
Selections and approximations of
convex-valued equivariant mappings

Zdzis law Dzedzej∗ and Wojciech Kryszewski†

Keywords: Set-valued mapping, G-space, selection, graph-approximation.

2000 Mathematics Subject Classification: 47H04,54C60,54C65.
Abstract

We present some abstract theorems on the existence of selections and graph-approxima-
tions of set-valued mappings with convex values in the equivariant setting, i.e., maps com-
muting with the action of a compact group. Some known results of the Michael, Browder
and Cellina type are generalized to this context. The equivariant measurable as well as
Carathéodory selection/approximation problems are also studied.

1 Introduction

The purpose of this paper is to collect various results concerning the existence of equivariant
selections and graph-approximations of equivariant set-valued maps with convex values. Most
of them are motivated by possible applications in the fixed point theory and, e.g., the theory
of control and differential inclusions. For instance, if one studies topological invariants for
set-valued maps by elementary approximation methods (see e.g. [20], [26]), all the symmetry
properties of these invariants are immediate consequences of appropriate results for single-
valued maps. The classical Borsuk theorem on a mapping degree may serve as an example.

The paper is organized as follows. In section 2 basic definitions and remarks concerning
group actions, equivariant maps and properties of vector Haar integral are formulated and some
basic examples of equivariant set-valued maps are presented. Section 3 begins with an equiv-
ariant version of Michael’s selection theorem and some of it’s simple consequences. We address
also a less trivial problem of the representation of a set-valued by a sequence of single-valued
continuous and equivariant maps. Besides, we present some other results generalizing [10] and
[14]. In the next section we establish graph-approximation results starting with a version of the
classical theorem of A. Cellina [12] and some of its generalizations. In particular, a constrained
approximation theorem from [7] finds its equivariant version. Relative approximation theorems,
fundamental for the construction of topological invariants as, e.g., a topological degree theory,
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2 Z. Dzedzej, W. Kryszewski

are also proved (comp. [34]). The last section is devoted to measurable and Carathéodory
maps. A version of the classical Kuratowski-Ryll-Nardzewski theorem is obtained and then
several results on Carathéodory selections, representations and approximations are established.
In most of these results we deal with an action of a general compact topological group. We de-
cided to concentrate strictly on abstract selection and approximation theorems and to postpone
some possible and fruitful applications to subsequent papers.

Notation: In the sequel we consider only Hausdorff topological spaces. If X is a topological
space and A ⊂ X, then A denotes the closure of A. If X is a metric space (with the metric de-
noted by d by default), A ⊂ X and ε > 0, then B(A, ε) := {x ∈ X | d(x,A) := infa∈A d(x, a) <
ε}; in particular B(a, ε) is the open ball with radius ε > 0 centered at a ∈ X; moreover let
D(A, ε) := {x ∈ X | d(x,A) 6 ε}. In what follows E denotes a Banach space with the norm
‖ · ‖ over reals or complex numbers and E∗ stands for its topological dual, i.e., the Banach space
of all continuous bounded forms; if p ∈ E∗ and x ∈ E, then 〈p, x〉 := p(x). Note that if A ⊂ E
and ε > 0, then B(A, ε) = A + εB(0, 1) = A + B(0, ε). The convex (resp. closed convex) hull
of A ⊂ E is denoted by convA (resp. convA).

2 Preliminaries

Let G be a group. Recall that a G-set is a pair (X, ξX), where X is a set and ξX : G×X → X
is the action of G on X, i.e., a map such that:

(i) ξX(g1, ξ(g2, x)) = ξX(g1g2, x) for g1, g2 ∈ G and x ∈ X;
(ii) ξX(e, x) = x for x ∈ X, where e ∈ G is the group unit.

In the sequel we write gx instead of ξX(g, x), x ∈ X, g ∈ G, unless it leads to ambiguity.
Given G-sets X and Y , a map f : X → Y is G-equivariant if f(gx) = gf(x) for any x ∈ X

and g ∈ G. If the G-action on Y is trivial (or neglected), then we say that f is G-invariant.
A subset A ⊂ X of a G-set X is G-invariant if gA := {gx | x ∈ A} ⊂ A for all g ∈ G.

The set Gx = G(x) := {gx | g ∈ G} is the orbit through x ∈ X and X/G denotes the set of all
orbits. Observe that if A ⊂ X, then the set GA :=

⋃
x∈AGx =

⋃
g∈G gA is G-invariant.

If G is a topological group, X is a topological space and a G-set, then X is a G-space,
provided the action ξX is (jointly) continuous. We say that a real (resp. complex) Banach
space E is a real (resp. complex) Banach representation of G if E is G-space and, for each
g ∈ G, the map ξE(g, ·) : E 3 x 7→ gx is linear and bounded.

Throughout the whole paper we assume that G is a compact group.

Remark 2.1 (1) Observe that if (E, ‖·‖) is a Banach representation of G, then for each g ∈ G,
ξE(g, ·) is a (topological) isomorphism and, in view of the Banach-Steinhaus theorem, there is
M > 0 such that for all g ∈ G and x ∈ E, M−1‖x‖ 6 ‖gx‖ 6M‖x‖.

(2) If E is a Banach representation of G, then so is the dual E∗. The action of G on E∗ is
defined via conjugation: for g ∈ G and p ∈ E∗, 〈gp, x〉 := 〈p, g−1x〉, x ∈ E.

Let (E, ‖ · ‖) be a Banach space. As G is a compact group, Borel (and, in particular,
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Selections and approximations of convex-valued equivariant mappings 3

continuous) E-valued functions may be integrated over G (see [22] or [21]). More precisely,
it is well-known that there is the Haar measure on G, i.e., a unique normalized regular Borel
measure χ̃ which is G-invariant: for any B ∈ B(G), the σ-algebra of Borel sets in G, g ∈ G,
χ̃(gB) = χ̃(B) = χ̃(Bg) and χ̃(G) = 1. The measure χ̃ admits the completion (or Lebesgue
extension), i.e., if BG denotes the σ-algebra in G generated by sets of the form A = B ∪ N ,
where B ∈ B(G) and N ⊂ C ∈ B(G) with χ̃(C) = 0, then there is a unique complete
measure χ on BG such that χ(B) = χ̃(B) for any B ∈ B(G). It is clear that if A ∈ BG, then
gA,Ag ∈ BG for any g ∈ G and it is easy to see that χ is G-invariant.

The space L1(G,E) of Bochner χ-integrable functions f : G → E is well-defined; recall
that f ∈ L1(G,E) if and only if f : G → E is strongly χ-measurable and ‖f‖L1(G,E) :=∫
G
‖f(g)‖ dχ(g) <∞. In particular, if E is separable, then any bounded χ-measurable map is

integrable (for then f is strongly χ-measurable in view of the Pettis theorem – see [37]). Note
also that any Borel function f : G→ E is χ-measurable, but not conversely.

In what follows we write dg instead of dχ(g). Let us collect the most important properties
of the Haar integral.

Proposition 2.2 (1) For any h ∈ G and f ∈ L1(G,E), maps G 3 g 7→ f(hg), f(gh) are
χ-integrable and ∫

G

f(hg) dg =

∫
G

f(g) dg =

∫
G

f(gh) dg =

∫
G

f(g−1) dg.

(2) The map L1(G,E) 3 f 7→
∫
G
f(g) dg is continuous and linear.

(3) If f ∈ L1(G,E) and f(G) ⊂ A ⊂ E, then
∫
G
f dg ∈ conv(A).

(4) If E is a Banach representation of G, then for any f ∈ L1(G,E) and h ∈ G,∫
G

hf(g) dg = h

∫
G

f(g) dg. �

Remark 2.3 (1) It is clear that C(G,E) ⊂ L1(G,E), where C(G,E) denotes the space of all
continuous maps f : G→ E endowed with the usual sup-norm ‖f‖∞ := supg∈G ‖f(g)‖, and∥∥∥∥∫

G

f dg

∥∥∥∥ 6 ∫
G

‖f‖ dg 6 ‖f‖∞

for any f ∈ C(G,E).
(2) Given a topological space X and f : X×G→ E such that for χ-almost all g ∈ G, f(·, g)

is continuous at a ∈ X, for each x ∈ X, f(x, ·) ∈ L1(G,E) and there is k ∈ L1(G,R) such that
‖f(x, g)‖ 6 k(g) for χ-almost all g ∈ G and x from a neighborhood of a, then F : X → E
given for x ∈ X by F (x) :=

∫
G
f(x, g) dg is continuous at a. In particular if f : X ×G→ E is

continuous, then F is continuous.
(3) If X is a metric space, f(·, g), g ∈ G, is locally Lipschitz (i.e., for any x0 ∈ X there are

a neighborhood V and L ∈ L1(G,R) such that ‖f(x, g) − f(y, g)‖ 6 L(g)d(x, y) for x, y ∈ V
and g ∈ G) and f(x, ·) ∈ L1(G,E) for x ∈ X, then F =

∫
G
f(·, g) dg is locally Lipschitz.

(4) If E is a Banach representation of G, then one can define a norm ‖ · ‖G on E such that
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4 Z. Dzedzej, W. Kryszewski

the action of G on E is isometric, i.e., ‖gx‖G = ‖x‖G for all g ∈ G and x ∈ E. Indeed it is
sufficient to put

‖x‖G :=

∫
G

‖gx‖ dg, x ∈ E.

This new norm is complete since it is equivalent to the original norm ‖ · ‖ in E: precisely, in
view of Remark 2.1 (1),

M−1‖x‖ 6 ‖x‖G 6M‖x‖, x ∈ E.

(5) Suppose that (X, d) is a metric G-space and let dG(x, y) :=
∫
G
d(gx, gy) dg for x, y ∈ X.

This definition is correct and it is easy to see that dG is a G-invariant metric on X. Moreover
metrics dG and d are equivalent (i.e., they introduce the same topology in X). To see this fix
a sequence (xn)∞n=1 in X. Assume that xn → x ∈ X. It is clear that there is m > 0 such that
supn∈N, g∈G d(gxn, gx) 6 m. For all g ∈ G, d(gxn, gx) → 0; hence by the Lebesgue theorem
dG(xn, x) =

∫
G
d(gxn, gx) dg → 0. Conversely if dG(xn, x) → 0, then fn(g) := d(gxn, gx),

g ∈ G, converges to 0 in L1(G,R). Thus there is a subsequence (fnk
)∞k=1 converging almost

everywhere on G to 0; but this implies that xnk
→ x and, finally, it shows that any subsequence

of (xn) has a subsequence converging to x, i.e., xn → x. Unfortunately metrics d and dG are
not, in general, uniformly equivalent and, hence, (X, dG) may not be complete even if so is
(X, d).

Set-valued maps are the main object of our studies. Recall that given sets X and Y , a
set-valued map ϕ from X into Y (written ϕ : X ( Y ) is a map that assigns to each x ∈ X
the value ϕ(x) being a nonempty subset of Y . If X and Y are topological spaces and, for any
closed (resp. open) set U ⊂ Y , the preimage ϕ−1(U) := {x ∈ X | ϕ(x)∩U 6= ∅} is closed (resp.
open), then we say that ϕ is upper (resp. lower) semicontinuous; ϕ is continuous if it is upper
and lower semicontinuous simultaneously.

If Y is a metric space, then ϕ : X ( Y is lower semicontinuous if and only if for any
y ∈ Y the function X 3 x 7→ d(y, ϕ(x)) := infz∈ϕ(x) d(y, z) is upper semicontinuous (as a real
function) or, equivalently, given x0 ∈ X and y0 ∈ ϕ(x0), limx→x0 d(y0, ϕ(x)) = 0.

A similar characterization of upper semicontinuity is not true, i.e., the lower semicontinuity
of d : X 3 x 7→ d(y, ϕ(x)) ∈ R does not imply in general that ϕ is upper semicontinuous.
However if ϕ has closed values, is locally compact, i.e., each point x ∈ X has a neighborhood U
such that ϕ(U) is compact, and d is lower semicontinuous, then ϕ is upper semicontinuous (with
compact values). The graph Gr(ϕ) := {(x, y) ∈ X × Y | y ∈ ϕ(x)} of an upper semicontinuous
map ϕ with closed values is closed; ϕ : X ( Y is upper semicontinuous with compact values if
and only if the projection Gr(ϕ) → X is perfect (1). We say that a map ϕ is compact if it is
upper semicontinuous and the closure of the image ϕ(X) :=

⋃
x∈X ϕ(x) is compact. For other

details on set-valued maps – see [20], [8] or [23].

Remark 2.4 If X is a G-space, then the orbit map ϕ : X ( X given by ϕ(x) := Gx is
continuous with compact values; if X is compact, then ϕ is compact. In particular, if A ⊂ X is
G-invariant and U is an open neighborhood of A, then there is an open neighborhood V of A

1Recall that a continuous map f : X → Y is perfect if it is closed and f−1(y) is compact for any y ∈ Y .
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Selections and approximations of convex-valued equivariant mappings 5

such that GV ⊂ U . Indeed, the upper semicontinuity of ϕ implies that V := {x ∈ X | ϕ(x) ⊂
U} = X \ ϕ−1(X \ U) fulfils the requirements.

In what follows we shall study G-equivariant set-valued maps.

Definition 2.5 Let X and Y be G-sets. A set-valued map ϕ : X ( Y is G-equivariant (resp.
G-invariant) if ϕ(gx) = gϕ(x) (resp. ϕ(gx) = ϕ(x)) for all g ∈ G and x ∈ X.

Note that ϕ is G-equivariant if and only if ϕ(gx) ⊂ gϕ(x) for all g ∈ G and x ∈ X (or
gϕ(x) ⊂ ϕ(gx) for all g ∈ G and x ∈ X). Moreover it is easy to see that ϕ is G-equivariant if and
only if its graph Gr(F ) is a G-invariant subset of X×Y with a natural action g(x, y) := (gx, gy),
x ∈ X, y ∈ Y . Observe that if ϕ : X ( Y , where Y is a topological space, is G-equivariant,
then so is its closure, i.e., the map ϕ : X ( Y given by ϕ(x) := ϕ(x), x ∈ X.

Let us collect some simple examples of G-equivariant set-valued maps.

Example 2.6 (1)(A marginal map, see [4]) Let X, Y be two G-spaces, H : Y ( X a G-
equivariant map with compact values and W : X × Y → R a continuous G-invariant map, i.e.,
W (gx, gy) = W (x, y) for all g ∈ G, x ∈ X, y ∈ Y . Then a marginal map M : Y ( X defined
by

M(y) := {x ∈ H(y)| W (x, y) = inf
x∈H(y)

W (x, y)}.

is considered in many optimization problems. ClearlyM isG-equivariant because of the equality
infx∈H(y) W (x, y) = infgx∈H(gy)W (gx, gy).

(2) Let ϕ : [0, T ] × U ( E, where T > 0 and U ⊂ E is an open G-invariant subset of
a Banach G-representation E, be G-equivariant, i.e., ϕ(t, gx) = gϕ(t, x) for 0 6 t 6 T and
x ∈ U . Consider a differential inclusion (under suitable assumptions assuring the existence of
solutions): {

x′(t) ∈ ϕ(t, x(t))
x(0) = x0.

Consider the space C([0, T ],E) of continuous maps [0, T ] → E with the G-action defined by
(g, x) 7→ gx, where (gx)(t) := g(x(t)) for x ∈ C([0, T ],E), g ∈ G and t ∈ [0, T ]. If x : [0, T ]→ E
is a solution to the above problem, i.e., there is an integrable y : [0, T ] → E such that x(t) =
x0 +

∫ t
0
y(s) ds, t ∈ [0, T ], then gx is also a solution to this problem with the initial condition

gx0. Therefore, the solution map P : U ( C([0, T ],E), that assigns to each initial value x0 ∈ U
the set of all solutions, is G-equivariant, whenever well-defined.

(3) Let f : E → R ∪ {∞}, where E is a real Banach representation of G, be a convex
function. For each x0 ∈ dom(f) := {x ∈ E | f(x) <∞} the subdifferential

∂f(x0) := {p ∈ E∗ | f(x) > f(x0) + 〈p, x− x0〉 for all x ∈ E}

is defined. Let f be G-invariant. Then the map ∂f : dom(f) ( E∗ is G-equivariant. Clearly
dom(f) is invariant and if p ∈ ∂f(x0), then for all x ∈ E, 〈p, x− x0〉 6 f(x)− f(x0). Hence

〈gp, x− gx0〉 = 〈p, g−1x− x0〉 6 f(g−1x)− f(x0) = f(x)− f(gx0),
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6 Z. Dzedzej, W. Kryszewski

which gives the assertion. In a similar manner one shows that the Clarke generalized gradient
∂f : U → E∗, where U is a G-invariant open in E and f : U → R is a G-invariant locally
Lipschitz function, is G-equivariant.

(5) Let E be a Banach representation of G and K ⊂ E be closed G-invariant. For x ∈ K
the Bouligand cone is defined

TK(x) := lim sup
h↓0

K − x
h

.

Then v ∈ TK(x) ⇐⇒ gv ∈ TK(g(x)). Therefore the map TK : K ( E is G-equivariant. The
same is true for other types of ‘tangent’ or ‘normal’ cones, e.g. the Clarke tangent or normal
cones:

CK(x) := lim inf
y
K→x,h→0+

K − y
h

; NK(x) := {p ∈ E∗ | 〈p, v〉 6 0 for all v ∈ CK(x)}, x ∈ K.

(6) Let E be an isometric Banach representation of G, K be a closed convex G-invariant
subset of E and let ε : E → R be continuous G-invariant and such that ε(x) > d(x,K) for
x 6∈ K. It is easy to show that ϕ : E( E, given by ϕ(x) := D(x, ε(x)) ∩K for x ∈ E, is lower
semicontinuous, G-equivariant and has closed convex values.

3 Equivariant selections and ε-selections

Recall that given sets X and Y , a map f : X → Y is a selection of a set-valued ϕ : X ( Y
if f(x) ∈ ϕ(x) for each x ∈ X. It is clear that the axiom of choice implies the existence of
selections.

Remark 3.1 (1) The equivariant situation is not that obvious. Let X and Y be G-sets and
ϕ : X ( Y be G-equivariant. If f : X → Y is a G-equivariant selection of ϕ and x ∈ X,
then Gx ⊂ Gf(x), where Gz := {g ∈ G | gz = z} is the stabilizer of z ∈ X, and therefore
f(x) ∈ ϕ(x)∩Y Gx , where Y Gx := {y ∈ Y | Gx ⊂ Gy}. On the other hand if ϕ(x)∩Y Gx 6= ∅ for
all x ∈ X, then there is a G-equivariant selection f of ϕ. To see this it is sufficient to define f
on any orbit O ∈ X/G. Choose x0 ∈ O and y0 ∈ ϕ(x0)∩ Y Gx0 ; if g ∈ G, we put f(gx0) := gy0.
Then f : O → Y is correctly defined and G-equivariant selection of ϕ restricted to O.

(2) If E is a Banach representation of G, X is a G-set and ϕ : X ( E is G-equivariant
with convex closed values, then ϕ(x) ∩ EGx 6= ∅ for all x ∈ X. Indeed, take x ∈ X, y ∈ ϕ(x)
and let z :=

∫
Gx
gy dχx(g), where χx is the Haar measure on the (compact) group Gx. For any

g ∈ Gx, gy ∈ ϕ(gx) = ϕ(x); hence z ∈ ϕ(x) in view of Proposition 2.2 (3). On the other hand,
in view of Proposition 2.2 (4), (1), for all h ∈ Gx, hz =

∫
Gx
hgy dg = z, i.e., Gx ⊂ Gz and

z ∈ ϕ(x) ∩ EGx . This explains why the problem of the existence of selections of convex-valued
maps is well-posed without any additional assumptions.

Here we shall study the existence of continuous selections. Suppose that X is a G-space, E
is a Banach representation of G and let ϕ : X ( E be a G-equivariant set-valued map. Given
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Selections and approximations of convex-valued equivariant mappings 7

f : X → E define a symmetrization of f by

(1) F (x) :=

∫
G

g−1f(gx) dg =

∫
G

gf(g−1x) dg, x ∈ X,

provided that for each x ∈ X the integral exists, i.e., the function G 3 g 7→ g−1f(gx) is
integrable. Then, in view of Proposition 2.2 (1), (4), it is easy to see that F is G-equivariant.
If f is a selection of a G-equivariant set-valued ϕ : X ( E having closed convex values, then
in view of Proposition 2.2 (3) for all g ∈ G and x ∈ X, g−1f(gx) ∈ g−1ϕ(gx) = ϕ(x); hence,
F (x) ∈ conv{g−1f(gx); g ∈ G} ⊂ ϕ(x).

If, for example, X is a G-space and f is continuous, then the map X × G 3 (x, g) 7→
g−1f(gx) ∈ E is continuous and F is well-defined and continuous by Remark 2.3 (2). Therefore
we have the following equivariant version of the celebrated Michael theorem [31].

Theorem 3.2 (comp. [1]) Let X be a paracompact G-space, E a Banach G-representation
and let ϕ : X ( E be a G-equivariant (resp. G-invariant) lower semicontinuous set-valued
map with closed convex values. Then ϕ admits a G-equivariant (resp. G-invariant) continuous
selection.

Proof: In view of the Michael theorem [31], ϕ has a continuous selection f : X → E; therefore
F , given by (1), is a continuous equivariant selection of ϕ. �

Let us derive some simple and immediate but useful consequences of Theorem 3.2.

Corollary 3.3 Any partial continuous G-equivariant selection of ϕ may be extended to a G-
equivariant selection. Precisely, under the assumptions of Theorem 3.2, given a closed G-
invariant set A ⊂ X and a continuous G-map f : A → E such that f(x) ∈ ϕ(x) for x ∈ A,
there is a continuous G-equivariant selection F of ϕ such that F |A = f .

Proof: It is sufficient to take F as a continuous G-equivariant selection of a lower semicontinuous
and G-equivariant set-valued map ϕA : X ( E defined for x ∈ X by

ϕA(x) :=

{
f(x) if x ∈ A;
ϕ(x) if x 6∈ A. �

In a similar manner one can prove the following version of the Tietze-Gleason theorem (the
equivariant counterpart of the Tietze-Dugundji extension theorem).

Corollary 3.4 If X is a paracompact space and E is a Banach representation of G, then any
continuous G-map f : A→ E admits a continuous G-equivariant extension over X, i.e., there
is a G-map F : X → E such that F |A = f .

Proof: It is sufficient to take a continuous G-equivariant selection F of the lower semicontinuous
G-equivariant set-valued map ϕ : X ( E with closed convex values defined for x ∈ X by

ϕ(x) :=

{
f(x) if x ∈ A;
E if x 6∈ A. �
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8 Z. Dzedzej, W. Kryszewski

The following geometric consequence of Theorem 3.2 might be also very useful for applica-
tions (comp. [25], Theorem 1.3).

Corollary 3.5 Let E be an isometric Banach representation of G, K a closed convex G-
invariant subset in E. Then, for any ε > 0 there is a G-equivariant ‘almost orthogonal’
retraction r : E→ K, i.e., such that ‖r(x)− x‖ 6 (1 + ε)d(x,K) for x ∈ E.

Proof: Let ϕ(x) := D(x, (1 + ε)d(x,K))∩K for x ∈ K. In view of Example 2.6 (6), ϕ : E( E
is lower semicontinuous, G-equivariant with closed convex values. Taking r : E → E as its
continuous G-equivariant selection we see that r(x) ∈ K for x ∈ E and r(x) = x if x ∈ K. �

An equivariant version of Bartle-Graves [6] is also easy.

Corollary 3.6 Let E,F be Banach representations of G and L : E → F a linear bounded
surjective and G-equivariant operator. Then there exists a continuous G-equivariant map f :
F→ E such that L(f(x)) = x for x ∈ F and f(0) = 0.

Proof: Consider a map ϕ : F ( E given by ϕ(x) = L−1(x). It has convex closed values and
by the Banach theorem for every open U ⊂ E ϕ−1(U) = L(U) is open in F. Thus ϕ is lower
semicontinuous and it is obviously G-equivariant. By Theorem 3.2, ϕ admits a G-equivariant
continuous selection h : F→ E. Then f(x) = g(x)− g(0) is the desired G-equivariant map. �

It is well-known that if X is paracompact, E is a Banach space and ϕ : X ( E is lower
semicontinuous with closed convex values, x ∈ X and y ∈ ϕ(x), then there is a continuous
selection f : X → E of ϕ such that f(x) = y. In the equivariant case it is not necessarily so.
However we have the following result.

Proposition 3.7 Under the assumptions of Theorem 3.2, if x ∈ X and y ∈ ϕ(x) ∩ EGx, then
there is a continuous G-equivariant selection of ϕ such that f(x) = y.

Proof: Consider the G-equivariant homeomorphism αx : G/Gx → G(x) that assigns to a coset
gGx, g ∈ G, the point gx ∈ G(x) (see [9, Proposition I.4.1] or [15, Proposition I.3.19 (iii)]). Since
Gx ⊂ Gy, there is a continuous G-equivariant map k : G/Gx → G/Gy given by k(gGx) := gGy,

g ∈ G. Finally take βy : G/Gy → G(y) (defined as α above) and let f̃ : G(x) → G(y) will be

given by f̃(z) = βy ◦k◦α−1
x (z) for z ∈ G(x). Then f̃ is continuous, G-equivariant and f̃(x) = y;

hence f̃ is a selection of ϕ|A, where A = G(x) is G-invariant. In view of Corollary 3.3, there is

a continuous G-equivariant extension f of f̃ being the required selection of ϕ. �

Remark 3.8 (1) Assume that X is a paracompact perfectly normal space (i.e., each open set
is Fσ), E is a separable Banach space and let ϕ : X ( E be lower semicontinuous with closed
convex values. As observed by Michael in [31, Lemma 5.2] (see also [23, Proposition 1.4.9]),
there is a sequence fn : X → E of continuous maps such that

(2) ϕ(x) = {fn(x)}∞n=1 for any x ∈ X.
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Selections and approximations of convex-valued equivariant mappings 9

In general, there is no equivariant counterpart of this result. Suppose that X is additionally a
G-space, E is a Banach representation of G, ϕ is G-equivariant and a sequence {fn}, consisting
of G-equivariant maps, satisfying (2) exists and take x ∈ X. Then, for any n > 1, the stabilizer
Gx := {g ∈ G | gx = x} of x is contained in the stabilizer Gfn(x). Therefore fn(x) ∈ EGx and,
hence,

(3) ϕ(x) ⊂ EGx := {y ∈ E | Gx ⊂ Gy},

since EGx is closed. For example if ϕ : R( R is given by ϕ(x) := [−1, 1], x ∈ X, and on R we
consider the usual antipodal action of G = Z2, then ϕ is Z2-equivariant but it does not have
the discussed property since ϕ(x) 6⊂ RGx for x = 0.

(2) If X is a G-set, Y is a separable metric G-space, ϕ : X ( Y is G-equivariant with
closed values and ϕ(x) ⊂ Y Gx , then there is a sequence of G-equivariant maps fn : X → Y
such that ϕ(x) = {fn(x)}∞n=1 on X. Indeed, again it is enough to construct fn on each orbit
O ∈ X/G. Take x0 ∈ O and choose a dense set {yn}∞n=1 in ϕ(x0) (observe that ϕ(x0), as a
closed subspace of the separable metric space Y , is separable itself). As in Remark 3.1 (1) we
construct a selection fn : O → Y such that fn(x0) = yn. It is clear that fn, n ∈ N, satisfies the
required property.

It seems that condition (3) is not only necessary but also sufficient in the continuous situa-
tion; however the authors do not know the proof of this general statement. Nevertheless under
some additional conditions the following holds.

Theorem 3.9 Assume that G is a compact Lie group, X is a separable metric G-space, E is a
separable Banach representation of G and ϕ : X ( E is a G-equivariant lower semicontinuous
map with closed convex values such that, for each x ∈ X, ϕ(x) ⊂ EGx. Then there is a
sequence of continuous G-equivariant maps fn : X → E, n ∈ N, such that for all x ∈ X,
ϕ(x) = {fn(x)}∞n=1.

Before we enter the proof let us recall the celebrated Mostow theorem (see e.g. [9, Theorem
II.5.4]): If G is a compact Lie group, X is a completely regular G-space, then given x ∈ X there
is a G-tube around the orbit G(x), i.e., there is a pair (T, r), where T is an open G-invariant
neighborhood of G(x) and r : T → G(x) is a continuous G-equivariant retraction.

Proof: We shall proceed in three steps.

Claim 1. Let Φ(x) := EGx , x ∈ X. Then Φ : X ( E is G-equivariant lower semicontinuous
with closed convex values.

Indeed, for any x ∈ X, Φ(x) =
⋂
g∈Gx

ker(g−I) (here, given g ∈ G, the map E 3 y 7→ gy ∈ E
is a linear bounded operator and I stands for the identity on E). Hence Φ has closed convex
values. To show that Φ is lower semicontinuous take a closed set C ⊂ E and let D := {x ∈ X |
Φ(x) ⊂ C}. In order to show that D is closed take a sequence xn ∈ D, xn → x and let y ∈ Φ(x).
Take a tube (T, r) around G(x). Without loss of generality we may assume that xn ∈ T for all
n ∈ N. Therefore r(xn) ∈ G(x) and Gxn ⊂ Gr(xn) for all n ∈ N. For any n ∈ N, r(xn) = gnx,
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10 Z. Dzedzej, W. Kryszewski

where gn ∈ G, and Gr(xn) = Ggnx = gnGxg
−1
n . The compactness of G implies that, passing to

a subsequence if necessary, gn → g ∈ G as n → ∞ (recall that G, as a compact Lie group, is
metrizable). Hence gnx → gx; on the other hand gnx = r(xn) → r(x) = x, i.e., g ∈ Gx ⊂ Gy.
Let yn := gny; then yn → gy = y. Now Gxn ⊂ Gr(xn) = gnGxg

−1
n ⊂ gnGyg

−1
n = Ggny = Gyn .

Thus yn ∈ Φ(xn) ⊂ C and y ∈ C, so x ∈ D.

Claim 2. There is a countable family {fα : X → E}α∈A of continuous G-equivariant maps such
that, for each x ∈ X, {fα(x)}α∈A = Φ(x), where Φ was defined in Claim 1.

Let {yn}∞n=1 be a dense countable subset of E. For any n,m ∈ N, let

Unm := Φ−1(B(yn, 2
−m)).

Lower semicontinuity of Φ implies that Unm is open. Let x ∈ Unm and take yx ∈ Φ(x) ∩
B(yn, 2

−m). In view of Proposition 3.7, there is a G-equivariant selection kx,yx : G(x) → G(y)
of Φ|G(x) while, in view of the Mostow theorem there is a tube (Tx, rx) around the orbit G(x).
Let

Vnm(x) := Unm ∩ (kx,yx ◦ rx)−1(B(yn, 2
−m)).

It is clear that Vnm(x) is an open neighborhood of x. The separability of X (and of Unm as a
separable subspace of X) implies that there is a countable family {xinm} ⊂ Unm such that

Unm =
∞⋃
i=1

V i
nm,

where V i
nm := Vnm(xinm). For any i, n,m > 1, let T inm := Txinm

. It is easy to see that there
is a family {T iknm}∞k=1 of closed G-invariant sets such that G(xinm) ⊂ T iknm for all k > 1 and⋃∞
k=1 T

ik
nm = T inm.

For any i, n,m > 1, let rinm := rxinm
, yinm := yxinm

, kinm := kxinm,yxinm
and let f̃ iknm : T iknm →

G(yinm) be given by

f̃ iknm = kinm ◦ (rinm|T ik
nm

).

If x ∈ T iknm and y ∈ Φ(rinm(x)), thenGy ⊃ Grinm(x) ⊃ Gx, i.e., y ∈ Φ(x). Moreover kinm(rinm(x)) ⊂
Φ(rinm(x)) ⊂ Φ(x). In other words f̃ ik is a G-equivariant selection of Φ|T ik

nm
.

In view of Corollary 3.3, f̃ iknm has an extension to an equivariant selection f iknm : X → E
of Φ. We claim that the family {f iknm}∞i,k,n,m=1 satisfies our requirements. Indeed take x ∈ X,
y ∈ Φ(x) and ε > 0. Let m > 1 be such that 2−m+1 < ε. There is n > 1 such that
y ∈ B(yn, 2

−m). Hence x ∈ Unm and there is i ∈ N such that x ∈ V i
nm. Hence x ∈ T inm and

x ∈ T iknm for some k > 1. Then f iknm(x) = f̃ iknm(x) ∈ Φ(x) and ‖f̃ iknm(x)− yn‖ < 2−m. Therefore
‖f iknm − y‖ < 2 · 2−m = 2−m+1 < ε. This completes the proof of Claim 2.

Now we pass to the proof of our assertion. Without loss of generality we may assume that
E is an isometric Banach representation of G (see Remark 2.3 (4)). Let {fn}∞n=1 be a sequence
of continuous G-equivariant maps such that {fn(x)}∞n=1 = EGx for all x ∈ E existing in view of
Claim 2. Given n,m > 1, let

Wnm := {x ∈ X | ϕ(x) ∩B(fn(x), 2−m) 6= ∅}.
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Selections and approximations of convex-valued equivariant mappings 11

The lower semicontinuity of ϕ implies that Wnm is open; moreover it is easy to see that Wnm

is G-invariant and there is a family of G-invariant closed sets Ck
nm such that

⋃∞
k=1C

k
nm = Wnm.

For any n,m > 1 such that Wnm 6= ∅ and k > 1 let us define ϕknm : X ( E by

ϕknm(x) :=

{
ϕ(x) if x ∈ X \ Ck

nm;
ϕ(x) ∩D(fn(x), 2−m) if x ∈ Ck

nm.

It is standard to check that ϕknm is G-equivariant lower semicontinuous with closed convex
values. Therefore, for all n,m and k, there is a G-equivariant selection fknm : X → E of ϕknm.

The family {fknm}n,m,k>1 is a desired one. Indeed take x ∈ X, y ∈ ϕ(x) ⊂ EGx , ε > 0 and
m ∈ N such that 2−m+2 < ε. There is n ∈ N such that ‖fn(x) − y‖ < 2−m. Hence x ∈ Wnm

and x ∈ Ck
nm for some k > 1. Thus ‖fknm − fn(x)‖ 6 2−m < 2−m+1, i.e., ‖fknm(x) − y‖ <

2−m+1 + 2−m < 2−m+2 < ε. �

Remark 3.10 If ϕ has closed convex values and has open fibers, i.e., for each y ∈ E, the
preimage ϕ−1(y) is open, then ϕ is lower semicontinuous and the assertion of Theorem 3.2 follows
(this may be considered as an equivariant version of the Browder theorem [10]). Suppose now
that E is a finite-dimensional representation of G. If a G-equivariant ϕ : X → E has convex
values (not necessarily closed) and open fibers, then it admits a continuous G-equivariant
selection. Indeed, let {ps}s∈S be a partition of unity subordinate to the open cover {ϕ−1(y)}y∈Y ,
i.e., for each s ∈ S, supp ps ⊂ ϕ−1(ys)), where ys ∈ E. Let f(x) :=

∑
s∈S ps(x)ys and F (x) :=∫

G
g−1f(gx) dg for x ∈ X; then f : X → E is a continuous selection of ϕ, F is equivariant and

for each x ∈ X, the integrand is contained in the compact set Z := {g−1f(gx) | g ∈ G} ⊂ ϕ(x).
Therefore F (x) ∈ convZ = convZ ⊂ ϕ(x) since E is finite-dimensional.

In what follows we study the existence of G-equivariant ε-selections.

Definition 3.11 Let X be a set and Y a metric space. If ε : X → (0,+∞), then a map
f : X → Y is an almost selection of ϕ : X ( Y , precisely an ε-selection, if d(f(x), ϕ(x)) :=
infy∈ϕ(x) d(f(x), y) < ε(x) for all x ∈ X.

It was proved by Deutsch and Kenderov [14] that ϕ : X ( Y , where X is a topological
space and Y is metric, has an ε-selection for any (constant) ε > 0 if and only if ϕ is sub-lower
semicontinuous in the following sense: for any x ∈ X and ε > 0 there is a neighborhood V of
x such that

⋂
y∈V B(ϕ(y), ε) 6= ∅. It is immediate to see that lower semicontinuous set-valued

maps are sub-lower semicontinuous.

Theorem 3.12 Let X be a paracompact G-space, E a Banach representation of G. If ϕ : X (
E is a G-equivariant sub-lower semicontinuous map with convex values, then for any continuous
ε : X → (0,+∞) there exists a G-equivariant continuous ε-selection F : X → E.

Proof: For any x ∈ X, there is a neighborhood Vx of x and yx ∈ ϕ(x) such that yx ∈
B(ϕ(y), ε(x)/4M) for all y ∈ Vx, where M is taken from Remark 2.1. Let Ux := Vx ∩
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12 Z. Dzedzej, W. Kryszewski

ε−1((ε(x)/2,+∞)). Then Ux is an open neighborhood of x. Let {ps}s∈S be a partition of
unity subordinate to the open cover {Ux}x∈X , i.e., for any s ∈ S there is xs ∈ X such that
supp ps ⊂ Uxs . Let ys := yxs and

f(x) :=
∑
s∈S

ps(x)ys, x ∈ X.

Then f is continuous and for x ∈ X if ps(x) 6= 0, then x ∈ Uxs , ys ∈ B(ϕ(x), ε(xs)/2) and
ε(xs)/2 < 2ε(x). Choose y′s ∈ ϕ(x) such that ‖ys − y′s‖ < ε(xs)/4M < ε(x)/2M . Hence

d(f(x), ϕ(x)) 6

∥∥∥∥∥f(x)−
∑
s∈S

ps(x)y′s

∥∥∥∥∥ 6∑
s∈S

ps(x)‖ys − y′s‖ < ε(x)/2M.

Let, as above,

F (x) :=

∫
G

g−1f(gx) dg, x ∈ X.

For any x ∈ X and g ∈ G,

d(g−1f(gx), ϕ(x)) 6Md(f(gx), ϕ(gx)) < ε(x)/2;

therefore F (x) ∈ D(ϕ(x), ε(x)/2) ⊂ B(ϕ(x), ε(x)). �

4 Graph approximations

It is well-known that, in general, upper semicontinuous set-valued maps do not have continuous
selections. Nevertheless they often do have graph-approximations.

Definition 4.1 Let X, Y be topological spaces, ϕ : X ( Y and let U be a neighborhood of
Gr(ϕ) in X × Y . A map f : X → Y is a U-graph-approximation (or, simply, U -approximation)
of ϕ if Gr(f) ⊂ U .

IfX and Y are metric spaces and ε : X → (0,+∞), then f : X → Y is an ε-approximation of
ϕ if, for each x ∈ X, d((x, f(x)),Gr(ϕ)) < ε(x) (2) or, equivalently, f(x) ∈ B(ϕ(B(x, ε(x))), ε(x))
for all x ∈ X.

Remark 4.2 (1) Let X, Y be metric spaces. It is easy to see that if ε : X → (0,+∞) is
continuous, then there is a neighborhood U(ε) of Gr(ϕ) such that any U(ε)-approximation of
ϕ is an ε-approximation. To this end it is sufficient to take

U(ε) :=
⋃

(x,y)∈Gr(ϕ)

[ε−1((ε(x)/2,+∞)) ∩B(x, ε(x)/2)]×B(y, ε(x)/2) =

⋃
x∈X

[ε−1((ε(x)/2,+∞)) ∩B(x, ε(x)/2)]×B(ϕ(x), ε(x)/2).

2On the product X × Y the max-metric is considered, i.e. d((x, y), (x′, y′)) := max{dX(x, x′), dY (y, y′)} for
any (x, y), (x′, y′) ∈ X × Y .
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Selections and approximations of convex-valued equivariant mappings 13

Conversely if ϕ is upper semicontinuous with compact values, then for any neighborhood U
of Gr(ϕ) there is a continuous ε : X → (0,+∞) such that any ε-approximation of ϕ is a U -
approximation.

(2) Let X be a paracompact space. It may be easily shown that if ϕ is lower semicontinuous
with compact values, then for a continuous ε : X → (0,+∞) there is a neighborhood U of Gr(ϕ)
such that every U -approximation of ϕ is an ε-selection. Conversely, if ϕ is upper semicontinuous
with compact values, then given a neighborhood U of Gr(ϕ) there is a continuous ε : X →
(0,+∞) such that an ε-selection of ϕ is a U -approximation.

(3) On many occasions, especially those involving compactness, it is sufficient to consider
ε-approximations with constant ε > 0. However, apart from the situation when X or Y are not
metrizable (and the notion of ε-approximation makes no sense), general graph-approximations
play an important role. To see this observe, for instance, that if h : Y → Z, where Z is a
topological space, is continuous and ϕ admits arbitrarily close graph-approximations, then so
does the composition h ◦ ϕ. Indeed, given a neighborhood U of Gr(h ◦ ϕ) let V := H−1(U),
where H(x, y) := (x, h(y)) for (x, y) ∈ X × Y . Then V is a neighborhood of Gr(ϕ) and h ◦ f is
a U -approximation of h ◦ ϕ provided f : X → Y is a V-approximation of ϕ.

When studying the existence of continuous U -approximations one has to observe that it
is necessary to restrict the choice of U even when a map ϕ has closed convex values. To see
this consider ϕ : [0,+∞) ( R given by ϕ(x) = 1

x
for x > 0 and ϕ(0) = [0,+∞). Then

ϕ is upper semicontinuous with closed convex values. However ϕ does not admit continuous
U -approximations, where

(4) U := {(x, y) ∈ [0,+∞)× R | 1/2 < xy < 2 or 3xy < 1}.

Definition 4.3 Let X be a topological space and E a Banach space. A neighborhood U of the
graph of ϕ : X ( E is thick if for any x ∈ X there are a neighborhood Ux of x in X and a
convex neighborhood Vx of ϕ(x) such that Ux × V x ⊂ U .

Remark 4.4 (a) IfX is a metric space, ϕ has convex values and ε : X → (0,+∞) is continuous,
then U(ε) defined in Remark 4.2 (1) is thick.

(b) If ϕ has compact convex values, then any neighborhood U of Gr(ϕ) is thick.
(c) If ϕ has convex values (not necessarily compact), then there are neighborhoods without

the thickness property: see the above example (4).
(d) If in Remark 4.2 (2), ϕ is upper semicontinuous (not necessarily compact-valued) and

U is thick, then there is a continuous ε > 0 such that an ε-selection is a U -approximation of ϕ.

The problem of the existence of equivariant graph-approximations is not that easy unless
some additional, rather restrictive, assumptions are undertaken since, unlike selections, the
symmetrization of a graph-approximation is G-equivariant but, in general, it is no longer a
desired graph-approximation.

Below we provide a rather detailed discussion of this apparently important question and
study the equivariant approximability with no additional conditions concerning, e.g., the action
of G on X.
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14 Z. Dzedzej, W. Kryszewski

First let us collect some useful facts concerning open coverings of G-spaces – see [32].

Definition 4.5 Let X be a G-space. A covering W = {Wλ}λ∈Λ of X is G-invariant if, for each
λ ∈ Λ, Wλ is G-invariant. We say that W is a G-covering if Λ is a G-set and gWλ = Wgλ (and
thus gWλ ∈ W ) for all λ ∈ Λ and g ∈ G.

If W = {Wλ}λ∈Λ is a G-covering, then the saturation W̃ = {W̃α :=
⋃
λ∈αWλ}α∈Λ/G, is a

G-invariant covering. Note that W̃α = GWλ, where λ is an arbitrary element of α ∈ Λ/G.
Conversely a G-invariant covering W is a G-covering (it is sufficient to consider the trivial

action of G on the index set Λ) and W̃ = W .

Proposition 4.6 Let X be a G-space and U = {Uλ}λ∈Λ be an open locally finite covering of X.
Then any x ∈ X has an open G-invariant neighborhood V such that the set {λ ∈ Λ | Uλ∩V 6= ∅}
is finite; hence the covering {GUλ}λ∈Λ is open G-invariant and locally finite.

Assume that X is a paracompact G-space. Then:
(1) any open covering U of X admits an open G-covering W = {Wλ}λ∈Λ star-refining U ,

i.e., for each λ ∈ Λ, there is U ∈ U such that st(Wλ,W ) :=
⋃
{W ∈ W | W ∩Wλ 6= ∅} ⊂ U ;

(2) any open G-covering U of X admits an open G-covering W refining U with the locally

finite saturation W̃ ;
(3) for every open G-invariant covering U = {Uλ}λ∈Λ there is a partition of unity {pλ}λ∈Λ

such that pλ is G-invariant and supp pλ := {x ∈ X | pλ(x) 6= 0} ⊂ Uλ for every λ ∈ Λ. �

Theorem 4.7 Suppose that X is a paracompact G-space, E is a Banach representation of G
and let ϕ : X ( E be an upper semicontinuous G-equivariant map. If U is a thick neighborhood
of Gr(ϕ), then there exists a continuous G-equivariant U-approximation F : X → E.

The above example (4) shows that the thickness assumption can not be avoided.

Proof: For every x ∈ X choose Ux and Vx as in the definition of thickness. Upper semicontinuity
of ϕ implies that, diminishing Ux if necessary, we can assume without loss of generality that
ϕ(Ux) ⊂ Vx. According to Proposition 4.6 (1) there is an open G-covering W = {Wλ}λ∈Λ

star-refining U := {Ux}x∈X . Let {ps}s∈S be a partition of unity subordinated to W , i.e., for
each s ∈ S there is λs ∈ Λ such that supp ps ⊂ Wλs . For each s ∈ S choose ys ∈ ϕ(Wλs). For
x ∈ X, let S(x) := {s ∈ S | ps(x) 6= 0} and

f(x) :=
∑
s∈S

ps(x)ys =
∑
s∈S(x)

ps(x)ys.

Clearly f : X → E is a well-defined continuous map.
Now let x ∈ X. We shall show that there is y ∈ X such that x ∈ Uy and if s ∈ S(gx) for

some g ∈ G, then g−1ys ∈ Vy. To this end fix t ∈ S(x). Then pt(x) 6= 0 and thus

x ∈ supp pt ⊂ Wλt ⊂ st(Wλt ,W ) ⊂ Uy
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Selections and approximations of convex-valued equivariant mappings 15

for some y ∈ X. Take g ∈ G and s ∈ S(gx). Therefore gx ∈ supp ps ⊂ Wλs and x ∈ g−1Wλs =
Wg−1λs (see Definition 4.5). Hence Wg−1λs ∩Wλt 6= ∅ and

Wg−1λs ⊂ st(Wλt ,W ) ⊂ Uy.

Now ys ∈ ϕ(Wλs) and thus

g−1ys ∈ g−1ϕ(Wλs) = ϕ(Wg−1λs) ⊂ ϕ(Uy) ⊂ Vy.

For each g ∈ G,

g−1f(gx) = g−1
∑

s∈S(gx)

ps(gx)ys =
∑

s∈S(gx)

ps(gx)g−1ys ∈ Vy

since Vy is convex. This implies that F (x), where the equivariant F is given by (1), belongs to
Vy and thus (x, F (x)) ∈ Uy × V y ⊂ U . �

In view of Remark 4.4 (b), (a) we have the following results being generalizations of the
Cellina approximation theorem [12].

Corollary 4.8 (1) If X is a paracompact G-space, E is a Banach representation of G and
ϕ : X ( E is a G-equivariant upper semicontinuous map with convex compact values, then ϕ
has a continuous G-equivariant U-approximation for any neighborhood U of Gr(ϕ).

(2) If X is a metric G-space, E is a Banach representation of G and ϕ : X → E is a G-
equivariant map with convex values, then ϕ admits a continuous G-equivariant ε-approximation
for any continuous ε : X → (0,+∞). �

Remark 4.9 (1) In course of the proofs of Theorems 3.12, 4.7 (and thus in Corollary 4.8)
the constructed G-equivariant maps are symmetrizations of maps taking values in convϕ(X).
Therefore if ϕ is compact, then so are their single-valued almost selections and graph-approx-
mations.

(2) In the context of Corollary 4.8 (2) if we assume that G acts on X by isometries (or
equivalently that the metric d on X is G-invariant – comp. Remark 2.3 (5)), then there exist G-
equivariant locally Lipschitz ε-approximations because one can use locally Lipschitz partitions
of unity in the proof and Remark 2.3 (3).

Now we address an equivariant version of a constrained approximation problem studied in
[7]: given G-spaces X, Y , G-equivariant maps ϕ, ψ : X ( Y and a neighborhood U of Gr(ϕ),
does there exist an G-equivariant U -approximation f : X → Y such that f(x) ∈ ψ(x)?

We start with some lemmata.

Lemma 4.10 Let X be a G-space. If ε : X → (0,+∞) is continuous, then η : X → (0,+∞),
given by η(x) := infg∈G η(gx), is well-defined, continuous and G-invariant.
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16 Z. Dzedzej, W. Kryszewski

Proof: It is clear that, for each x ∈ X, there is gx ∈ G such that η(x) = ε(gxx) > 0 since G is
compact. It is immediate to see that η is G-invariant. Take 0 < α < β and x ∈ η−1((α, β)).
Then α < η(x) = ε(gxx) < β. The continuity of ε implies that there is a neighborhood Vx of x
(in X) such that ε(gxy) < β for all y ∈ Vx. Hence, for all y ∈ Vx, η(y) 6 ε(gxy) < β. On the
other hand, for some α < α′ < η(x) and any g ∈ G, α′ < ε(gx). Hence, in view of continuity
of ε, for any g ∈ G there are neighborhoods Hg of g and Wg of x such that α′ < η(hy) if
h ∈ Hg and y ∈ Wg. The compactness of G implies that there are g1, ..., gn ∈ G such that⋃n
i=1Hgi = G. Let Wx :=

⋂n
i=1Wgi . Let y ∈ Wx. For any g ∈ G, then there is 1 6 j 6 n such

that g ∈ Hgj . Since y ∈ Wgj , we get that ε(gy) > α′. Therefore η(y) = infg∈G ε(gy) > α′ > α.
Finally if y ∈ Vx ∩Wx, then α < η(y) < β. �

Lemma 4.11 Suppose that ϕ : X ( E is upper semicontinuous, where X is paracompact and
E is a Banach space, and let U be a neighborhood of Gr(ϕ) having the following property:
(∗) for each y ∈ X, there is a neighborhood Uy of y and ry > 0 such that Uy×B(ϕ(y), ry) ⊂ U .
Then there is a neighborhoodW of Gr(ϕ) and a continuous function ε : X → (0,+∞) such that
given aW-approximation f : X → E of ϕ and a map f ′ : X → E such that ‖f ′(x)−f(x)‖ < ε(x)
for all x ∈ X, f ′ is a U-approximation of ϕ.

Proof: Let sy := 1
4
ry, y ∈ X. The upper semicontinuity of ϕ implies that, for each y ∈ X, there

is a neighborhood Vy ⊂ Uy of y such that ϕ(Vy) ⊂ B(ϕ(y), 2sy). Let {λj}j∈J be a partition of
unity subordinated to the open cover {Vy}y∈X , i.e., for any j ∈ J , there is yj ∈ X such that
suppλj ⊂ Vyj . Let ε(x) =

∑
j∈J λj(x)syj , x ∈ X. Then ε : X → (0,+∞) and is continuous.

Let x ∈ X. Then there is j(x) ∈ J such that λj(x)(x) > 0 (thus x ∈ Vyj(x)) and ε(x) 6 syj(x) .

Let Wx := ε−1((0, 2syj(x))) ∩ Vyj(x) and

W :=
⋃
x∈X

Wx ×B(ϕ(x), ε(x)).

Obviously if Wx is an open neighborhood of x and W is a thick neighborhood of Gr(ϕ).
Suppose that f : X → E is a W-approximation of ϕ and f ′ : X → E is such that

‖f(x)− f ′(x)‖ < ε(x) for any x ∈ X. Let us fix x′ ∈ X. There is x ∈ X such that (x′, f(x′)) ∈
Wx × B(ϕ(x), ε(x)), i.e., x′ ∈ Wx and f(x′) ∈ B(ϕ(x), ε(x)). Therefore x′ ∈ Vyj(x) and ε(x′) <
2syj(x) . At the same time x ∈ Vyj(x) and ε(x) 6 syj(x) , so ϕ(x) ∈ B(ϕ(yj(x)), syj(x)). Moreover

f ′(x′) ∈ B(ϕ(x), ε(x) + ε(x′)) ⊂ B(ϕ(yj(x)), syj(x) + syj(x) + 2syj(x)) =

B(ϕ(yj(x)), 4syj(x)) = B(ϕ(yj(x), ryj(x)).

Hence (x′, f ′(x′)) ∈ Vyj(x) ×B(ϕ(yj(x)), ryj(x)) ⊂ Uyj(x) ×B(ϕ(yj(x), ryj(x)) ⊂ U . �

Remark 4.12 (1) Observe that if ϕ has compact values, then every neighborhood U of Gr(ϕ)
has the property (∗) from Lemma 4.11. Similarly if X is a metric space and ε : X → (0,+∞)
is continuous, the neighborhood U(ε) from Remark 4.2 (1) has this property, too.

(2) It is clear that if ϕ has convex values, then the neighborhood W constructed in the
proof of the above Lemma is thick.
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Selections and approximations of convex-valued equivariant mappings 17

Theorem 4.13 Let X be a paracompact G-space and E a Banach representation of G. Let ψ :
X ( E be G-equivariant lower semicontinuous map with closed convex values, and ϕ : X ( E
a G-equivariant upper semicontinuous map with convex values such that ϕ(x)∩ψ(x) 6= ∅ for all
x ∈ X. Suppose that U is a neighborhood of Gr(ϕ) with property (∗), i.e., for any x ∈ X, there
are a neighborhood Tx and rx > 0 such that Tx × B(ϕ(x), rx) ⊂ U . Then there is a continuous
G-equivariant map f : X → E being both a selection of ψ and a U-approximation of ϕ.

Proof: We assume without loss of generality that E is an isometric Banach representation of G.
According to Lemma 4.11 and Remark 4.12 (2) there is a thick neighborhood W of Gr(ϕ) and
a continuous function ε : X → (0,+∞) such that if H : X → E is aW-approximation of ϕ and
F : X → E is continuous, then F is a U -approximation of ϕ, provided ‖H(x) − F (x)‖ 6 ε(x)
for all x ∈ X. In view of Lemma 4.10 we may assume without loss of generality that ε is
G-invariant. Since W is thick, for any x ∈ X, there are a neighborhood Ux of x and a convex
neighborhood Vx of ϕ(x) such that Ux × Vx ⊂ W . We may assume that ϕ(Ux) ⊂ Vx.

Let W be a G-covering of X star refining {Ux}x∈X . For each x ∈ X choose zx ∈ ϕ(x)∩ψ(x)
and W ∈ W such that x ∈ W and let

BW (x) := {y ∈ W | ψ(y) ∩B(zx, 4
−1ε(x)) 6= ∅} ∩ ε−1(2−1ε(x),+∞).

It is clear that x ∈ BW (x) and the covering B := {BW (x)}W∈W , x∈X refines W . Let {ps}s∈S be
a partition of unity subordinated to B, i.e., for each s ∈ S, there is Ws ∈ W and xs ∈ Ws such
that supp ps ⊂ Bs := BWs(xs). Let

h(x) :=
∑
s∈S

ps(x)zs, x ∈ X,

where zs := zxs . Then h is an ε/2-selection of ψ. Indeed, if x ∈ X and ps(x) 6= 0, then x ∈ Bs,
i.e., x ∈ Ws, ψ(x) ∩B(zs, ε(xs)/4) 6= ∅ and ε(xs)/2 < ε(x). Hence there is z′s ∈ ψ(x) such that
‖z′s − zs‖ < ε(xs)/4 < ε(x)/2 and, thus, for y :=

∑
s∈S ps(x)z′s we have

‖h(x)− y‖ 6
∑
s∈S

ps(x)‖zs − z′s‖ < ε(x)/2.

Therefore, for all x ∈ X and g ∈ G,

d(g−1h(gx), ψ(x)) = d(h(gx), ψ(gx)) < ε(gx)/2 = ε(x)/2,

i.e., g−1h(gx) ∈ B(ψ(x), ε(x)/2) ⊂ D(ψ(x), 3ε(x)/4).

Now let

H(x) :=

∫
G

g−1h(gx) dg, x ∈ X.

It follows that, for all x ∈ X,
d(H(x), ψ(x)) < ε(x).

Moreover, as in the proof of Theorem 4.7, one checks that H is a W-approximation of ϕ.
Now consider a map X 3 x 7→ D(H(x), ε(x))∩ψ(x). It is standard to show that it is lower

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


18 Z. Dzedzej, W. Kryszewski

semicontinuous, G-equivariant and has closed convex values. Hence, in view of Theorem 3.2, it
has a continuous G-equivariant selection F : X → E. Then ‖F (x) −H(x)‖ 6 ε(x) for x ∈ X
and F is a desired selection of ψ and a U -approximation of ϕ. �

Quite often in applications the map ψ from Theorem 4.13 is specified. The following result
is an example (see [5] or [27], Theorem 2.8.4).

Theorem 4.14 Let E be an isometric Banach representation of G and let K ⊂ E be closed
convex and G-invariant. Further assume that a G-equivariant upper semicontinuous map ϕ :
K ( E with closed convex values is weekly tangent to K, i.e., for each x ∈ K, ϕ(x)∩TK(x) 6= ∅.
Then, for each ε > 0, there exists a G-equivariant locally Lipschitz map f : K → E being an
ε-approximation of ϕ such that for all x ∈ K, f(x) ∈ TK(x).

Proof: Since the map K 3 x( TK(x) is lower semicontinuous (see e.g. [27], Remark 1.3.9 or
[23]) and G-equivariant (Example 2.6(5)), to obtain a continuous G-equivariant f : K → E it
is sufficient to apply Theorem 4.13. However, in our case one can modify the proof by applying
locally Lipschitz partitions of unity, since G acts on K by isometries (see Remark 4.9 (2)). We
omit the details and leave them to the reader. �

5 Extending approximations and homotopy

The problem of the extension properties of a given partial U -approximation seems to be a
natural question – comp. [34]. We have the following general result in the equivariant setting.

Theorem 5.1 Given a paracompact G-space X, a closed G-invariant subset A ⊂ X and a
Banach representation E of G, an upper semicontinuous G-equivariant map ϕ : X ( E and a
thick neighborhood U ⊂ X×E of Gr(ϕ), there exists a thick neighborhood V ⊂ U of Gr(ϕ) such
that any continuous G-equivariant V-approximation f : A → E of ϕ|A admits a continuous
G-equivariant extension F : X → E being a U-approximation of ϕ.

Proof: Let U be a thick neighborhood of ϕ; then for every x ∈ X there are an open neighborhood
Ux ⊂ E of x in X and a convex open set Vx ⊂ E such that ϕ(x) ⊂ Vx and Ux × Vx ⊂ U . Since
ϕ is upper semicontinuous, we can assume (diminishing Ux if necessary) that ϕ(Ux) ⊂ Vx. Let
T = {Ts}s∈S be a locally finite star-refinement of {Ux}x∈X . Thus for every s ∈ S there is
xs ∈ X such that st(Ts,T ) ∈ Uxs .

For any s ∈ S, let K(s) := {t ∈ S | Tt ∩ Ts 6= ∅} (observe that if t ∈ K(s), then
Ts ∈ st(Tt,T ) ⊂ Uxt and ϕ(Ts) ⊂ Vxt) and define a set

Vs :=
⋂

t∈K(s)

Vxt ⊂ E.

Note that Vs 6= ∅ since ϕ(Ts) ⊂ Vs and Vs is convex and open, since K(s) is finite. Moreover,
for all s ∈ S, Ts × Vs ⊂ U . Let

V :=
⋃
s∈S

Ts × Vs.
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Selections and approximations of convex-valued equivariant mappings 19

One easily sees that V is a thick neighborhood of Gr(ϕ) since any x belongs to some Ts and,
thus, ϕ(x) ⊂ Vs because ϕ(x) ⊂ Vxt for all t ∈ K(s).

Now let f : A → E be a G-equivariant V-approximation of ϕ (i.e., Gr(f) ⊂ V). By
Corollary 3.3 there exists an equivariant continuous extension k : X → E of f . Since V is
an open subset of X × E, there exists an open G-invariant neighborhood W of A such that
(x, g(x)) ∈ V for all x ∈ W . Additionally choose an open G-invariant neighborhood V of A
such that A ⊂ V ⊂ V ⊂ W . Let {α, β} be a G-invariant partition of unity subordinate to the
G-invariant covering {W,X \ V } (see Proposition 4.6 (3)), i.e.,

suppα ⊂ W, supp β ⊂ X \ V and α(x) + β(x) = 1.

By Theorem 4.7 there exists another G-equivariant V-approximation h : X → E of ϕ. Define

F (x) := α(x) · k(x) + β(x) · h(x) for x ∈ X.

Then obviously F : X → E is continuous, G-equivariant and F |A = f .
If α(x) 6= 0, then x ∈ W and (x, k(x)) ∈ Ts × Vs, (x, h(x)) ∈ Tt × Vt for some s, t ∈ S.

Therefore x ∈ Tt ∩ Ts ⊂ st(Tt,T ) ⊂ Uxt and t ∈ K(s). Hence Vs ⊂ Vxt and, since t ∈ K(t),
Vt ⊂ Vxt . This implies that

(x, F (x)) ∈ Uxt × Vxt ⊂ U ,

i.e., F is a desired G-equivariant U -approximation of ϕ extending f . �

Combining Theorem 5.1 with Remark 4.4 (d) we get the following

Corollary 5.2 If X, E, ϕ and U are as in Theorem 5.1, then there is a continuous function ε :
X → (0,+∞) such that any G-equivariant continuous ε-selection of ϕ extends to a continuous
G-equivariant U-approximation of ϕ. �

Remark 5.3 Assume that X is a metric G-space, A ⊂ X is closed and G-invariant, E is a
Banach representation of G and f : A → E is a partial almost selection of an equivariant
ϕ : X ( E. Does there exist a G-equivariant almost selection of ϕ extending f? The answer
is positive under appropriate assumptions on ϕ. We state (without proof) the following result:
If ϕ is sub-lower semicontinuous and Hausdorff lower semicontinuous at each a ∈ A (3), then
for any ε > 0 and 0 < δ < ε any G-equivariant continuous partial δ-selection f : A → E of
ϕ admits a G-equivariant continuous extension F : X → E being an ε-selection of ϕ (comp.
[27]).

The following corollary is of importance in order to define various homotopy invariants by
the graph-approximation method. Roughly speaking it says that sufficiently close G-equivariant
approximations of a given map are equivariantly homotopic via homotopy being arbitrarily close
to this map.

3I.e., for any ε > 0 there is δ > 0 such that supy∈ϕ(a) d(y, ϕ(x)) < ε provided d(x, a) < δ.
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20 Z. Dzedzej, W. Kryszewski

Corollary 5.4 Let X be a paracompact G-space and E a Banach representation of G. Let
ϕ : X ( E be a G-equivariant upper semicontinuous map. For every thick neighborhood
U of Gr(ϕ) there exists a thick neighborhood V of Gr(ϕ), such that every two G-equivariant
continuous V-approximations of ϕ are joined by a homotopy h : X × [0, 1] → E such that, for
each t ∈ [0, 1], the map

h(·, t) : X → E

is a G-equivariant U-approximation of ϕ.

Proof: Let π : X × [0, 1] → X be the projection onto X and let ϕ′ := ϕ ◦ π : X × [0, 1]( E.
The space X × [0, 1] is a G-space with an action g(x, t) := (gx, t). The set A := X × {0, 1} is
a closed G-invariant subset of X × [0, 1]. Let U be a thick neighborhood of Gr(ϕ) in X × E.
Then

U ′ := {(x, t, y)| (x, y) ∈ U , t ∈ [0, 1]}

is a thick neighborhood of Gr(ϕ′) since, for any (x, t) ∈ X × [0, 1], U(x,t) × V x ⊂ U ′, where
U(x,t) := Ux × [0, 1], and ϕ′(U(x,t)) ⊂ Vx (Ux and Vx are taken form Definition 4.3). In view of
Theorem 5.1 there is a thick neighborhood of Gr(ϕ′) such any partial G-equivariant continuous
approximation h′ : A→ E admits a G-equivariant continuous extension onto X × [0, 1] being a
U ′-approximation of ϕ′.

Let Vi := {(x, y) ∈ X × E | (x, i, y) ∈ V ′}, i = 0, 1, and V := V0 ∩ V1. Let fi : X → E,
i = 0, 1, be a G-equivariant continuous V-approximation of ϕ and let h′ : A→ E be given by

h′(x, t) :=

{
f0(x) if x ∈ X, t = 0
f1(x) if x ∈ X, t = 1.

Then h′ is a G-equivariant continuous V ′-approximation of ϕ′. Therefore it admits an extension
h : X × [0, 1]→ E being a G-equivariant continuous U ′-approximation of ϕ′. Thus Gr(h) ⊂ U ′,
i.e., for each x ∈ X and t ∈ [0, 1], (x, t, h(x, t)) ∈ U ′. This means that (x, h(x, t)) ∈ U .
Therefore, for each t ∈ [0, 1], h(·, t) : X → E is a U -approximation of ϕ. �

6 Equivariant measurable and Carathéodory-type selec-

tions and approximations

In many applications one considers certain classes of maps between G-spaces or, more generally,
G-sets and their transformations. Given G-sets Ω and X, by Map(Ω, X) we denote the class
of all maps f : Ω → X. It appears that Map(Ω, X) is a G-set itself: if g ∈ G and x : Ω → X,
then g · x : Ω → X is defined by (g · x)(ω) = gx(g−1ω) for ω ∈ Ω; it is easy to see that
G×Map(Ω, X) 3 (g, x) 7→ g · x ∈ Map(Ω, X) is indeed a G-action. Many specific subclasses of
Map(Ω, X) are invariant with respect to this action; for instance if Ω and X are G-spaces and
C(Ω, X) denotes the space of all continuous maps Ω → X with compact open topology, then,
for each g ∈ G and x ∈ C(Ω, X), g · x ∈ C(Ω, X) and the action is continuous.

Note that the subclass MapG(Ω, X) consisting of G-equivariant maps Ω → X is equal to
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Selections and approximations of convex-valued equivariant mappings 21

the set of fixed points of the described action, i.e., {x ∈ Map(Ω, X) | g · x = x for all g ∈ G}.
As concerns (equivariant) transformations between mapping spaces the superposition op-

erators play an important role. Assume that Y is a G-set and let ϕ : Ω × X ( Y be a
set-valued map. By the superposition (or Nemytskii) operator generated by ϕ we mean a map
Nϕ : Map(Ω, X)( Map(Ω, Y ) given by

Nϕ(x) := {y : Ω→ Y | y(ω) ∈ ϕ(ω, x(ω)) for all ω ∈ Ω}, x ∈ Map(Ω, X).

Observe that Nϕ is G-equivariant if and only if ϕ is G-equivariant (4), i.e., for all ω ∈ Ω and
x ∈ X, ϕ(gω, gx) = gϕ(ω, x). In this context some questions arise: given an invariant subclass
M(Ω, X) in Map(Ω, X) and the corresponding (invariant) subclass M(Ω, Y ) ⊂ Map(Ω, Y ),
which properties of ϕ guarantee that Nϕ is well-defined as a map from M(Ω, X) to M(Ω, Y )
(i.e., is there y ∈ M(Ω, Y ) such that y(ω) ∈ ϕ(ω, x(ω)) for any ω ∈ Ω, where x ∈ M(Ω, X))?
When Nϕ, if correctly defined, has appropriate regularity properties (semicontinuity, measur-
ability etc.)? Under what conditions can one state the existence of its (sufficiently regular)
single-valued selections and/or approximations? The full answer to these questions is beyond
the scope of this paper. Here we shall study only the properties of ϕ in the context of the
existence of its (equivariant) selections and approximations.

To this end we shall first deal with equivariant selections and approximations of set-valued
maps defined on measure spaces.

Let (Ω,A ) be a measurable space and E a Banach space. We say that a set-valued map
ϕ : Ω( E is A -measurable (or, for short, measurable) if it has closed values and for any open
U ⊂ E the preimage ϕ−1(U) ∈ A (5). It is well-known (see the Castaing theorem [4, Theorem
8.3.1]) that if E is separable, then the following conditions are equivalent:
• ϕ is measurable;
• for each z ∈ E, the map Ω 3 ω 7→ d(z, ϕ(ω)) := infy∈ϕ(ω) ‖z − y‖ ∈ R is measurable;

• there is a sequence of measurable functions fn : Ω→ E, n > 1, such that ϕ(ω) = {fn(ω)}∞n=1,
ω ∈ Ω.

If E is separable and ϕ : Ω( E is measurable, then its graph Gr(ϕ) ∈ A ⊗B(E), where
B(E) stands for the σ-algebra of Borel subsets in E and A ⊗B(E) is the σ-algebra in Ω× E
generated by products A×B, A ∈ A , B ∈ B(E); conversely if Gr(ϕ) ∈ A ⊗B(E) and (Ω,A )
is complete (i.e., A admits a complete σ-finite measure), then ϕ is measurable (6).

We shall be concerned with measurable spaces with additional structure of a G-set. In what
follows, unless stated otherwise, we assume for simplicity that:

Assumption 6.1 Ω is a G-space, A is a σ-algebra in Ω containing B(Ω), the σ-algebra of all
Borel subsets in Ω, and µ : A → [0,+∞] is a complete, σ-finite regular measure (i.e., for any
A ∈ A and ε > 0, there is a closed set F such that F ⊂ A and µ(A \ F ) < ε).

4On Ω×X the group G acts component-wise, i.e. given g ∈ G and (ω, x) ∈ Ω×X, g(ω, x) := (gω, gx).
5The reader should be warned that the notion of measurability we use here is sometimes called weak mea-

surability; elsewhere a map ϕ is said to be measurable (or strongly measurable) if preimages of closed sets are
measurable. The latter notion is slightly stronger, however if A admits a complete σ-finite measure, then both
notions coincide since the preimage of any Borel subset in E is measurable in this case.

6The proofs of many results below rely implicitly on the following projection theorem: If (Ω,A ) is complete,
X is a separable and complete metric space and A ∈ A ⊗B(X), then the projection prΩ(A) := {ω ∈ Ω | (ω, x) ∈
A for some x ∈ X} ∈ A (see e.g. [11]).
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22 Z. Dzedzej, W. Kryszewski

If Ω is a locally compact σ-compact (e.g. locally compact separable metric) space and µ is a
positive Radon measure (corresponding to some positive real linear functional on the space of all
continuous real functions with compact support defined on Ω) – see e.g. [21, §11], see also [17,
Chapter 7], then µ is a complete σ-finite regular measure defined on a σ-algebra A containing
B(Ω) (comp. [21, (11.34)]); in fact (A , µ) is the Lebesgue completion of (B(Ω), µ|B(Ω)) (7).

Having this we get an equivariant counterpart of the Kuratowski-Ryll-Nardzewski theorem
[30] for convex-valued maps.

Theorem 6.2 Assume that (Ω,A , µ) is as in Assumption 6.1 and ϕ : Ω ( E, where E is
a separable Banach representation of G, is A -measurable with closed convex values and G-
equivariant. Then:

(1) there is a G-equivariant measurable selection f : Ω→ E of ϕ, i.e., f(ω) ∈ ϕ(ω) for all
ω ∈ Ω;

(2) there is a sequence {fn : Ω → E} of G-equivariant measurable maps such that ϕ(ω) =
{fn(ω)}∞n=1 for any ω ∈ Ω, provided G is a compact Lie group, Ω is separable metric and
ϕ(ω) ⊂ EGω for all ω ∈ Ω.

Proof: The measurability of ϕ implies that there is a sequence hn : Ω→ E, n ∈ N, of measurable
maps such that ϕ(ω) = {hn(ω)}∞n=1, ω ∈ Ω. Take ε > 0 and fix an arbitrary y ∈ E. For each

n > 1, the function Ω 3 ω 7→ h̃n(ω) := d(y, hn(ω)) is measurable. In view of the Lusin theorem

(see e.g. [17, Th.7.10]), for any n > 1 there is a closed set Ω̃n with µ(Ω \ Ω̃n) < 2−nε such that

the restriction h̃n|Ω̃n
is continuous. Then µ(Ω \ Ω̃ε) < ε, where Ω̃ε =

⋂∞
n=1 Ω̃n. It is clear that

Ω̃ε is closed and h̃n|Ω̃ε
is continuous for all n > 1. Since

d(y, ϕ(ω)) = inf
n∈N

d(y, hn(ω)) = inf
n∈N

h̃n(ω), ω ∈ Ω,

we see that the function Ω̃ε 3 ω 7→ d(y, ϕ(ω)) is upper semicontinuous (as the lower envelope
of continuous functions), i.e., the restriction ϕ|Ω̃ε

is lower semicontinuous (8).

Now let Ωε := GΩ̃ε = {gω | g ∈ G, ω ∈ Ω̃ε}. Then Ωε is G-invariant closed, µ(Ω \ Ωε) < ε
and ϕ|Ωε is lower semicontinuous. Indeed take ω0 ∈ Ωε, y0 ∈ ϕ(ω0) and a (generalized) sequence

(ωλ)λ∈Λ in Ωε such that ωλ → ω0. For each λ ∈ Λ, there are ω̃λ ∈ Ω̃ε and gλ ∈ G such that
ωλ = gλω̃λ. Without loss of generality we may assume that gλ → g0 ∈ G. Hence ω̃λ = g−1

λ ωλ →
ω̃0 := g−1

0 ω0 ∈ Ω̃ε and, hence, ωλ = gλω̃λ → g0ω̃0 = ω0. Therefore y0 ∈ ϕ(g0ω̃0) = g0ϕ(ω̃0).
Since ϕ|Ω̃ε

is lower semicontinuous, if ỹ0 := g−1
0 y0 ∈ ϕ(ω̃0) and ω̃λ → ω̃0, for each λ ∈ Λ there

is ỹλ ∈ ϕ(ω̃λ) such that ỹλ → ỹ0. Therefore yλ := gλỹλ ∈ gλϕ(ω̃λ) = ϕ(gλω̃λ) = ϕ(ωλ) and
yλ = gλỹλ → g0ỹ0 = y0.

For any n > 1 choose a G-invariant closed set Ωn ⊂ Ω such that µ(Ω \Ωn) < 1/n and ϕ|Ωn

is lower semicontinuous. Let Ω0 := Ω \
⋃∞
n=1 Ωn. Clearly µ(Ω0) = 0 and Ω0 is G-invariant. Let

f0 : Ω0 → E be an arbitrary G-equivariant selection of ϕ|Ω0 (resp. let f0m : Ω0 → E, m ∈ N,

7Observe that the Haar measure χ may be described in the same way (see [21, §15] or [17, Sec. 11.1]).
8The provided argument is rather standard; however in order to keep the paper self-contained we decided to

include it, see also [24].
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be a sequence of arbitrary maps such that ϕ(ω) = {f0m(ω)}∞m=1 for ω ∈ Ω0) – see Remarks 3.1
(2) and 3.8 (2). In view of Theorem 3.2 (resp. 3.9 in the second case) for any n > 1 there
is a G-equivariant continuous map f : Ωn → E (resp. a sequence fnm : Ωn → E, m ∈ N, of
continuous G-equivariant maps) such that fn(ω) ∈ ϕ(ω) (resp. ϕ(ω) = {fnm(ω)}∞m=1) for every
ω ∈ Ωn.

Define f : Ω→ E by

f(ω) :=

{
fn(ω) if ω ∈ Ωn \

⋃n−1
k=1 Ωk;

f0(ω) if ω ∈ Ω0;

respectively we define fm : Ω→ E, m > 1, by

fm(ω) :=

{
fnm(ω) if ω ∈ Ωn \

⋃n−1
k=1 Ωk;

f0m(ω) if ω ∈ Ω0.

Then the map f (resp. the sequence fm, m > 1) is measurable (resp. consists of measurable
maps) and fulfils the requirements of the assertion. �

Now, in order to get a partial answer to questions formulated at the beginning of this sec-
tion, we shall address the problem of the existence of equivariant Carathéodory-type selections
and graph-approximations of equivariant Carathéodory set-valued maps (comp. [18], [19], [29]
and [36]). Recall that, given a topological space X and an arbitrary complete measure space
(Ω,A , µ), a set-valued map ϕ : Ω×X ( E, where E is a Banach space, is a lower-Carathéodory
map (resp. strict lower-Carathéodory map) if it has closed values, for all x ∈ X, the map ϕ(·, x)
is A -measurable and, for µ-almost all ω ∈ Ω (resp. for all ω ∈ Ω), the map ϕ(ω, ·) : X ( E
is lower semicontinuous. In a similar manner we define (strict) upper-Carathédory map. In
particular a map f : Ω×X → E is (strict) Carathéodory if for all x ∈ X, f(·, x) is measurable
and (for all) for µ-almost all ω ∈ Ω, f(ω, ·) is continuous.

We say that ϕ : Ω × X ( E is almost product measurable (precisely almost A ⊗B(X)-
measurable) if there is a µ-nullset N ⊂ Ω such that the restriction ϕ|(Ω\N)×X is AN ⊗B(X)-
measurable, where AN stands for the restriction of A to Ω \N (i.e. AN := {A∩ (Ω \N) | A ∈
A }), i.e., for each open U ∈ Y , the set {(ω, x) ∈ (Ω \N)×X | ϕ(ω, x) ∩ U 6= ∅} ∈ A (9).

In order to understand the nature of assumptions we are about to undertake, observe that:

Proposition 6.3 (1) If ϕ is almost product measurable, then for any x ∈ X, ϕ(·, x) is A -
measurable;

(2) if X is separable and f : Ω×X → E is a Carathéodory map, then f is almost product
measurable;

(3) if there is a sequence (fn)∞n=1 of Carathéodory maps fn : Ω × X → E such that
ϕ(ω, x) = {fn(ω, x)}∞n=1 for all x ∈ X and µ-almost all ω ∈ Ω, then ϕ is lower Carathéodory;
if, additionally, X is metrizable and separable, then ϕ is almost product measurable.

(4) If ϕ is almost product measurable and x : Ω → X is measurable, then there is a mea-
surable y : Ω→ E such that y(ω) ∈ ϕ(ω, x(ω)) for all ω ∈ Ω.

9Observe that AN ×B(X) is equal to the restriction of the σ-algebra A ⊗B(X) to (Ω \N)×X.
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24 Z. Dzedzej, W. Kryszewski

Proof: (1) Let x ∈ X and let i : Ω→ Ω×X be given by i(ω) := (ω, x). Then i−1(C) ∈ A for
any C ∈ A ⊗B(X). Clearly, for an open U ⊂ E, ϕ(·, x)−1(U) = i−1ϕ−1(U) = {ω ∈ Ω \ N |
ϕ(ω, x) ∩ U 6= ∅} ∪ {ω ∈ N | ϕ(ω, x) ∩ U 6= ∅} ∈ A since {ω ∈ N | ϕ(ω, x) ∩ U 6= ∅} ∈ A as a
µ-nullset in a complete measure space.

(2) Since f is a Carathéodory map, there is a µ-nullset N such that f |(Ω\N)×X is strict
Carathéodory. In view of [4, Th. 8.2.6], f |(Ω\N)×X is AN ⊗B(X)-measurable.

(3) For each n ∈ N, there is a µ-nullset Nn ⊂ Ω such that fn|(Ω\Nn)×X is strict Carathéodory;

moreover there is a µ-nullset N0 ⊂ Ω such that ϕ(ω, x) = {fn(ω, x)}∞n=1 if ω ∈ Ω \ N0. Let
N =

⋃∞
n=0Nn. Then N ∈ A , µ(N) = 0 and, for each n ∈ N and fn|(Ω\N)×X is strict

Carathéodory and ϕ(ω, x) = {fn(ω, x)}∞n=1 for ω ∈ Ω\N and x ∈ X. Let ω ∈ Ω\N and y ∈ E.
It is clear that, for each x ∈ X, d(y, ϕ(ω, x)) = infn∈N d(y, fn(ω, x)). Therefore the function
d(y, ϕ(ω, ·)) is upper semicontinuous, i.e., ϕ(ω, ·) is lower semicontinuous. On the other hand,
for any x ∈ X, the function d(y, ϕ(·, x)) is measurable, i.e., ϕ(·, x) is measurable. Now suppose
that X is metrizable and separable. For each n ∈ N, fn|(Ω\N)×X is AN ⊗B(X)-measurable in
view of (2). Hence so is ϕ.

(4) Let x̃ : Ω → Ω × X be defined by x̃(ω) := (ω, x(ω)), ω ∈ Ω, and let N ⊂ Ω be a
µ-nullset such that ϕ|(Ω\N)×X is AN ⊗B(X)-measurable. We claim that if C ∈ AN ⊗B(X),
then x̃−1(C) ∈ AN . Indeed if C = A × B, where A ∈ AN and B ∈ B(X), then x̃−1(C) =
A ∩ x−1(B) ∈ AN . Let U ⊂ E be open. Then

{ω ∈ Ω \N | ϕ(ω, x(ω)) ∩ U 6= ∅} = x̃−1((ϕ|(Ω\N)×X)−1(U)) ∈ AN .

Hence, in view of the completeness of µ we see that ϕ(·, x(·))−1(U) ∈ A . The Kuratowski-Ryll-
Nardzewski Theorem [30] implies the existence of a desired measurable y. �

Theorem 6.4 Let (Ω,A , µ) be as in Assumption 6.1 and suppose that Ω is paracompact per-
fectly normal (e.g. metrizable), X is a complete separable metric G-space, E is a separable
Banach representation of G and a set-valued map ϕ : Ω×X ( E with closed convex values is
lower-Carathéodory, almost product measurable and G-equivariant. Then:

(1) there is a G-equivariant Carathéodory map f : Ω×X → E such that f(ω, x) ∈ ϕ(ω, x)
for all x ∈ X and ω ∈ Ω.

(2) there is a sequence fn : Ω×X → E of G-equivariant Carathéodory selections of ϕ such
that ϕ(ω, x) = {fn(ω, x)}∞n=1 for all x ∈ X and all ω ∈ Ω, provided G is a compact Lie group,
Ω is separable metric and ϕ(ω, x) ⊂ EG(ω,x) for all ω ∈ Ω and x ∈ X (10).

Proof: Here, instead of the Lusin property, we shall use a version of the Scorza Dragoni theorem
(see [28] or [2]) which states that: If ϕ : Ω × X ( E is a product measurable strict lower-
Carathéodory map, then for each ε > 0, there is a closed Ωε ⊂ Ω such that µ(Ω \ Ωε) < ε and
ϕ|Ωε×X is lower semicontinuous (of course in this statement the G-structure of Ω plays no role).

Now the proof goes similarly to the above one. We may assume that there is a µ-nullset N
such that ϕ|(Ω\N)×X is strict lower-Carathéodory and AN ×B(X)-measurable.

For each n ∈ N there is a closed Ωn ⊂ Ω such that µ(Ω \ Ωn) < 1/n and ϕ|Ωn×X is

10Clearly G(ω,x) = {g ∈ G | g(ω, x) = (ω, x)} = Gω ∩Gx.
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lower semicontinuous. Indeed, the regularity of µ shows that there is an open V ⊂ Ω such
that N ⊂ V and µ(V \ N) < 1/2n. It is clear that ϕ|(Ω\V )×X is strict Carathéodory and
AV ⊗B(X)-measurable. Therefore, in view of the above-mentioned Scorza Dragoni property,
there is a closed subset Ωn ⊂ Ω \ V (thus Ωn is closed in Ω) with µ(Ω \ (V ∪Ωn)) < 1/2n (thus
µ(Ω \ Ωn) < 1/n) such that ϕ|Ωn×X is lower semicontinuous.

Let Ω0 := Ω \
⋃∞
n=1 Ωn; then µ(Ω0) = 0 and N ⊂ Ω0. Arguing as in the proof of Theorem

6.2, we may assume with no loss of generality that Ωn and, thus, Ω0 are G-invariant. Since
the product Ωn × X is paracompact (resp. separable metrizable), in view of Theorem 3.2
(resp. 3.9), for each n > 1 there is a continuous G-equivariant map fn : Ωn×X → E such that
fn(ω, x) ∈ ϕ(ω, x) for all ω ∈ Ωn and x ∈ X (resp. there is a sequence fnm : Ωn×X → E, m > 1,
of continuous G-equivariant maps such that {fnm(ω, x)}∞m=1 = ϕ(ω, x) on Ωn×X). Additionally
we find an arbitrary G-equivariant selection f0 : Ω0×X → E of ϕ|Ω0×X (resp. a sequence (f0m),
f0m : Ω0 × X → E, of G-equivariant selections of ϕ|Ω0×X such that ϕ(ω, x) = {f0m(ω, x)}∞m=1

for ω ∈ Ω0 and x ∈ X) by the use of Remark 3.1 (2) (resp. 3.8 (2)).
Define f : Ω×X → E by

(5) f(ω, x) :=

{
fn(ω, x) if ω ∈ Ωn \

⋃n−1
k=1 Ωk, x ∈ X;

f0(ω, x) if ω ∈ Ω0, x ∈ X;

respectively we define fm : Ω×X → E, m > 1, by

fm(ω) :=

{
fnm(ω, x) if ω ∈ Ωn \

⋃n−1
k=1 Ωk, x ∈ X;

f0m(ω, x) if ω ∈ Ω0, x ∈ X.

It is again clear that this completes the proof. �

Now we turn our attention to equivariant Carathéodory approximations (comp. [29]).

Theorem 6.5 Let Assumption 6.1 be satisfied, Ω be a paracompact perfectly normal G-space,
X a separable complete metric G-space and ϕ : Ω × X ( E, where E is a separable Banach
representation of G, be a G-equivariant almost product measurable upper-Carathéodory set-
valued map with compact convex values. For any neighborhood U of Gr(ϕ), there is a G-
equivariant Carathéodory map f : Ω×X → E such that Gr(f) ⊂ U .

Proof: We use an important result from [38] stating that: A strict upper-Carathéodory map
ϕ : Ω×X ( E with compact values has the Scorza Dragoni property: for any ε > 0 there is a
closed Ωε ⊂ Ω such that µ(Ω \ Ωε) < ε and ϕ|Ωε×X is upper semicontinuous if and only if ϕ is
product measurable (here again the G-structure of Ω has no significance).

The proof now is almost the same as before: for any n ∈ N, we choose a closed G-invariant
subset Ωn ⊂ Ω with µ(Ω \ Ωn) < 1/n such that ϕ|Ωn×X is upper semicontinuous. In view of
Theorem 4.7 and Corollary 4.8, for each n ∈ N, there is a continuous G-invariant fn : Ωn×X →
E such that (u, fn(u)) ∈ U for u ∈ Ωn ×X. Additionally let f0 : Ω0 ×X → E be an arbitrary
G-equivariant selection of ϕ|Ω0×X , where Ω0 = Ω \

⋃∞
n=1 Ωn. Defining f : Ω × X → E by (5)

we complete the proof. �

Combining Theorems 6.4 and 6.5 we get the following ‘Carathéodory’ counterpart of The-
orem 4.13 (comp. [33]).
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Corollary 6.6 Let Ω be as in Assumption 6.1 and, additionally, perfectly normal paracompact,
let X be a separable metric space and E a separable Banach representation of G. If ϕ : Ω×X (
E is upper-Carathéodory G-equivariant and almost product measurable with compact convex
values, ψ : Ω × X ( E is lower-Carathéodory G-equivariant and almost product measurable
with closed convex values, U is a neighborhood of Gr(ϕ) and ϕ(ω, x)∩ψ(ω, x) 6= ∅ for all ω ∈ Ω
and x ∈ X, then there exists a G-equivariant Carathéodory map f : Ω × X ( E such that
Gr(f) ⊂ U and f is a selection of ψ. �

For the sake of completeness we include a result allowing to get the existence of strict
Carathéodory selections.

Theorem 6.7 Suppose that X is a σ-compact metric G-space, E is a separable Banach repre-
sentation of G and (Ω,A ) satisfies Assumption 6.1. Let ϕ : Ω × X ( E be a G-equivariant
strict lower-Carathéodory and product measurable map with closed convex values. Then:

(1) there exists a G-equivariant strict Carathéodory map F : Ω×X → E such that, for each
ω ∈ Ω and x ∈ X, F (ω, x) ∈ ϕ(ω, x);

(2) there is a sequence Fn : Ω×X → E, n ∈ N, of G-equivariant strict Carathéodory maps
such that ϕ(ω, x) = {Fn(ω, x)}∞n=1 for all ω ∈ Ω and x ∈ X, provided G is a compact Lie group,
Ω is a separable metric space space and ϕ(ω, x) ⊂ EG(ω,x) for any ω ∈ Ω and x ∈ X.

Proof: In the proof we follow the ideas from [18] and [29]. Assume for a while that X is
compact. Then F := C(X,E), the space of all continuous maps, is a separable Banach space
(with the usual sup-norm ‖ · ‖∞) and a representation of G with the G-action described above:
(g · f)(x) := gf(g−1x) for f ∈ F, g ∈ G and x ∈ X.

(1) Consider a set-valued map Φ : Ω( F given by

Φ(ω) := {f ∈ F | f(x) ∈ ϕ(ω, x) for all x ∈ X}, ω ∈ Ω.

In view of the Michael theorem, Φ has nonempty values; moreover Φ(ω) is closed and convex
for any ω ∈ Ω.

We claim that Φ is measurable. Since (Ω,A ) is complete, it is sufficient to show that if
D := {f ∈ F | ‖f − f0‖ 6 ε} is the closed ε-ball centered at f0 in F, where f0 ∈ F and ε > 0,
then Φ−1(D) ∈ A . If ω ∈ Φ−1(D), then there is f ∈ Φ(ω) ∩ D such that, for all x ∈ X,
f(x) ∈ ϕ(ω, x) ∩D(f0(x), ε), i.e.,

Φ−1(D) ⊂ A :=
⋂
x∈X

{ω ∈ Ω | ϕ(ω, x) ∩D(f0(x), ε) 6= ∅}.

On the other hand, if ω ∈ A, then the map X 3 x 7→ ϕ(ω, x) ∩ D(f0(x), ε) (with nonempty
values) is lower semicontinuous with closed convex values and, in view of the Michael theorem,
there is f ∈ F such that f(x) ∈ D(f0(x), ε) ∩ ϕ(ω, x), i.e., A ⊂ Φ−1(D). It is clear that the
map Ω×X 3 (ω, x)→ ϕ(ω, x)− f0(x) is product measurable, hence

C := {(ω, x) ∈ Ω×X | ϕ(ω, x) ∩D(f0(x), ε) = ∅}
= {(ω, x) | [ϕ(ω, x)− f0(x)] ∩D(0, ε) = ∅} ∈ A ⊗B(X).
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Now observe that (see footnote on page 21)

Ω \ A =
⋃
x∈X

{ω ∈ Ω | ϕ(ω, x) ∩D(f0(x), ε) = ∅} = prΩ(C) ∈ A ,

i.e., Φ−1(D) = A ∈ A .
Next we claim that Φ is G-equivariant. If g ∈ G and f ∈ Φ(gω), then f(gx) ∈ ϕ(gω, gx) =

gϕ(ω, x) for all x ∈ X; therefore g−1f(gx) ∈ ϕ(ω, g−1x), i.e., (g−1 · f)(x) ∈ ϕ(ω, x) for all
x ∈ X. This means that (g−1 · f) ∈ Φ(ω) and f ∈ g · Φ(ω).

Theorem 6.2 implies that there is a measurable G-equivariant s : Ω→ F such that s(ω) ∈
Φ(ω) for any ω ∈ Ω . Let F : Ω × X → E be defined by F (ω, x) := s(ω)(x) for ω ∈ Ω and
x ∈ X. For ω ∈ Ω, F (ω, ·) = s(ω) is continuous; for x ∈ X, F (·, x) = s(·)(x) = ex ◦ s, where
ex : F 3 f 7→ f(x) ∈ E is the evaluation, is measurable since ex is continuous. Thus F is a
strict Carathéodory map and F (ω, x) ∈ ϕ(ω, x) for all ω ∈ Ω and x ∈ X. Finally we check
that F is G-equivariant. Indeed, if ω ∈ Ω, x ∈ X and g ∈ G, then F (gω, gx) = s(gω)(gx) =
(g · s(ω))(gx) = gs(ω)(x) = gF (ω, x).

(2) Let Ψ : Ω( F be given by

Ψ(ω) := {f ∈ F | f is Gω-equivariant and f(x) ∈ ϕ(ω, x) for all x ∈ X}, ω ∈ Ω,

where Gω is the stabilizer of ω ∈ Ω, i.e., f ∈ Ψ(ω) provided f ∈ FGω = {f ∈ F | Gf ⊃ Gω}
(note that f ∈ FGω if and only if gf(x) = f(gx) for x ∈ X and g ∈ Gω) and f is a selection of
ϕ(ω, ·). In other words we see that Ψ(ω) = Φ(ω) ∩ FGω . It is easy to see that values of Ψ are
nonempty (in view of Theorem 3.2) closed and convex. Observe that the map Ω 3 ω 7→ FGω ⊂ F
is G-equivariant lower semicontinuous with closed convex values (see the first step in the proof
of Theorem 3.9) and, hence, measurable. This implies that so is Ψ. In view of Theorem
6.2 (2) there is a sequence sn : Ω → F, n > 1, of measurable G-equivariant maps such
that {sn(ω)}∞n=1 = Ψ(ω) for ω ∈ Ω, x ∈ X. Let Fn : Ω × X → E, n > 1, be given by
Fn(ω, x) := sn(ω)(x) for ω ∈ Ω and x ∈ X. As above we show that each Fn, n > 1, is a
G-equivariant strict Carathéodory map. Moreover the density of {Fn(ω, x)}∞n=1 in ϕ(ω, x) for
ω ∈ Ω and x ∈ X follows from the fact that for any y ∈ ϕ(ω, x) there is f ∈ Ψ(ω) such that
f(x) = y – see Proposition 3.7 with ϕ replaced by ϕ(ω, ·) and G by Gω observing that E is a
Banach representation of Gω and, in this setting, EGx = EG(ω,x) .

Now let X be σ-compact, i.e., there is an increasing sequence Xn of compact subsets in
X such that X =

⋃∞
n=1Xn. In case (1) we have a G-equivariant strict Carathéodory map

F1 : Ω×X1 → E being a selection of ϕ1 := ϕ|Ω×X1 . We define ϕ2 : Ω×X2 ( E by

ϕ2(ω, x) :=

{
F1(ω, x) if (ω, x) ∈ Ω×X1;
ϕ(ω, x) if ω ∈ Ω, x ∈ X2 \X1.

It is easy to see that ϕ2 is a G-equivariant strict lower-Carathéodory map with closed convex
values. In view of the first part of the proof, there is a G-equivariant strict Carathéodory map
F2 : Ω × X2 → E being a selection of ϕ2. Continuing this procedure inductively we get a
sequence Fn : Ω × Xn → E, n > 1, of G-equivariant strict Carathéodory selections of ϕ|Ω×Xn

such that Fn|Ω×Xn−1 = Fn−1 for all n > 2. Finally we may define F : Ω × X → E putting
F (ω, x) = Fn(ω, x) provided ω ∈ Ω and x ∈ Xn. In the case (2) one may employ the same
procedure in order to get the assertion. �
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