasing the 
speed of calculations. Fig. 6 illustrates the visual representation of the 
XGBoost and LightGBM algorithms. The LightGBM method can be used 
for big data points while it performs with higher efficiency and calcu-
lation speed. It is noteworthy that the LightGBM uses leaf-wise tree 
growth instead of level-wise tree growth, which is implemented by the 
XGBoost algorithm. Since the classical boosting algorithms are prone to 
overfitting or underfitting issues, the CatBoost method employs a 
permutation-driven approach for training the model while residuals are 
determined on another subset to prevent data leakage. Although many 
ML algorithms can be used for a regression problem, in this study, the 
previously introduced methods were used to propose a multi-functional 
prediction model (for more detail regarding the ML algorithms see 
(Kazemi et al., 2023b; Kazemi et al., 2023c)). It should be noted that a 
dataset containing 606944 data points was prepared from analysis to be 
used in the prediction models. The test data points have been varied due 
to the type of output. In other words, when it comes to predicting the 
seismic responses of the 4-Story BRBF, all the results related to the 
4-Story BRBF have been removed from the training dataset to prevent 
data leakage; then, the prediction models have been used to estimate the 
outputs of the selected structure. Therefore, in each type of output, there 
are different numbers of data points in the training and testing dataset. 
In addition, the same procedures have been done in the curve plot ability 

Fig. 5. The architecture of the feed-forward and backward propagation method 
in ANNs. Fig. 6. Visual representation of the XGBoost and LightGBM algorithms.  
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of the ML models for estimating seismic performance and failure prob-
ability curves. The term “seismic responses” can be defined as a response 
of structure during seismic load, e.g., earthquake, in which this response 
can be determined by monitoring the behavior of structural elements 
and floor levels. This research comprehensively investigates different 
seismic responses of distribution of RID and ID at each floor level, RID 
and ID at the top floor level, the story number of the maximum values of 
RID and ID, the median of IDA curves, and the seismic failure probability 
curve. 

4.1. Partial dependence plot 

The relative importance of input features can present the importance 
of each feature on the predicted response of BRBFs. Therefore, it would 
be possible to ignore the feature having lower importance. To find out 
the negative or positive effects of features on the prediction target, the 
Partial Dependence Plot (PDP) that was introduced by Friedman (2001) 
presents the expected effects of each feature on the output of ML-based 
prediction models using a marginalizing process of all input features and 
plotting the outcomes of a prediction model based on the input feature 
(Feng et al., 2021). Since many factors can affect the seismic response of 
BRBFs, in this research, all of the structural factors have been consid-
ered; then, the PDP of input features used in the XGBoost algorithm have 
been plotted to find out the relevance of the features. Although there is 
more than one output for prediction, the PDP of the distribution of ID 
has been illustrated in Fig. 7 as an example. 

Fig. 7 presents the PDP of input features used in the XGBoost algo-
rithm compared with the variation of the input features for estimating 
the distribution of ID. According to these plots, the thresholds in which 
the prediction model is varied corresponding to the variation of input 
features are provided to show the influence of each feature on the 
estimation of seismic response of BRBFs. It can be observed that 

increasing the weight, number of stories, and building height can lead to 
a small increase in the prediction of seismic responses; while the in-
crease in RSN shows a fluctuated increase and decrease in the values of 
prediction that confirms the dependence of the results to the ground 
motion records used for the analysis. In addition, the increase in base 
shear, T1 and Ry lead to an increase in the prediction of seismic re-
sponses, although the effect of Ry is more evident compared to others. In 
addition, γ and α have vice versa effects, in which by increasing the 
values of γ and α, their effects are reduced correspondingly. The results 
confirm that the modeling parameters introduced as input features 
considerably affect the estimation of the seismic response of BRBFs. 
According to the results of Fig. 7, ten input features have been selected 
that have the highest effects on the results of the analysis. It should be 
noted that due to the constant influence of other features, they are 
removed from comparison and do not consider as input features of ML 
models. 

4.2. Proposed stacked ML 

Previous studies confirmed that there is no unique ML algorithm for 
estimating the seismic response of structures since the nature of the 
seismic event and the response of the structure to this external load is 
unpredictable. In this study, one of the most important goals is to pro-
pose an ML-based prediction model that can provide the estimation of 
seismic responses with the minimum number of training data points. 
This ability can help future studies to easily provide the training dataset 
of ML algorithms. Previous investigations of authors showed that some 
ML methods have the capability of predicting the seismic responses, 
while still there is a need to improve their performances. In this study, 
the Stacked ML model is introduced to cover the shortcomings. Using all 
ML methods in combination with one algorithm, such as ensemble ML or 
Stacked ML algorithms, increases the time of predictions. Therefore, the 

Fig. 7. Partial dependence plot of input features used in the XGBoost algorithm.  
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proposed Stacked ML algorithm should be a well-organized method for 
the training dataset to ensure that it can work with different features of 
data points. 

The proposed Stacked ML algorithm includes the feature selection 
methods (i.e., filter, wrapper, and embedded methods) that are used to 
omit the redundant input features from the dataset. In addition, the 
hyperparameters are optimized based on the optimization algorithm 
embedded in the Tree-based Pipeline Optimization Tool (TPOT) as an 
AutoML method in Python software (i.e., Auto-sklearn). Fig. 8 illustrates 
the automated TPOT, in which the highlighted section is done auto-
matically. Using TPOT can improve the solutions for optimizing the ML 
pipelines that are used in the proposed Stacked ML algorithm. Thus, the 
proposed Stacked ML algorithm is tested on the prepared dataset and the 
best sub-models are indicated in Table 2. It should be noted that the sub- 
models used for the Stacked ML algorithm are optimized based on the 
improvements in the results and decrease the time of calculations, while 
the proposed algorithm can predict different seismic responses of the 
maximum of ID and RID in each BRBF, roof ID, the story number of 
maximum ID and RID, and distribution of ID and RID. In addition, the 
ANNs with three hidden layers having activation function of Relu is used 
assuming Adam as optimizer. 

Since employing all of the sub-models in one model cannot fulfill the 
reduction of the time of calculations, a procedure is used for selecting 
the best combination of the sub-models used in the Stacked ML algo-
rithm. To check the capability of the proposed ML models, first, the best 
hyperparameters for the prediction of ML models have been selected 
(see Table 2), and then, ML models have been employed in the Stacked 
ML model using their best hyperparameters to check the capability of 
them in combination model. By pre-processing the combination of one 
to six sub-models using the error indicators presented in Table 3, the 
Stacked ML algorithm, including the three sub-models of the ETR, BR, 
and LightGBM, has the best results and execution speed for predicting 
the distribution of ID and RID. Results of error indicators for the pre- 
processing dataset assuming proposed ML models are presented in 
Table 4, which shows the values of indicators for each algorithm. In the 
following subsections, the results of the analysis are described in detail. 
Moreover, the models of RF, BR, ETR, ANNs, RNNs, GBM, and XGBoost 
can be considered as prediction models to estimate seismic responses of 
the maximum of ID and RID in each BRBF, roof ID, and the story number 
of maximum ID and RID, as well as, the seismic performance and seismic 
failure probability curves. 

4.3. Seismic response prediction 

After investigation on the influence of input features, they are 
introduced as input variables for the ML algorithms and the training of 
the prediction models is conducted using data selection techniques such 
as cross-validation, filter method (e.g., Chi-square), wrapper method (e. 
g., forward and backward feature selection), embedded method (e.g., 
LASSO Regularization). To prepare a condition for comparing the ML 
models, a PC having the hardware details of Cori3-8100, CPU 3.60 GHz 
with 16 GB internal RAM has been used to execute the algorithms. All 
methods have been embedded in Python software and the best results of 
each ML algorithm have been selected and presented. Fig. 9 illustrates 

the response predictions of the 4-Story BRBF with α = 0.003, R = 4 and 
the bay length of 9.14 m using the ETR algorithm. It can be seen that the 
ETR algorithm can predict the maximum ID, maximum RID and 
maximum roof ID with accuracy of 98.7%, 95.2%, and 93.8%, respec-
tively, which are higher than other ML-based prediction models used in 
this research. In addition, the prediction model has the ability to predict 
the floor level of maximum ID and RID with less error. Fig. 10 illustrates 
the response predictions of the 8-Story BRBF with α = 0.01, R = 3 and 
the bay length of 7.32 m using the ETR algorithm, which the ETR al-
gorithm predicted the maximum ID, maximum RID and maximum roof 
RD with the accuracy of 91.2%, 96.7%, and 92.4%, respectively, that 
confirms the ability of proposed models. 

The Leave-one-out Error (LE) is a technique for estimating the 
model’s performance by leaving out one data point at a time from the 
training set and evaluating the model’s prediction on the omitted data 
point. This process is repeated for each data point in the dataset. The LE 
provides an estimate of the model’s generalization performance, 
assessing its ability to make accurate predictions on unseen data. To 
better compare the performance of ML models, the LE is determined for 
the response predictions of the 4-, and 8-Story BRBFs presented in Figs. 9 
and 10. The results confirmed the capability of the ML model used for 
estimating the seismic responses. 

Although the ETR algorithm shows the best predictions of maximum 
ID, RID, and roof ID, in some cases, the LightGBM, ANNs, and XGBoost 
have better performances. For estimating the distribution of ID along the 
floor levels of BRBFs, it is not possible to select the best algorithm, since 
different methods have determined the accurate values at each floor 
level. Therefore, in this section, to propose the best prediction model, a 
Stacked ML-based prediction model using algorithms of ETR, BR, and 
LightGBM as an estimator is introduced, in which the best-predicted 
values for each floor level, are selected, and finally, the aggregate of 
the predictions is plotted. It should be noted that the proposed model has 
the ability to predict the ID of each floor level of BRBFs in parallel 
processing to reduce the time of calculations. Fig. 11 presents the pre-
dictions of the ID distribution of BRBFs using the proposed ML-based 
model assuming the median method (i.e., the middle value) for esti-
mating the values of the distribution. It is observed that the proposed 
Stacked ML algorithm can accurately predict the ID distribution of all 
selected BRBFs with an accuracy of more than 98.3%, which is a good 
estimation tool for structural designers. Fig. 12 presents the predictions 
of the ID distribution of BRBFs using the proposed Stacked ML-based 
model assuming the mean method (i.e., the arithmetic average) for 
estimating the values of the distribution. Although there are differences 
between the median and mean methods of estimation of ID distribution, 
the proposed Stacked ML method can accurately predict the distribution 
in both methods which shows the capability of the proposed method. In 
addition, the predicted values of ID in each floor level can illustrate the 
weak story of the building, and the designer can use the results of the 
prediction to prevent this failure. Moreover, having the distribution of 
ID for a building (i.e., existing or newly constructed) can facilitate the 
retrofitting process and reduce the cost of retrofitting. 

Although Figs. 11 and 12 can show the capability of the ML models, 
Tables 5 and 6 illustrate the error indicators for the ID distribution of the 
6-Story BRBFs assuming the median and mean methods, respectively. To 
compare the ML models used in this research, Tables 5 and 6 can be 
used, in which it can be seen that the proposed Stacked ML has the 
highest R2 value and the lowest error indicators compared to other ML 
models, which confirms the ability of model for estimating ID distribu-
tion. To better compare the time of execution of ML models, an algo-
rithms has been added to the models to determine the execution time (i. 
e., see Tables 5 and 6). It can be seen that the Stacked ML model has the 
highest execution time compared to other models, since it has more base 
estimators and needs more time to aggregate the results. For brevity, 
other results of error indicators for the ID distribution of the 2-, to 12- 
Story BRBFs assuming the median and mean methods have been illus-
trated in Tables A-2 to A-11 in the Appendix, respectively. Fig. 8. Automated tree-based pipeline optimization tool.  
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4.4. Comparing prediction methods 

There are two famous prediction formulas, namely as FEMA P-58 
method (FEMA P-58, 2012) and Erochko et al. (2011), which are widely 
used by researchers to estimate the RID of BRBFs. Following FEMA P-58 
method (FEMA P-58, 2012), the median of RID, Δr, is estimated as fol-
lows for each story of the building: 

Δr= 0 Δ ≤Δy (2)  

Δr= 0.3
(
Δ − Δy

)
Δy< Δ< 4Δy  

Δr =
(
Δ − 3Δy

)
Δ≥ 4Δy  

where, for each story of the BRBF, Δ and Δy illustrate the maximum ID 
and story yield drift ratio, respectively. According to FEMA P-58 (FEMA 
P-58, 2012), the Δ value for each floor of a structure, determined from 
NTHA, can be used to estimate Δr using Equation (2). Section 5.3 of 
FEMA P-58 (FEMA P-58, 2012) provides a simplified method of deter-
mining Δ using linear static analysis. In addition, nonlinear static 
pushover analysis can be used for determining the Δy. 

According to the proposed equation by Erochko et al. (2011), the 
mean of RID for steel MRFs and BRBFs, Δr, mean, for each floor of the 
structure is determined as follows: 

Δr,mean =
(
Δmax − Δy

)
×

DCF
2.5

Δr,mean <Δr,max (3)  

where Δmax and Δy are the mean of ID for each story of the buildings by 
performing NTHA and the story yield drift ratio, respectively. The drift 
concentration factor, which is the ratio of maximum ID to maximum 
roof drift, should be less than 2.5 in Equation (3). 

As in the real condition, it is not possible to have access to the actual 
values of maximum RID, hence, the predictions made by seismic pro-
visions are considered as a main source for designing purposes. 
Although some studies have introduced a formula for estimating the 
maximum RID of BRBFs, there are still differences between the actual 
and estimated values of the RID of BRBFs (e.g., see (Asgarkhani et al., 
2020)). In other words, the proposed formulas have a conservative 
estimation of maximum RID that may affect the designing procedures. In 
this study, a comparison has been conducted between the actual values 
of the maximum RID and the estimated values by formulas and an 
ML-based prediction model. 

In Fig. 13, the median of RID obtained from the NTHA (i.e., actual 
values) and those predicted by the FEMA P-58 (FEMA P-58, 2012) 
method and ML-based method are compared for the BRBFs having 
different values of α, R and the bay length. It is noteworthy that the 
maximum value of the distribution of RID in BRBFs plays a key role in 
the designing of assumptions and structural elements. ML-based 
methods predicted the maximum of the median of RID with higher ac-
curacy than FEMA P-58 (FEMA P-58, 2012). It can be seen that similar 
trends are observed in the results of other BRBFs. For instance, the 
predicted value of the maximum of the median IRD by FEMA P-58 
(FEMA P-58, 2012) method for 2-Story BRBF is 0.365%, whereas 
ML-based models estimated 0.206% for this story, which is 2.12 and 1.2 
times larger than the actual value, respectively. In 4-Story BRBF, the 
maximum of the median of RID predicted by FEMA P-58 (FEMA P-58, 
2012) is equal to 0.163%, which belongs to the four-floor level, while 
the predicted value by the ML model is 0.112%, which is fitted to the 
actual value. According to the results, the calculated values by FEMA 
P-58 (FEMA P-58, 2012) for the 8-Story BRBF in the sixth floor is equal 
to 0.376%, which is 2.46 times higher than the corresponding actual 
value of 0.153%. Based on the ML method, the predicted value for the 
sixth floor is 0.166% which is 1.08 times larger than the corresponding 
actual value. 

Table 2 
Hyperparameters of the Stacked ML algorithm.  

Sub-Models n_estimators learning_rate min_sample_leaf min_sample_split max_depth random_state 

XGBoost 3000 0.001 15 15 8 – 
GBM 3500 0.01 10 8 5 – 
LightGBM 800 0. 0001 – – 5 – 
ETR 800 – 5 10 – 0 
BR 600 – – – – 0 
HGBR 2500 0.01 8 8 4 – 
RF 2200 – – – 6 0  

Table 3 
Error indicators for evaluating the proposed Stacked ML algorithm (Kazemi 
et al., 2023c).  

Indicator Formula 

Coefficient of determination 
R2 = 1 −

∑n
i=1(Actuali − Predictedi)

2

∑n
i=1(Actuali − Actualavg)

2 

Mean squared error MSE =
1
n
∑n

i=1
(Actuali − Predictedi)

2 

Mean absolute error MAE =
1
n
∑n

i=1
|Actuali − Predictedi|

Mean absolute relative error 
MARE =

1
n
∑n

i=1

⃒
⃒
⃒
⃒
Actuali − Predictedi

Actuali

⃒
⃒
⃒
⃒

Mean square relative error 
MSRE =

1
n
∑n

i=1

⃒
⃒
⃒
⃒
Actuali − Predictedi

Actuali

⃒
⃒
⃒
⃒

2 

Root mean squared relative error 
RMSRE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1

(
Actuali − Predictedi

Actuali

)2
√

Mean bias error MBE =
1
n
∑n

i=1
(Actuali − Predictedi)

Maximum absolute relative error 
erMAX = max

(⃒
⃒
⃒
Actuali − Predictedi

Actuali

⃒
⃒
⃒
⃒

)

Standard deviation 
SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Xi − Arithmetic mean)2

total number

√

Table 4 
Results of error indicators for the pre-processing dataset assuming ML models.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD 

XGBoost 0.904 2.68 1.67 0.21 0.036 0.21 0.32 0.72 0.01 
RF 0.913 2.36 1.56 0.19 0.053 0.18 0.41 0.46 0.01 
BR 0.941 2.18 1.13 0.15 0.014 0.12 0.26 0.23 0.01 
ETR 0.964 2.11 1.15 0.11 0.027 0.07 0.16 0.11 0.01 
GBM 0.871 3.15 1.89 0.31 0.282 0.78 0.46 1.37 0.01 
ANNs 0.943 2.18 1.17 0.15 0.034 0.14 0.27 0.28 0.01 
RNNs 0.932 2.24 1.26 0.16 0.041 0.15 0.33 0.37 0.01 
Stacked ML 0.988 2.01 1.04 0.09 0.023 0.05 0.11 0.07 0.01  
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Fig. 14 illustrates the predictions of the RID distribution of BRBFs 
using the proposed Stacked ML-based model assuming the mean 
method. Similar to the median method, it can be observed that the 
Erochko et al. (2011) method has a conservative estimation of RID 
distribution, while the ML-based prediction model can estimate the RID 
of floor levels fitted to the actual values. For example, for the six-floor 
level of the 6-Story BRBF, the RID of 0.94% determined by Erochko 
et al. (2011) is 4.24 and 3.54 times of actual and ML predicted values, 
respectively, while the ML predicted value is 1.19 times of the actual 
value. Considering the obtained results, FEMA P-58 (FEMA P-58, 2012) 
and Erochko et al. (2011) provide conservative estimations for the 

distribution of RID in most cases. Nevertheless, the RID values predicted 
by the proposed Stacked ML-based model are significantly closer to 
those actual values and can be selected as the best prediction model 
among other ML models. 

Tables 7 and 8 illustrate the error indicators for the RID distribution 
of the 6-Story BRBFs assuming the median and mean methods, respec-
tively. It can be observed that the proposed Stacked ML have the highest 
R2 value and the lowest error indicators compared to other ML models. 
Moreover, the proposed Stacked ML can perform better than individual 
ML models and can be used to compensate for the ability of equations 
used for estimating RID distribution. However, the execution time of the 

Fig. 9. Response predictions of the 4-Story BRBF with α = 0.003, R = 4, and bay length of 9.14 m using the ETR algorithm.  

Fig. 10. Response predictions of the 8-Story BRBF with α = 0.01, R = 3, and bay length of 7.32 m using the ETR algorithm.  
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Stacked ML model is higher than other models. For brevity, other results 
of error indicators for the RID distribution of the 2-, to 12-Story BRBFs 
assuming the median and mean methods have been illustrated in 
Tables A-12 to A-21 in Appendix, respectively. 

4.5. Seismic performance prediction 

It has been illustrated in the previous subsections that the proposed 
ML method, as one of the twenty ML algorithms used by authors (for 
more detail see (Kazemi et al., 2023a; Kazemi et al., 2023b; Kazemi 
et al., 2023c)) has been enhanced to accurately predict the distribution 
of ID and RID assuming two methods of mean and median, which 
considerably improved the formula that is available for the same pur-
pose (i.e., FEMA P-58 and Erochko methods). Then, the ML method’s 
ability is improved for predicting the median of IDA curves of BRBFs. 
Fig. 15 presents the comparison of the ML-based prediction models for 
estimating the median of IDA curves of the 4-, and 6-Story BRBFs. It can 
be observed that in both BRBFs, the ANNs have an accurate estimation of 
the median of IDA curves and can be used for prediction purposes. 
Although the results of the 4-, and 6-Story BRBFs are discussed in this 
section, similar results were observed for other BRBFs. Therefore, two 
methods of ANNs and ETR are introduced as the best prediction models, 
which can estimate the performance of BRBFs. For instance, in the 
maximum ID of 10%, the ANNs can estimate the collapse performance of 
the 4-, and 6-Story BRBFs with an accuracy of 97.69% and 98.96%, 
respectively. 

4.6. Prediction of seismic failure probability 

Although predicting the performance curve of BRBFs can improve 
the knowledge of buildings, it cannot be used for seismic risk assessment 
or plotting the seismic fragility curve. Therefore, in this section, the 
ability of the ML algorithms has been improved for failure probability 
assessment. Fig. 16 illustrates the comparison of the proposed prediction 
model for estimating the failure probability of collapse performance of 
the 4-, and the 6-Story BRBFs using ML algorithms. According to Fig. 16 
(a), the ETR and XGBoost algorithms have been fitted to the actual curve 
of the seismic collapse probability (i.e., ID = 10%). For example, in the 
50% failure probability (i.e., 0.5), the ETR, XGBoost and ANNs algo-
rithms achieved values of 2.9, 2.87, and 3.05, respectively, which have 
1.36%, 2.38%, and 3.74% differences compared to the actual value of 
2.94, respectively. According to Fig. 16(b), in the 50% failure proba-
bility (i.e., 0.5), the XGBoost, ETR, and ANNs algorithms achieved 
values of 1.41, 1.4, and 1.46, respectively, which have 1.39%, 2.09%, 
and 2.09% differences compared to the actual value of 1.43, respec-
tively, and can be selected as the best prediction models. Therefore, the 
results showed that the seismic failure probability of BRBFs can be 
determined based on the ML algorithms and can be used for estimating 
the seismic risk and vulnerability of buildings. The proposed algorithms 
can accelerate the seismic risk and vulnerability assessment of buildings 
for designing and retrofitting purposes. 

5. General use of the proposed ML-based model 

The previously prescribed formulas by FEMA P-58 (FEMA P-58, 
2012) and Erochko et al. (2011) can provide information on ID and RID 

Fig. 11. Predictions of the ID distribution of BRBFs using the proposed Stacked ML-based model assuming the median method.  
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distribution along the floor levels, while these formulas have limitations. 
For instance, there is still a need to model the BRBF and this may take 
time to provide the results for new input parameters. In addition, by 
changing the input parameters, the total process should be conducted 
again; thus, the predictions made by these formulas cannot be used for 

fast assessment of buildings. To overcome the shortcomings of existing 
formulas, ML-based prediction models have been introduced that can be 
used for estimating different seismic responses of BRBFs without limi-
tation on the number of uses and for different ranges of input parame-
ters. Moreover, to include all results of this study, a preliminary 

Fig. 12. Predictions of the ID distribution of BRBFs using the proposed Stacked ML-based model assuming the mean method.  

Table 5 
Results of error indicators for the ID distribution of the 6-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.912 2.57 1.77 0.205 0.534 0.053 0.06 0.052 0.022 467 
RF 0.915 2.43 1.76 0.201 0.523 0.053 0.06 0.052 0.022 356 
BR 0.952 2.24 1.37 0.180 0.367 0.033 0.05 0.039 0.015 432 
ETR 0.972 2.03 1.22 0.160 0.303 0.021 0.04 0.029 0.015 312 
GBM 0.901 3.19 1.94 0.213 0.580 0.071 0.08 0.078 0.019 544 
ANNs 0.921 2.59 1.72 0.192 0.403 0.046 0.06 0.047 0.017 612 
RNNs 0.954 2.19 1.35 0.186 0.368 0.028 0.05 0.038 0.016 667 
Stacked ML 0.983 1.85 1.17 0.154 0.294 0.017 0.03 0.026 0.015 753  

Table 6 
Results of error indicators for the ID distribution of the 6-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.915 4.51 1.69 0.63 0.521 0.03 0.093 0.036 0.031 495 
RF 0.912 4.56 1.83 0.65 0.527 0.03 0.093 0.036 0.031 370 
BR 0.955 3.84 1.88 0.31 0.488 0.02 0.081 0.032 0.024 445 
ETR 0.962 3.68 1.73 0.23 0.465 0.02 0.077 0.029 0.021 312 
GBM 0.883 5.78 1.92 0.83 0.751 0.05 0.124 0.047 0.053 525 
ANNs 0.947 3.96 1.17 0.42 0.498 0.02 0.087 0.032 0.024 598 
RNNs 0.951 3.84 1.19 0.32 0.492 0.02 0.082 0.032 0.024 689 
Stacked ML 0.991 3.52 1.53 0.180 0.405 0.020 0.073 0.027 0.019 780  
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prediction tool for using the proposed ML algorithms to predict the 
seismic response and performance curves of BRBFs is presented in 
Fig. 17. Using this tool can facilitate the seismic behavior assessment of 
BRBFs in the purpose of designing or retrofitting buildings. Moreover, 
the possibility of plotting the distribution curves of the ID and RID can 
provide information for structural designers. It is possible to predict the 
failure probability curve and use the curve to assess the seismic risk and 
vulnerability of BRBFs. Estimating proposed in the paper can facilitate 
the process of design and analysis while improving the knowledge of 
engineers about the current state of the building. The current study in-
vestigates the BRBFs having two-, to twelve-story elevations with 
different bay lengths. Although the authors tried to prepare a wide range 
of dataset with reasonable lengths and story elevations, the proposed 
GUI has some limitations in use for the BRBFs with higher than 
twelve-story elevation, and having bigger span length than 9.14 m or 
lower span length than 7.32 m. It should be noted that this tool could 
estimate the outputs for the input parameters of the BRBFs that have the 
values between the predefined two groups. Moreover, due to the capa-
bility of the proposed GUI to use the database, it is possible to update the 
database in future studies to improve the limitations. 

The GUI developed in this study serves as a powerful tool to assess 
and enhance the seismic performance of buildings, specifically focusing 
on BRBFs. The GUI is designed to address the shortcomings of existing 
seismic response estimation formulas and provide a comprehensive 
approach to predict seismic responses effectively. For instance, when 
facing the challenge of unpredictable values of RID during seismic 
events, civil engineers can utilize the GUI to optimize the performance of 
a building. The interface allows for retrofitting schemes such as 
strengthening beam-to-column connections, incorporating outer frame 

infills to resist lateral deformations, and integrating viscous dampers as 
dissipative devices and show how they can affect the building. These 
interventions are essential to ensure the building’s resilience and safety 
in the face of seismic stress. 

Moreover, the GUI tackles the limitations of existing formulas, such 
as time-consuming calculations and inflexibility in handling varying 
input parameters. Engineers can input specific parameters related to 
BRBFs into the interface, allowing them to quickly estimate seismic re-
sponses without the constraints of traditional formulas. The use of ML- 
based prediction models within the GUI further enhances accuracy 
and efficiency, enabling rapid assessment and aiding in the design or 
retrofitting of buildings. One notable feature of the GUI is its ability to 
provide graphical representations of the seismic response and perfor-
mance curves of BRBFs. Engineers can easily interpret these curves, 
aiding in risk assessment and vulnerability analysis. Additionally, the 
tool predicts failure probability curves, providing crucial insights to 
assess seismic risk comprehensively. 

However, it is important to note that the GUI does have certain 
limitations, specifically concerning building specifications. For build-
ings with more than twelve-story elevations or span lengths beyond the 
defined range, the tool may not provide accurate estimations. Despite 
these limitations, the GUI’s flexibility in utilizing a database allows for 
potential updates and improvements in future studies, demonstrating its 
adaptability and potential for ongoing refinement to better serve engi-
neering needs. 

6. Conclusions 

This research has been focused on ML-based prediction models since 

Fig. 13. Predictions of the RID distribution of BRBFs using the proposed Stacked ML-based model assuming the median method.  
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there is a need for fast estimation of the seismic behavior and seismic 
performance of BRBFs in retrofitting procedures. For this purpose, two 
main groups of BRBFs, having different types of parameters, were 
designed and modeled in OpenSees (McKenna et al., 2015) software. 

Then, 78 far-field ground motions suitable for the constructional site 
were used to perform NTHAs and IDAs based on the ID and RID de-
mands. Different types of demands were determined and defined as a 
training dataset for the ML methods. Twenty ML algorithms were used to 

Fig. 14. Predictions of the RID distribution of BRBFs using the proposed Stacked ML-based model assuming the mean method.  

Table 7 
Results of error indicators for the RID distribution of the 6-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.934 2.66 1.29 0.47 0.598 0.04 0.13 0.05 0.03 506 
RF 0.907 3.55 1.54 0.72 0.637 0.07 0.18 0.07 0.03 381 
BR 0.956 2.33 1.13 0.38 0.591 0.04 0.09 0.04 0.02 459 
ETR 0.964 2.02 1.15 0.31 0.583 0.03 0.09 0.04 0.02 301 
GBM 0.929 3.21 1.41 0.51 0.618 0.05 0.15 0.05 0.03 511 
ANNs 0.933 2.68 1.3 0.47 0.601 0.04 0.13 0.05 0.03 613 
RNNs 0.941 2.24 1.23 0.42 0.598 0.04 0.10 0.05 0.02 701 
Stacked ML 0.975 1.43 1.12 0.24 0.572 0.03 0.09 0.04 0.02 799  

Table 8 
Results of error indicators for the RID distribution of the 6-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.938 1.57 1.07 0.55 0.663 0.06 0.07 0.21 0.01 572 
RF 0.921 1.66 1.01 0.51 0.665 0.06 0.07 0.26 0.01 435 
BR 0.965 1.32 0.80 0.43 0.528 0.05 0.06 0.18 0.01 508 
ETR 0.971 1.29 0.81 0.35 0.533 0.05 0.06 0.12 0.01 366 
GBM 0.932 1.59 1.18 0.75 0.618 0.06 0.07 0.21 0.01 601 
ANNs 0.918 1.77 0.82 0.63 0.738 0.07 0.07 0.31 0.01 712 
RNNs 0.925 1.65 0.86 0.45 0.660 0.06 0.07 0.21 0.01 823 
Stacked ML 0.983 1.13 0.61 0.39 0.417 0.05 0.06 0.09 0.01 878  
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find out the best of them for the prepared training datasets. The ML 
models with the best results of error indicators were investigated, as well 
as, a combination of ML algorithms as a Stacked ML model was intro-
duced for predicting the distribution of seismic responses. The PDP of 
input features shows that increasing the weight, number of stories, and 
building height have small effects on the prediction of seismic responses, 
while the increase in base shear, T1 and Ry lead to an increase in the 
prediction of seismic responses, although the effects of Ry is more 
evident as compared to others. Moreover, by increasing the values of γ 
and α, their effects are reduced correspondingly. The proposed ML-based 
prediction model has the ability to predict seismic responses with the 
highest accuracy. For example, the ETR algorithm can predict the 
maximum ID, maximum RID and maximum roof ID with the accuracy of 
98.7%, 95.2%, and 93.8%, respectively, for the 4-Story BRBF with α =
0.003, R = 4, and bay length of 9.14 m. To improve the ability of the ML 
algorithms, a combination of estimators, such as the ANNs, RNNs, ETR, 
BR, HGBR, GBM, XGBoost, and LightGBM that have higher accuracy, 
were used to provide a Stacked ML-based prediction model. The pro-
posed prediction model can improve the capability of existing ML al-
gorithms in terms of predicting the distribution of ID and RID along the 
floor levels of BRBFs while using parallel processing to reduce the time 
of calculations. For example, the proposed Stacked ML can estimate the 
ID distribution of BRBFs with an accuracy of more than 98.3% in both 
the median and mean methods. Nevertheless, the RID values predicted 
by the proposed ML-based model have been fitted to the actual values. 

Since the seismic performance curve of BRBFs can provide information 
regarding the performance levels of the building, the ML models have 
been improved to predict the median of IDA curves. The results show 
that the ANNs can estimate the total collapse performance level of the 4-, 
and the 6-Story BRBFs (i.e., in the maximum ID of 10%) with the ac-
curacy of 97.69% and 98.96%, respectively. The seismic failure proba-
bility curve can be used for seismic risk and vulnerability assessment of 
buildings. In this research, the plot curve ability of the prediction models 
has been improved to provide the seismic fragility curve of BRBFs. For 
example, in the 50% failure probability (i.e., 0.5) of the 4-Story BRBF, 
the ETR, XGBoost and ANNs algorithms have achieved values of 2.9, 
2.87, and 3.05, respectively, which are different by 98.63%, 97.61%, 
and 96.25%, as compared to the actual value of 2.94. The preliminary 
estimation tool has been introduced to provide predictions based on the 
input parameters introduced in this study. In addition, it should be noted 
that this tool has the ability to estimate the outputs for the input pa-
rameters of the BRBFs that have the values between the predefined two 
groups. 

For future studies, the authors suggested to use near-field ground 
motions suitable for the constructional site considering pulse-like and 
no-pulse effects. In addition, it would be better if more attempts had 
been carried out to take the hazard curves into account and improve the 
capability of the GUI for estimating the mean annual rate of exceedance 
of an intensity measure. Although the authors tried to provide a wide 
range of dataset, there is still a room to model more structures to provide 

Fig. 15. Comparing the ability of the proposed prediction models for estimating the median of IDA curves of, a) the 4-Story, and b) the 6-Story BRBFs using 
ML algorithms. 

Fig. 16. Comparing the ability of the proposed prediction model for estimating the failure probability of collapse performance of, a) the 4-Story, and b) the 6-Story 
BRBFs using ML algorithms. 
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a complete range of input features. 
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Appendix 

Table A-1 presents the abbreviations and acronyms list used in this research.  

Table A-1 
Abbreviations and acronyms list used in the research.  

Abbreviation Description 

BRB Buckling restrained brace 
ID Interstory drift 
RID Residual interstory drift 
BRBFs Buckling-restrained brace frames 
MRF Moment Resisting Frames 
NTHA Nonlinear time-history analysis 
IDA Incremental dynamic analysis 

(continued on next page) 

Fig. 17. The preliminary prediction tool for using the proposed ML algorithms to predict the seismic response and performance curves of BRBFs (available at htt 
ps://github.com/FarzinKazemi). 
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Table A-1 (continued ) 

Abbreviation Description 

DBE Design-based earthquake level 
MCE Maximum considered earthquake level 
ML Machine learning 
ANNs Artificial Neural Networks 
RNNs Recurrent Neural Networks 
RF Random Forest 
ETR Extra-Trees Regressor 
BR Bagging Regressor 
GBM Gradient Boosting Machine 
AdaBoost Adaptive Boosting 
XGBoost Extreme Gradient Boosting 
HGBR Histogram-based Gradient Boosting Regression 
PDP Partial Dependence Plot 
TPOT Tree-based Pipeline Optimization Tool 
IDMed Median of interstory drift 
RIDMed Median of residual drift 
Sa(T1) Spectral acceleration at fundamental period of structures 
SDS and SD1 Spectral acceleration for the considered design site  

Figs. A-1 and A-2 present the details of BRBFs with bay lengths of 7.32 m and 9.14 m in the X-direction, respectively.

Fig. A-1. Details of BRBFs with the bay length of 7.32 m in the X-direction.   
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Fig. A-2. Details of BRBFs with the bay length of 9.14 m in the X-direction.  

Pseudo-code provides a simplified representation of the process of ML model; therefore, following procedure can be used to represent the Stacked 
ML model used in this research. 

Algorithm: Stacked ML with TPOT and Feature Selection 

Input:  

- Dataset with input features X and target variable Y  
- Hyperparameters optimization algorithm: TPOT  
- Feature selection methods: filter, wrapper, embedded  
- ML models for base and meta-level: Base_Models, Meta_Model 

Output:  

- Stacked ensemble model 

Initialize:  

- Selected_Features = Feature_Selection(X, Y) #Select relevant features based on the preprocessing  
- Optimized_Hyperparameters = TPOT_Optimize(X[Selected_Features], Y) #Optimize hyperparameters  
- Base_Models = Train_Base_Models (X[Selected_Features], Y, Optimized_ Hyperparameters) # Train base models 

Train Stacked ML Model:  

- Split the dataset into training and validation sets: X_train, X_val, Y_train, Y_val  
- Initialize an empty array to store meta-level training data: X_meta_train = [] 

For i = 1 to len(Base_Models):  
- Fit Base_Models[i] on X_train and predict on X_val: base_model_predictions  
- Append base_model_predictions to X_meta_train  

- Train the Meta_Model on X_meta_train and Y_val  
- Return the ensemble model with Base_Models and Meta_Model 

Prediction (for a new instance X_new):  

- Base_Model_Predictions = []  
- For each base model in Base_Models:  
- Predict using the base model for X_new and append to Base_Model_Predictions 
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- Predict using Meta_Model for Base_Model_Predictions  
- Return the final prediction 

Results of error indicators for the ID and RID distribution of the 2-, to 12-Story BRBFs assuming the median and mean methods have been presented 
in Tables A-2 to A-21, respectively.  

Table A-2 
Results of error indicators for the ID distribution of the 2-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.945 2.23 1.58 0.195 0.515 0.05 0.06 0.048 0.021 526 
RF 0.938 2.34 1.53 0.191 0.507 0.05 0.06 0.047 0.021 415 
BR 0.958 2.04 1.29 0.16 0.398 0.04 0.05 0.036 0.016 492 
ETR 0.985 1.81 1.15 0.132 0.302 0.02 0.04 0.027 0.014 334 
GBM 0.922 2.76 1.74 0.204 0.543 0.07 0.08 0.06 0.018 586 
ANNs 0.953 2.23 1.48 0.182 0.419 0.04 0.06 0.044 0.017 611 
RNNs 0.962 1.92 1.25 0.146 0.314 0.03 0.05 0.032 0.015 672 
Stacked ML 0.991 1.45 1.06 0.121 0.261 0.01 0.03 0.02 0.013 753   

Table A-3 
Results of error indicators for the ID distribution of the 2-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.959 2.18 1.56 0.193 0.513 0.05 0.06 0.047 0.021 478 
RF 0.945 2.29 1.52 0.187 0.503 0.05 0.06 0.046 0.021 389 
BR 0.958 1.96 1.25 0.154 0.392 0.03 0.05 0.035 0.016 455 
ETR 0.954 1.79 1.26 0.124 0.285 0.02 0.04 0.026 0.014 307 
GBM 0.928 2.66 1.64 0.234 0.531 0.06 0.08 0.058 0.018 548 
ANNs 0.966 2.11 1.42 0.176 0.407 0.04 0.06 0.042 0.017 602 
RNNs 0.973 1.76 1.21 0.139 0.301 0.03 0.05 0.031 0.015 691 
Stacked ML 0.997 1.29 1.03 0.109 0.245 0.01 0.03 0.018 0.012 731   

Table A-4 
Results of error indicators for the ID distribution of the 4-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.932 2.03 1.52 0.191 0.510 0.05 0.06 0.047 0.021 486 
RF 0.916 2.15 1.47 0.184 0.500 0.05 0.06 0.046 0.021 370 
BR 0.947 1.85 1.21 0.149 0.382 0.03 0.05 0.034 0.016 441 
ETR 0.958 1.62 1.06 0.120 0.276 0.02 0.04 0.025 0.014 321 
GBM 0.902 2.52 1.59 0.196 0.523 0.06 0.08 0.057 0.018 556 
ANNs 0.935 1.99 1.37 0.172 0.396 0.04 0.06 0.041 0.017 578 
RNNs 0.950 1.71 1.15 0.132 0.288 0.03 0.05 0.032 0.015 678 
Stacked ML 0.965 1.24 1.02 0.107 0.239 0.01 0.03 0.018 0.012 715   

Table A-5 
Results of error indicators for the ID distribution of the 4-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.943 1.86 1.45 0.187 0.502 0.05 0.06 0.047 0.021 502 
RF 0.927 2.02 1.42 0.182 0.495 0.05 0.06 0.046 0.021 375 
BR 0.954 1.76 1.18 0.145 0.375 0.03 0.05 0.033 0.016 421 
ETR 0.959 1.57 1.05 0.116 0.270 0.02 0.04 0.024 0.014 309 
GBM 0.912 2.42 1.55 0.192 0.516 0.06 0.08 0.057 0.018 568 
ANNs 0.942 1.92 1.33 0.164 0.386 0.04 0.06 0.04 0.017 632 
RNNs 0.953 1.67 1.12 0.128 0.280 0.03 0.05 0.029 0.015 691 
Stacked ML 0.958 1.21 1.01 0.105 0.234 0.01 0.03 0.017 0.012 734   
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Table A-6 
Results of error indicators for the ID distribution of the 8-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.939 2.16 1.39 0.175 0.491 0.05 0.06 0.046 0.021 483 
RF 0.920 2.31 1.34 0.17 0.484 0.05 0.06 0.045 0.021 367 
BR 0.931 1.99 1.22 0.137 0.364 0.03 0.05 0.032 0.016 412 
ETR 0.950 1.71 1.02 0.109 0.258 0.02 0.04 0.023 0.014 302 
GBM 0.887 2.42 1.47 0.184 0.501 0.06 0.08 0.056 0.018 532 
ANNs 0.914 2.01 1.25 0.152 0.375 0.04 0.06 0.039 0.017 607 
RNNs 0.941 1.72 1.05 0.12 0.269 0.02 0.05 0.028 0.015 677 
Stacked ML 0.989 1.51 0.96 0.101 0.242 0.01 0.03 0.019 0.011 721   

Table A-7 
Results of error indicators for the ID distribution of the 8-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.919 2.19 1.41 0.177 0.494 0.05 0.06 0.046 0.021 454 
RF 0.903 2.27 1.32 0.167 0.481 0.05 0.06 0.045 0.021 421 
BR 0.943 1.87 1.21 0.134 0.361 0.03 0.05 0.032 0.016 478 
ETR 0.957 1.66 1.01 0.108 0.256 0.02 0.04 0.023 0.014 320 
GBM 0.896 2.34 1.44 0.182 0.498 0.06 0.08 0.056 0.018 502 
ANNs 0.936 1.97 1.23 0.15 0.370 0.04 0.06 0.039 0.017 514 
RNNs 0.948 1.63 1.03 0.118 0.266 0.02 0.05 0.028 0.015 642 
Stacked ML 0.965 1.45 0.94 0.099 0.238 0.01 0.03 0.028 0.012 787   

Table A-8 
Results of error indicators for the ID distribution of the 10-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.949 1.78 1.22 0.140 0.367 0.03 0.05 0.031 0.016 461 
RF 0.919 2.25 1.38 0.169 0.421 0.04 0.06 0.041 0.018 367 
BR 0.892 2.89 1.51 0.193 0.493 0.05 0.08 0.051 0.021 442 
ETR 0.904 2.70 1.47 0.181 0.458 0.04 0.07 0.047 0.019 306 
GBM 0.862 3.88 1.74 0.221 0.558 0.07 0.10 0.067 0.024 522 
ANNs 0.896 3.12 1.65 0.207 0.514 0.06 0.09 0.057 0.022 595 
RNNs 0.910 2.95 1.56 0.198 0.485 0.05 0.08 0.051 0.021 689 
Stacked ML 0.977 1.85 1.18 0.142 0.371 0.03 0.06 0.032 0.017 763   

Table A-9 
Results of error indicators for the ID distribution of the 10-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.943 2.03 1.31 0.154 0.389 0.03 0.05 0.035 0.017 509 
RF 0.947 2.37 1.42 0.169 0.431 0.04 0.06 0.042 0.019 378 
BR 0.931 2.90 1.53 0.187 0.475 0.05 0.08 0.049 0.022 415 
ETR 0.950 2.65 1.35 0.163 0.414 0.04 0.07 0.038 0.018 299 
GBM 0.890 4.10 1.85 0.217 0.530 0.06 0.09 0.062 0.024 521 
ANNs 0.915 3.44 1.71 0.201 0.477 0.05 0.08 0.048 0.021 602 
RNNs 0.938 2.92 1.48 0.179 0.428 0.04 0.06 0.042 0.019 679 
Stacked ML 0.988 1.76 1.14 0.138 0.362 0.03 0.05 0.032 0.016 752   

Table A-10 
Results of error indicators for the ID distribution of the 12-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.958 1.65 1.16 0.129 0.314 0.02 0.04 0.027 0.015 488 
RF 0.937 2.46 1.37 0.165 0.414 0.04 0.06 0.042 0.019 421 
BR 0.932 2.65 1.47 0.179 0.464 0.05 0.07 0.046 0.021 403 
ETR 0.948 2.38 1.29 0.153 0.375 0.03 0.05 0.033 0.017 328 
GBM 0.908 3.18 1.72 0.202 0.495 0.06 0.08 0.054 0.022 502 
ANNs 0.925 2.80 1.56 0.188 0.449 0.04 0.07 0.044 0.022 612 
RNNs 0.939 2.55 1.45 0.175 0.407 0.04 0.06 0.038 0.018 709 
Stacked ML 0.988 1.59 1.08 0.121 0.296 0.02 0.04 0.025 0.015 825  
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Table A-11 
Results of error indicators for the ID distribution of the 12-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.946 1.72 1.18 0.132 0.324 0.02 0.04 0.027 0.015 480 
RF 0.944 2.52 1.39 0.166 0.412 0.04 0.06 0.04 0.019 377 
BR 0.928 2.82 1.55 0.180 0.462 0.05 0.07 0.046 0.021 402 
ETR 0.942 2.61 1.34 0.152 0.374 0.03 0.05 0.033 0.017 315 
GBM 0.906 3.29 1.77 0.204 0.502 0.05 0.08 0.053 0.022 521 
ANNs 0.921 2.92 1.60 0.186 0.445 0.04 0.07 0.044 0.02 594 
RNNs 0.934 2.68 1.43 0.172 0.407 0.04 0.06 0.038 0.018 659 
Stacked ML 0.989 1.63 1.09 0.120 0.297 0.02 0.04 0.026 0.015 792   

Table A-12 
Results of error indicators for the RID distribution of the 2-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.901 2.85 1.47 0.55 0.613 0.05 0.14 0.06 0.04 482 
RF 0.900 2.81 1.44 0.53 0.610 0.05 0.13 0.05 0.04 542 
BR 0.905 2.67 1.35 0.49 0.605 0.05 0.12 0.04 0.03 441 
ETR 0.898 2.89 1.49 0.56 0.616 0.06 0.15 0.06 0.05 369 
GBM 0.899 2.83 1.46 0.54 0.612 0.05 0.14 0.05 0.04 523 
ANNs 0.906 2.64 1.32 0.47 0.604 0.05 0.11 0.04 0.03 602 
RNNs 0.902 2.78 1.42 0.52 0.609 0.05 0.13 0.05 0.04 678 
Stacked ML 0.978 1.38 1.09 0.21 0.569 0.04 0.08 0.03 0.02 812   

Table A-13 
Results of error indicators for the RID distribution of the 2-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.899 3.12 1.45 0.55 0.615 0.05 0.14 0.06 0.031 502 
RF 0.898 3.21 1.54 0.62 0.622 0.06 0.17 0.07 0.029 385 
BR 0.882 3.56 1.51 0.59 0.637 0.07 0.15 0.08 0.028 443 
ETR 0.875 3.76 1.62 0.64 0.645 0.08 0.19 0.09 0.027 321 
GBM 0.913 2.88 1.35 0.51 0.612 0.05 0.13 0.05 0.03 564 
ANNs 0.924 2.74 1.33 0.50 0.608 0.04 0.12 0.05 0.032 642 
RNNs 0.913 2.89 1.34 0.53 0.615 0.05 0.14 0.06 0.031 715 
Stacked ML 0.985 1.15 1.05 0.35 0.550 0.03 0.08 0.04 0.023 803   

Table A-14 
Results of error indicators for the RID distribution of the 4-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.913 2.55 1.25 0.45 0.593 0.04 0.12 0.05 0.03 450 
RF 0.930 3.39 1.50 0.69 0.634 0.07 0.17 0.07 0.03 391 
BR 0.921 3.02 1.36 0.48 0.601 0.04 0.11 0.05 0.02 419 
ETR 0.942 2.21 1.18 0.36 0.579 0.03 0.08 0.04 0.02 344 
GBM 0.903 3.67 1.60 0.75 0.645 0.06 0.19 0.06 0.03 511 
ANNs 0.889 3.82 1.68 0.72 0.660 0.05 0.21 0.07 0.03 608 
RNNs 0.878 3.99 1.74 0.65 0.678 0.05 0.24 0.08 0.04 702 
Stacked ML 0.989 1.25 0.95 0.22 0.550 0.03 0.06 0.02 0.01 783   

Table A-15 
Results of error indicators for the RID distribution of the 4-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.888 2.44 1.22 0.45 0.580 0.04 0.12 0.048 0.029 472 
RF 0.891 3.11 1.33 0.61 0.607 0.07 0.17 0.066 0.032 560 
BR 0.875 2.21 1.13 0.37 0.570 0.04 0.08 0.037 0.021 428 
ETR 0.916 1.97 1.06 0.29 0.550 0.03 0.07 0.034 0.019 318 
GBM 0.896 2.78 1.27 0.47 0.590 0.05 0.14 0.054 0.027 536 
ANNs 0.905 2.36 1.18 0.43 0.574 0.04 0.11 0.043 0.025 564 
RNNs 0.911 2.05 1.12 0.39 0.562 0.04 0.09 0.036 0.022 673 
Stacked ML 0.978 1.21 1.02 0.21 0.498 0.03 0.08 0.031 0.021 745  
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Table A-16 
Results of error indicators for the RID distribution of the 8-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.910 2.40 1.25 0.47 0.591 0.04 0.11 0.047 0.031 460 
RF 0.889 3.20 1.38 0.62 0.608 0.07 0.18 0.067 0.033 388 
BR 0.879 2.19 1.10 0.38 0.570 0.04 0.08 0.036 0.021 413 
ETR 0.935 1.97 1.08 0.32 0.552 0.04 0.07 0.035 0.02 330 
GBM 0.907 2.80 1.29 0.48 0.592 0.05 0.14 0.054 0.027 502 
ANNs 0.925 2.42 1.21 0.44 0.575 0.04 0.11 0.042 0.025 611 
RNNs 0.930 2.06 1.13 0.41 0.562 0.04 0.09 0.037 0.022 675 
Stacked ML 0.981 1.34 1.03 0.31 0.543 0.03 0.09 0.034 0.017 834   

Table A-17 
Results of error indicators for the RID distribution of the 8-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.932 2.50 1.26 0.48 0.595 0.04 0.11 0.046 0.031 450 
RF 0.912 3.30 1.42 0.65 0.613 0.07 0.19 0.068 0.034 399 
BR 0.888 2.26 1.11 0.38 0.572 0.04 0.08 0.036 0.022 365 
ETR 0.942 1.95 1.07 0.30 0.549 0.04 0.07 0.035 0.020 308 
GBM 0.920 2.75 1.28 0.47 0.589 0.05 0.14 0.054 0.026 502 
ANNs 0.938 2.38 1.23 0.43 0.574 0.04 0.11 0.042 0.025 568 
RNNs 0.945 2.05 1.13 0.39 0.562 0.04 0.09 0.037 0.022 633 
Stacked ML 0.972 1.41 1.12 0.24 0.571 0.03 0.09 0.043 0.018 845   

Table A-18 
Results of error indicators for the RID distribution of the 10-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.915 2.46 1.24 0.46 0.588 0.04 0.11 0.047 0.03 472 
RF 0.900 3.15 1.36 0.62 0.607 0.07 0.18 0.067 0.033 359 
BR 0.882 2.20 1.10 0.38 0.570 0.04 0.08 0.036 0.021 413 
ETR 0.930 1.98 1.08 0.30 0.553 0.04 0.07 0.035 0.020 306 
GBM 0.910 2.76 1.29 0.48 0.592 0.05 0.14 0.054 0.027 521 
ANNs 0.930 2.43 1.21 0.44 0.575 0.04 0.11 0.042 0.025 589 
RNNs 0.937 2.04 1.12 0.39 0.561 0.04 0.09 0.037 0.022 677 
Stacked ML 0.983 1.47 1.07 0.24 0.565 0.03 0.09 0.040 0.021 796   

Table A-19 
Results of error indicators for the RID distribution of the 10-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.943 2.34 1.18 0.45 0.583 0.04 0.11 0.047 0.031 523 
RF 0.917 3.05 1.32 0.59 0.605 0.07 0.17 0.065 0.032 411 
BR 0.898 2.17 1.09 0.36 0.569 0.04 0.08 0.036 0.02 388 
ETR 0.967 1.92 1.04 0.28 0.545 0.03 0.07 0.033 0.019 290 
GBM 0.926 2.65 1.23 0.46 0.590 0.05 0.14 0.053 0.027 589 
ANNs 0.937 2.32 1.17 0.42 0.573 0.04 0.11 0.042 0.025 634 
RNNs 0.952 1.99 1.10 0.38 0.557 0.04 0.09 0.035 0.022 698 
Stacked ML 0.980 1.34 1.08 0.23 0.520 0.03 0.08 0.038 0.023 911   

Table A-20 
Results of error indicators for the RID distribution of the 12-Story BRBFs assuming the median method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.956 2.22 1.14 0.44 0.577 0.04 0.11 0.047 0.031 478 
RF 0.912 3.25 1.36 0.61 0.610 0.07 0.18 0.065 0.032 367 
BR 0.885 2.13 1.07 0.36 0.568 0.04 0.08 0.036 0.020 413 
ETR 0.973 1.89 1.03 0.28 0.544 0.03 0.07 0.033 0.019 297 
GBM 0.934 2.55 1.21 0.46 0.589 0.05 0.14 0.053 0.027 523 
ANNs 0.943 2.26 1.16 0.42 0.572 0.04 0.11 0.042 0.025 605 
RNNs 0.957 1.95 1.08 0.38 0.556 0.04 0.09 0.035 0.022 678 
Stacked ML 0.988 1.39 1.09 0.23 0.569 0.03 0.09 0.041 0.022 822  
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Table A-21 
Results of error indicators for the RID distribution of the 12-Story BRBFs assuming the mean method.  

ML algorithm R2 MSE MAE MARE MSRE RMSRE MBE erMAX SD Execution time (sec) 

XGBoost 0.967 2.15 1.14 0.43 0.574 0.04 0.11 0.047 0.03 495 
RF 0.925 3.18 1.33 0.62 0.608 0.07 0.17 0.065 0.032 371 
BR 0.892 2.15 1.08 0.37 0.569 0.04 0.08 0.036 0.02 427 
ETR 0.963 1.88 1.02 0.27 0.543 0.03 0.07 0.033 0.019 319 
GBM 0.942 2.54 1.19 0.45 0.587 0.05 0.14 0.053 0.027 569 
ANNs 0.951 2.28 1.14 0.41 0.570 0.04 0.11 0.042 0.025 625 
RNNs 0.962 1.93 1.06 0.37 0.555 0.04 0.09 0.035 0.022 688 
Stacked ML 0.976 1.38 1.08 0.24 0.564 0.03 0.09 0.037 0.018 714  
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