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Abstract The paper addresses the issue of local buckling of compressed flanges of cold-formed thin-walled
channel columns and beams with nonstandard flanges composed of aluminium alloys. The material behaviour
follows the Ramberg–Osgood law. It should be noted that the proposed solution may be also applied for
other materials, for example: stainless steel, carbon steel. The paper is motivated by an increasing interest
in nonstandard cold-formed section shaping in local buckling analysis problems. Furthermore, attention is
paid to the impact of material characteristics on buckling stresses in a nonlinear domain. The objective of the
paper is to propose a finite element method (FEM) model and a relevant numerical procedure in ABAQUS,
complemented by an analytical one. It should be noted that the proposed FEM energetic technique makes it
possible to compute accurately the critical buckling stresses. The suggested numerical method is intended to
accurately follow the entire structural equilibrium path under an active load in elastic and inelastic ranges.
The paper is also focused on correct modelling of interactions between sheets of cross section of a possible
contact during buckling analysis. Furthermore, the FEM results are compared with the analytical solution.
Numerical examples confirm the validity of the proposed FEM procedures and the closed-form analytical
solutions. Finally, a brief research summary is presented and the results are discussed further on.

Keywords Cold-formed members · Local buckling · FEM · Closed-form analytical solution · Nonlinear
analysis · Aluminium alloys

1 Introduction

Cold-formed thin-walled aluminium alloy members are increasingly being applied in many engineering struc-
tures because of their low weight, relatively high mechanical strength and inherent corrosion resistance. An
increasing demand for this structural class also results from their simple manufacturing and assembly tech-
nology. Unfortunately, in the case of cold-formed thin-walled structures, the ability to carry relatively high
loads can be limited not only by material strength but also by structural stability. To achieve stability, mostly
in a local extent, more complex shapes of cold-formed thin-walled column and beam sections are used. Shape
changes of cross sections result mainly from the need for shape optimisation.

The joint domains of fundamental theory and methods of stability analysis and optimal structural design
under stability constraints are well developed in both analytical and numerical regard [11,17,24,26,27,33,47,
49,58,59]. Twogeneral classes exist in thefield of stability analysis: amplificationmethods and energymethods.
The amplification methods (also known as von Neumann stability analysis) are based on decomposition of
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G. Narutowicza 11/12, 13, 80-233 Gdańsk, Poland
E-mail: mark@pg.edu.pl

http://orcid.org/0000-0002-1440-647X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-018-0705-z&domain=pdf


648 M. Kujawa

motion into normal modes, for example using Fourier analysis, and superposition. This approach can be
implemented by means of standard linear procedures; thus, it is limited to linear problems only. Nevertheless,
in some cases, nonlinear systems can be solved by means of linearisation. While the energy methods (also
called Lyapunov methods) are based on measures of the motion amplitude, they are not restricted to linear
systems. Therefore, energetic approach is especially recommended in the cases of nonlinear systems and in
advanced problems of structural stability analysis.

Nowadays, the generalised beam theory (GBT) [9,46,57] or alternative theories of plates and shells [15,16]
are applied to study the structural behaviour of thin-walled members. The research is mainly focused on thin-
walled members made by steel or aluminium, but not only for them [6]. Particular attention should be given
to the review articles by Davies [12] and Hancock [20,21] and to the books by Mazzolani [39,40], Kissell and
Ferry [23] and Rondal and Dubina [13]. The years of research have not been sufficient to thoroughly solve the
problems of stability loss, which is of a sudden nature and difficult to contain. The stability loss problems are
subject to ongoing research [18,31,32,52,54]. Experimental research is still being conducted to investigate the
phenomenon of stability loss, to verify the proposed analytical or numerical solutions and to improve the direct
strengthmethod (DSM) [7,25,41,45,62]. Themajor work that is closely related to the issues raised in this paper
on elastic and inelastic buckling of members of cross sections with nonstandard flanges is the experimental
and analytical research conducted by Magnucki and his colleagues [34–36,42–44]. Many other researchers
have recently addressed these issues [28,37,38,61]. Alongside experimental research, the development of
numerical methods is still in progress. The recent numerical research is primarily focused on the finite element
method (FEM) [2,5], the finite strip method (FSM), the constrained finite strip method (cFSM) [3,4,29,51]
and the semi-analytical FSM [22]. Computations are generally performed using non-commercial solvers such
as CUFSM [30] (elastic buckling analysis of thin-walled members with general end boundary conditions),
CUTWP [53] (global buckling analysis of thin-walled members), GBTUL [1] and authors’ solvers such as
SAFSM and reSAFSM [21]; commercial programs (e.g. ABAQUS [19]) are also applied.

The stability analysis of cold-formed cross-section members with nonstandard shapes showing normal and
tangential interactionswith friction between sheets of nonstandard flanges/walls is a current research issue. The
research is decisive when the thin-walled structures are composed of nonstandard materials such as aluminium
alloys or composites.

This paper considers the local buckling of compressed flanges of cold-formed thin-walled channel columns
and beams with nonstandard flanges composed of aluminium alloys [50]. The material behaviour follows the
Ramberg–Osgood law [48] in a nonlinear range. It should be noted that the Ramberg–Osgood constitutive
equation may be also applied for other materials, for example: stainless steel, carbon steel or even wood, and
in these cases, it is possible to use the method of stability analysis presented herein. A finite element method
(FEM) model and a numerical procedure with the use of the commercial software ABAQUS are proposed
here. Furthermore, an analytical solution is also presented [55]. Comparison of the FEM solutions with the
analytical results is finally presented.

The main inspiration to taken discuss about problems of the local stability of non-standard cross-sections
(see Fig. 1b, c) is a proper modelling of cooperation of two flanges sheets, what is already suggested in paper
[55]. The case of neglecting the inter-sheet contact introduced to the ABAQUS system results in the critical
buckling stresses even a 50% lower, compared to the contact case [55]. Furthermore, for some commonly
used programs, for example CUFSM, it is not possible during analysis to consider the influence of contact and
material nonlinearity at all. It should be emphasised that the error concerns not only the value of critical stress
but also the mode of buckling.

The original aspects of the paper are proposals of analytical approach and energetic numerical approach in
system stability analysis, in linear and nonlinear range, focused on correct modelling of interactions between
sheets of cross section with a possible contact during buckling.

2 Analytical approach

Let us consider compressed flange types A, B and C (see Fig. 1) of a thin-walled channel column or beam of
length l, as shown in Figs. 2 and 4 [55].

An elastic connection is modelled in the form of distributed elastic springs of a linear, length-wise elastic
modulus. The local buckling mode of a flange is controlled by an angle of rotation θ . Initially, the member
material is assumed to be linearly elastic with Young’s modulus E . The critical buckling stress formula for the
considered flange types (A, B and C) is
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Fig. 1 Types of cross sections under investigation: a type A, b type B and c type C

Fig. 2 A Cartesian coordinate system, thin-walled channel, flange displacement

σ = E
( t

b

)2 [
f1γ

2
(b
l

)2 + f2
χ

γ 2bh
+ f3

1

2(1 + ν)

]
(1)

where t is the thickness; b is the flange width; γ = nwπ/ l, where nw is the number of half-waves; h is the
height of the web; ν is Poisson’s ratio; and χ is the coefficient of flange–web cooperation, which is equal to 2
for columns and 4 for beams. The coefficients f1, f2 and f3 are affected by the cross-sectional dimension of
the member, as follows:

– The type A cross sections
f1 = 1/12, f2 = 1/4, f3 = 1 (2)

– The type B cross sections
f1 = 1/2, f2 = 1/8, f3 = 1 (3)

– The type C cross sections

f1 = 1 + 4( ab )3

2
[
1 + 3

2
a
b ( tb )2

] , f2 = 1

8
[
1 + 3

2
a
b ( tb )2

] , f3 = 2 + a
b

2
[
1 + 3

2
a
b ( tb )2

] (4)

where a is the crook length.

To find the critical buckling stresses, it is necessary to find the number of half-waves of a buckling mode
nw with the help of Fig. 3.

In Fig. 3, the ratio of the member length to the characteristic length η = l/ l0 is shown, where l0 =
πb 4

√
( f1h)/(χ f2b). By dividing the flange length l by the characteristic length l0 and incorporating the graph

in Fig. 3, it is possible to determine the number of half-waves nw corresponding to the critical buckling stress.
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Fig. 3 Critical stress versus ratio of flange length to characteristic one

This information is then inserted into relation (1) to obtain the critical stress σcr for a linearly elastic material.
The details of the analytical solution are presented in my previous research [55].

In this paper, attention is given to the impact of material parameters in the nonlinear range on the buckling
stresses. It is assumed that the member material follows the Ramberg–Osgood constitutive law [48]

ε = σ

E
+ K

( σ

σ0

)n−1
(5)

where σ0 is the yield stress and K and n are material coefficients. To apply the tangent theory to compute
the critical stress, the tangent modulus Et is necessary. This modulus is the first stress–strain derivative.
Differentiating both sides of relation (5) leads to

Et = E

1 + K E(n−1)
σ0

(
σ
σ0

)n−2 (6)

The obtained tangent modulus [10] is inserted into the critical stress formula (1). Next, the relation is derived
to transform the linear elastic critical stresses σcr into the Ramberg–Osgood value, σRO

cr

σRO
cr + K E(n − 1)

(
σRO
cr

σ0

)n−1

= σcr (7)

More details of the analytical solution for critical stress in the nonlinear range are included in my previous
research [56].

Unfortunately, the proposed closed-form analytical solution is a simplified form. The analytical solution
is simplified mainly due to the method of modelling the interactions between flange sheets. The analytical
solution does not allow for displacements and separation between sheets of flanges.

3 Numerical approach

The current problem in this article is extremely complex in both analytical and numerical aspects. In this
paper, the numerical model is prepared using ABAQUS software [19]. Structural stability analysis taking the
interactions between sheets of flanges into account is a dynamic and nonlinear problem.A nonlinear description
is required not only due to the contact phenomenon but also due to a nonlinear material (e.g. aluminium alloy).

The ABAQUS package offers several methods performing dynamic analysis of problems [19]. This anal-
ysis distinguishes two procedures: direct-solution dynamic analysis or modal superposition. Direct-solution
procedures (such as implicit dynamic analysis, subspace-based explicit dynamic analysis, explicit dynamic
analysis, direct-solution steady-state harmonic response analysis) are dedicated to dynamic analysis involving
a nonlinear response. Modal superposition procedures (such as mode-based steady-state harmonic response
analysis, subspace-based steady-state harmonic response analysis, mode-based transient response analysis,
response spectrum analysis, random response analysis, complex eigenvalue extraction) are cost-effective, in
the cases of linear or mildly nonlinear dynamic analysis.
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The paper proposes direct-solution dynamic analysis procedures in the meaning of implicit direct-
integration dynamic analysis. This decision was made because geometrical and material problem nonlinearity
is usually assumed to study nonlinear transient dynamic response. Furthermore, general nonlinear dynamic
analysis in ABAQUS involves implicit time integration to compute the quasi-static system response, so quasi-
static techniques are useful in stability analysis. In the proposed numerical solution using a quasi-static tech-
nique, the load is applied smoothly; thus, slow deformation produces a low strain rate. This result implies
that infinitely small inertia forces may be neglected. This means that the dynamic effect is small, but the
system kinetic energy variation is possible; thus, successive stages of system stability loss happen and the
inertia effects are neglected. Theoretical foundations of the indicated numerical techniques are included in
[11,17,19,24,26,27,33,47,49,58,59].

The contact phenomenon in stability analysis is a rare issue in research. Attempts to analyse stability
incorporating the contact phenomenon were undertaken by K. Magnucki and his group. Due to the complex-
ity of the research problem, they mainly focused on experimental research. The problem of modelling this
phenomenon has not yet been thoroughly solved using both analytical and numerical means. In this paper, it
is suggested that the interactions between the sheets may be modelled in ABAQUS using surface-to-surface
contact discretisation, the finite-sliding tracking approach where the contact pressure is referred to normal
behaviour such as a ”hard” contact to allow separation after contact and tangential behaviour using the penalty
friction formulation [8,19,60]. In this type of analysis, when surfaces are in contact, any contact pressure can
be transmitted; conversely, when the surfaces are separated, the contact pressure reduces to zero.

Another key element of this paper is the material description. This paper assumes that the material follows
a nonlinear pattern. A nonlinear material model can be implemented in ABAQUS by employing deformation
plasticity theory based on the Ramberg–Osgood relationship (5) [19,48]. This relationship can successfully
be applied in the domain of plastic deformations and to characterise nonlinear elastic materials. The material
description in ABAQUS requires the determination of five parameters: E—Young’s modulus, ν—Poisson’s
ratio, σ0—the yield stress, N = n − 1—the hardening exponent, and α = K E

σ0
—the “yield” offset, where K

and n are the material coefficients.
In this article, a simplified numerical approach is also proposed. This procedure is based on the classical

linear stability analysis (LBA). Here, interactions between elements are described in a simplified way. First, a
simplified contact model assumes that individual sheets cannot move relative to each other. Separation between
sheets is impossible. Next, for material description, an approach is proposed in the analytical solution based
on the concept of tangent modulus (6). A similar simplified FEM model was also successfully applied [55].
The limitations and disadvantages of the proposed simplified approach should be kept in mind, and they are
briefly summarised in the final discussion.

4 Examples: analytical and numerical solution

Let us consider a simply supported channel column and a beam of standard (type A) and nonstandard cross
sections (types B and C), as shown in Fig. 4.

The members are composed of two aluminium alloys [50]. The first is a non-heat-treated alloy (Alloy
5056, E = 68,670MPa, ν = 0.33, σ0 = 118MPa, n = 5.62, N = 4.62, K = 0.002 and α = 1.1639), and
the second is a heat-treated alloy (Alloy 6081, E = 68,670MPa, ν = 0.33, σ0 = 288MPa, n = 16.16, N =
15.16, K = 0.002 andα = 0.4769). The dry static friction aluminium-on-aluminium friction coefficients range
from 1.10 to 1.35 [14]. An average friction coefficient equal to 1.2 is assumed in the studies. Furthermore, it
is also assumed in the analysis that the friction coefficient is 0.

Numerical FEM-based analysis is performed (for types A, B and C cross sections) (ABAQUS [19]), as
well as the finite strip method (the case of type A cross section only) and a non-commercial software (CUFSM
[30]). To estimate the critical buckling stresses, both simplified linear (LBA) and complex nonlinear (dynamic,
implicit, quasi-static) procedures are applied.

During the numerical analysis, the members are modelled using shell elements with a reduced integration
type S4R. The main finite element size is 0.002× 0.002m2 (i.e. 160 elements along the type A cross section,
198 elements along the type B cross section and 210 elements along the type C cross section). The total number
of finite elements in all cases equals 32,000 for type A, 39,600 for type B and 42,000 for type C. Figure 5
presents the numerical models, schematic of the FEM mesh, load and imposed boundary conditions.

In the case of axially compressed columns, it is assumed that the load increases in a single step up to 100 N,
and in the case of pure bending, the moment is not greater than 10 Nm.
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Fig. 4 Examples—data. Thin-walled channel members with different flanges shapes: a type A, b type B and c type C

Fig. 5 Three-dimensional FEM models, boundary condition and load diagrams: a axially compressed column and b beam
undergoing pure bending

The main analytical and numerical results are presented in Tables 1, 2, 3, 4, 5 and 6. Tables 1 and 2 show
the results for a standard channel cross section, type A, for axial compression and pure bending, respectively.
Similarly, the results for a type B cross section are presented in Tables 3 and 4, and the type C cross-section
results are presented in Tables 5 and 6. Selected solutions from the tables are also presented in figures (see
Figs. 6, 7, 8, 9, 10) (limited to wall thickness t = 2 mm); they display the relationship between the change in
the form of a kinetic energy vs. critical stress. The analytical solutions sufficiently coincide with the numer-
ical ones (FSM, FEM: LBA or quasi-static) both in linear and nonlinear ranges, in the case of A-type cross
section (standard channel cross section) because the mean variations do not exceed 5% (see Tables 1, 2). In
other cases, i.e. for B- and C-type cross sections (nonstandard channel cross sections) the variations are larger,
about 25% (see Tables 3, 4, 5, 6). These differences result from the modelling assumptions of connection and
interaction between the sheets of flanges. In both analytical approach and FEM (LBA), simplified modelling of
interaction/connection is assumed, with neither displacement nor separation between flange sheets. The ana-
lytical approach assumes a simplified interaction/connection modelling, excluding displacement or separation
between sheets of flanges, unlike the complex approach with normal and tangential interaction, allowing for
the post-contact separation. Selected aspects of the obtained results are presented in the next paragraph.
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Fig. 6 Kinetic energy versus critical buckling stress at linear and nonlinear elastic material—aluminium alloys 5056 and 6081—a
axially compressed column, b beams at pure bending

Fig. 7 Kinetic energy versus critical buckling stress at linear and nonlinear elastic material—aluminium alloys 5056 and 6081—
axially compressed column, a friction coefficient=0, b 1.2

5 Discussion and conclusions

This paper presents numerical and analytical solutions for a local buckling problem of compressed columns and
beams. Numerical quasi-static FEM-based techniques (ABAQUS) are proposed to estimate the critical stresses
for standard and primarily nonstandard cross sections. Furthermore, simplified analytical solutions (closed-
form formulae) and numerical procedures are also introduced. The impact ofmaterial nonlinearity on structural
stability analysis is also emphasised in this paper. Moreover, the difference between the proposed numerical
and analytical approaches is presented. Due to versatility and generality, in the domain of all available stability
analysis techniques [19], attention is paid to the proposed nonlinear implicit dynamic analysis involving a
quasi-static response of systems. Due to the applied approach, unlike, for example, Riks method, a possibility
exists to follow the changes in kinetic energy, what especially important in buckling analysis, because stability
loss is an inherently dynamic phenomenon. Additionally, it should be noted that the basic algorithm of the Riks
method converges with the Newton method. Hence, in numerous material and loading cases, a path-dependent
response is about to come. Thus, the solutions may be affected by an increment size. In contrast to the Riks
method, the energetic approach uniquely determines the value of critical stress and the corresponding mode of
stability loss. Furthermore, equilibrium path can be determined very precisely on the basis of kinetic energy
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Fig. 8 Kinetic energy versus critical buckling stress at linear and nonlinear elastic material—aluminium alloys 5056 and 6081—
beams at pure bending, a friction coefficient=0, b 1.2

Fig. 9 Kinetic energy versus critical buckling stress at linear and nonlinear elastic material—aluminium alloys 5056 and 6081—
axially compressed column, a friction coefficient=0, b 1.2

variation. The recommended dynamic solution technique is undoubtedly useful, relevant in stability analysis
of any linear or nonlinear systems. It seems to be currently the only available accurate method to analyse such
complex phenomena.

To fully confirm the proposed solutions, experimental studies are highly anticipated. Notwithstanding,
the proposed numerical technique is demanding due to computational time. For this reason, some simplified
solutions have been proposed. The proposed closed-form solutions satisfactorily correspond to the numerical
results (in the tables, the comparative solutions are highlighted in italics). The analytical critical stress values
are generally less than the numerical ones, but not always. The differences between solutions are not larger
than 0–40% (please see solutions in Tables 1, 2, 3, 4, 5, 6 for details). The greatest differences appear when the
numerical flange displacements (see Fig. 11) significantly differ from the theoretical assumptions (see Fig. 12).
However, if the cross section is standard or there are no significant displacements between flange sheets, then
the solutions are equal, even in the case of nonstandard cross sections. Note that the analytical solution variant
significantly reduces the working time, which is important from the design perspective.
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Fig. 10 Kinetic energy versus critical buckling stress at linear and nonlinear elastic material—aluminium alloys 5056 and 6081—
beams at pure bending, a friction coefficient=0, b 1.2

Fig. 11 FEMcomplex approach solutions (with normal and tangential interaction and allowing separation after contact)—buckling
modes in the case of type B and C cross sections: a axially compressed columns and b beams undergoing pure bending

The proposed simplifiedmethod of numerical analysis (LBA) incorporating the concept of tangentmodulus
Et (6) is correct only in the cases where the critical buckling stress is significantly less than the yield stress.
Furthermore, the pattern of cross-sectional deformation highly affects the solution. In the simplified numerical
solution, similar to the analytical solution, it is assumed that the flange sheets do not move relative to each
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Fig. 12 Influence of friction coefficient on critical stress expressed by dependence of trend line of critical buckling stress versus
wall thickness in the case of type a B and b C cross sections for axially compressed columns made of nonlinear material at
complex approach of contact
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Fig. 13 Influence of friction coefficient on critical stress expressed by dependence of trend line of critical buckling stress versus
wall thickness in the case of type a B and b C cross sections for beams undergoing pure bending made of nonlinear material at
complex approach of contact

other. Deviations from these assumptions lead to computational errors. This analytical method of analysis is
not demanding due to computational time.

The tested cold-formed thin-walled members are composed of two aluminium alloys. One of the tested
alloys is heat-treated (6081 alloy), whereas the other is not heat-treated (5056 alloy). The stability analysis
of aluminium members is highly sensitive to material nonlinearity in the case of non-heat-treated alloys. The
buckling stresses in the case of non-heat-treated alloys may be significantly lower (in the analysed examples,
the difference did not exceed 42.1%) than in the case not involving nonlinearity of the material (see the results
in Tables 1, 2, 3, 4, 5, 6). From an engineering perspective, neglecting the influence of material nonlinearity
can lead to significant analytical errors.

In the case of nonstandard type B cross section at pure bending, a greater cross-sectional area compared to
the type A channel did not cause the response to improve, which means that the critical stress value was not
higher. This type B cross section led to instability faster than a simple, classic channel cross section (type A).
Note that in the case of cold-formed thin-walled structures, whose prime design direction is the stability loss,
increasing the cross-sectional area is not always safe.

Including the real friction between sheets of flange in the buckling analysis does not have a big impact on
the values of critical buckling stresses. The difference did not exceed 10% (see Figs. 12, 13).

It is unacceptable, however, in the stability analysis to completely disregard the influence of interaction
between the sheets of flange. In the buckling analysis, this impactmust be taken into account; otherwise allowing
the penetration of the sheets of flanges, we will make a major error (even 100% [55]) in the assessment of the
value of buckling stress and of course in the buckling mode.

Furthermore, numerical studies have shown that initial geometric imperfections may significantly impact
stability loss and the critical stress values. Stability analyses of cold-formed thin-walled structures should
take initial geometric imperfections into account. As stated, during numerical research even small initial
imperfections may cause major variations in structural performance. Nevertheless, this issue was deliberately
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omitted at article due to its complexity of problem and volume of the paper. The author, however, feels obliged
to signal the problem at least in the commentary.

Finally, note that the proposed energymethod, despite its disadvantages, allows the critical buckling stresses
to be precisely determined. This method allows precisely following the entire structural performance under an
active load in linear and nonlinear elastic and inelastic ranges.
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