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Abstract
This paper presents a comprehensive exploration of semi-definite programming
(SDP) techniques within the context of quantum information. It examines the
mathematical foundations of convex optimization, duality, and SDP formu-
lations, providing a solid theoretical framework for addressing optimization
challenges in quantum systems. By leveraging these tools, researchers and
practitioners can characterize classical and quantum correlations, optimize
quantum states, and design efficient quantum algorithms and protocols. The
paper also discusses implementational aspects, such as solvers for SDP and
modeling tools, enabling the effective employment of optimization techniques
in quantum information processing. The insights and methodologies presen-
ted in this paper have proven instrumental in advancing the field of quantum
information, facilitating the development of novel communication protocols,
self-testing methods, and a deeper understanding of quantum entanglement.
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List of abbreviations

DPS Doherty–Parillo–Spedalieri
IPM interior point method
LP linear programming
LMI linear matrix inequalities
MLP Mironowicz–Li–Pawłowski
NPA Navascués–Pironio–Acín
NV Navascués–Vertesi
PD positive definite
POVM positive operator-valued measure
PPT positive partial transpose
PSD positive semi-definite
QSD quantum state discrimination
SDP semi-definite programming
SoS sum of squares

1. Introduction

Optimization, in its various forms, has been a cornerstone of scientific and technological
advancements across numerous disciplines. From engineering and economics to machine
learning and operations research, optimization techniques have played a crucial role in solving
complex problems and driving innovation. Over the years, different variants of optimization
methods have emerged, each tailored to address specific problem structures and objectives [15,
24, 36, 40, 103, 232]. In recent decades, SDP has emerged as a powerful variant of con-
vex optimization, offering a versatile framework for solving optimization problems involving
PSD matrices. SDP has found applications in diverse fields, including control theory, signal
processing, combinatorial optimization, and quantum information theory [41, 116, 233, 303].
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Particularly, in the field of quantum information, SDP has proven to be an indispensable tool for
characterizing and manipulating quantum correlations and probabilities [28, 326]. Quantum
information theory deals with the fundamental principles governing the representation, trans-
mission, and processing of information in quantum systems. It explores the unique properties
of quantum mechanics to develop new paradigms for computation, communication, and cryp-
tography. Quantum correlations, such as entanglement, and the manipulation of probabilities
in quantum systems are essential components in designing quantum algorithms and protocols.

This paper aims to provide a comprehensive study of SDP in the context of quantum inform-
ation. The outline of the paper is as follows. We present first a mathematical framework for
convex optimization, covering the necessary preliminaries and notation, and provide a soft-
ware overview useful for implementing techniques discussed in this work. To aid researchers
in the practical implementation of SDP, the paper provides an overview of software tools,
solvers, and modeling techniques in section 1.3. It discusses the different solvers available for
solving SDP problems, as well as the modeling tools used to formulate and represent optimiz-
ation problems. Section 1.4 contains a brief overview of the topic of probability distributions
occurring in quantum mechanics and other important problems of the theory which can be
effectively treated with SDP. The terms introduced there will be used in section 4.

The further discussion in section 2 encompasses sets, spaces, cones, and functions, includ-
ing important concepts like Fenchel conjugate and subgradient. Duality, a fundamental aspect
of optimization, is explored extensively, shedding light on its role in problem formulations
and solution methods. The theory of SDP is a focal point of this paper, as it enables the
optimization of PSD matrices, which are fundamental objects in quantum information the-
ory. Next, in section 3, the work delves into the definition and characterization of positive
semi-definiteness, presenting various formulations of SDP problems, such as the canonical
form, the Vandenberghe and Boyd form, the so-called SDP algorithm (SDPA) form, and the
Watrous symmetric form. It also discusses the duality of SDP, the treatment of complex vari-
ables in semidefinite problems imposing equality and inequality constraints, and the topic
of the Schur complement and submatrices. Next, we concentrate on implementing SDPs, to
provide a general understanding of the involved numerical methods. The paper also explores
how solvers employ IPMs, highlighting their internal mechanisms, such as predictor–corrector
methods, warm start strategies, and exploitation of the problem structure.

In the following section 4, the paper introduces basic tools and techniques in SDP that
are specifically relevant to quantum information. These tools include semidefinite representa-
tions, separability criteria, Choi–Jamiołkowski isomorphism (state-channel duality), the sum
of squares decomposition, and Lovász theta. Understanding and utilizing these tools are crucial
for solving optimization problems involving quantum states, correlations, and probabilities.
A significant portion of the paper focuses on the application of moment matrices in quantum
information.Momentmatrices play a vital role in capturing the correlations present in quantum
systems. The paper explores correlation matrices and moment matrices, their mathematical
properties, and their significance in optimization problems involving non-commuting vari-
ables. Hierarchical methods, such as the NPA hierarchy, the so-called MLP hierarchy, and the
NV hierarchy, are discussed in detail for optimizing probability distributions without or with
dimension constraints. Additionally, the SWAP method for self-testing in quantum informa-
tion is presented.
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1.1. Historical notes on optimization

The historical development of LP, can be traced back to the times of a critical need for optimal
resourcemanagement duringWorldWar II. Soon after, in 1947, George Dantzig introduced the
simplex method [80], marking a significant milestone in this field. The simplex method oper-
ates by starting at a vertex of a convex polytope representing feasible solutions and gradually
moving toward its extreme point. It is important to note that although the simplex method
algorithm exhibits exponential worst-case complexity, it has demonstrated remarkable effi-
ciency in practical problem-solving scenarios. To understand the underlying reason for the high
complexity of the simplex method, it is necessary to examine the specific instances where the
algorithm visits every vertex of the feasible region, leading to exponential worst-case complex-
ity. The Klee–Minty problem, formulated in 1970 [170], serves as an illustrative example of
such instances. During the 1960s and 1970s, there was an increasing recognition of the signific-
ance of computational complexity, fueling the pursuit of efficient algorithms with polynomial
time complexity.

In the 1960s, in the realm of nonlinear programming, it became a common practice to trans-
form constrained problems into unconstrained ones through the utilization of the so-called
barrier methods [103]. By introducing a specialized barrier function, it became possible to
delineate a trajectory within the space of optimization variables known as the central path,
which could be traversed using the well-established Newton’s method. However, the preval-
ence of barrier methods experienced a temporary decline in the 1970s. Meanwhile, in 1979,
Khachian introduced the ellipsoid method, the first algorithm for LP with polynomial worst-
case complexity [168]. Surprisingly, despite its favorable theoretical complexity, the ellipsoid
method proved to be exceedingly slowwhen applied tomost practical problems. Consequently,
before 1984, two primary methods for LP existed:

• The simplex method, which possessed exponential worst-case complexity but demonstrated
practical efficiency.

• The ellipsoid method, exhibited polynomial complexity but was notably inefficient in prac-
tice.

The field of optimization has undergone a significant transformation with the introduction
of IPMs. Before 1984, IPMs did not hold a prominent position until Karmarkar’s ground-
breaking paper, a new polynomial-time algorithm for LP [165], was published. Notably, it
was demonstrated that IPMs were no less efficient than the simplex method for solving prac-
tical LP problems. This revelation of IPM’s potential sparked what is often referred to as a
revolution in optimization [334], leading IPMs to be recognized as one of the most significant
algorithms of all time. Before 1984, there existed only minimal connections between LP and
nonlinear programming. However, it was soon discovered [118] that the IPM was equivalent
to a logarithmic barrier method applied to LP. This equivalence enabled the development of a
unified framework, based on barrier function methods, for analyzing both linear and nonlinear
problems [234].

The next significant advancement in the field of IPM came with the independent work of
Alizadeh [8], Nesterov, and Nemirovskii [233, 234] in the late 1980s. They expanded the
applicability of IPM to various convex optimization problems. Nesterov and Nemirovskii dis-
covered that the key to utilizing IPM for convex problems lies in knowing a specific bar-
rier function known as a self-concordant barrier [230]. For practical implementation, it is
essential that the first and second derivatives of the barrier function can be computed eas-
ily. Vandenberghe and Boyd [314] utilized the theory developed by Nesterov and Nemirovskii
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to apply the LP method given by Gonzaga and Todd [126] to SDPs. A self-concordant barrier
refers to a smooth convex function defined within the interior of a given set. It diverges toward
infinity as it approaches the boundary and, along with its derivatives, satisfies certain Lipschitz
continuity conditions. Nesterov and Nemirovskii demonstrated that IPM can be applied to any
set where such a barrier function can be formulated. Fortunately, a relatively computationally
tractable self-concordant barrier is known for SDPs, viz. F(X)≡− lndetX. For a comprehens-
ive historical overview of the development and significance of SDP, detailed information can
be found in several notable references such as [105, 125, 303, 334]. These works provide an
in-depth exploration of SDPs, shedding light on their emergence as a powerful tool in mod-
ern optimization. The key property of SDP problems is the fact that they may be efficiently
solved numerically using IPM, as sketched further in section 3.8, and at the same time, they
can express or approximate a tremendous range of scientific and engineering problems.

1.2. Preliminaries and notation

We now briefly specify the notation used in this work. In some places, the notation used is
overloaded, with the same symbols having different meanings. The reason is that the paper
covers a variety of different fairy-specialized topics. We decided to keep the established nota-
tion characteristic for each of the specializations. We made an effort to ensure that this does
not lead to any ambiguity.

1.2.1. Spaces and sets notation. In this work, we denote by N the set of natural numbers
(including 0),N+ is the set of natural numbers (excluding 0),R is the set of real number, andC
is the set of complex numbers. The sets of vectors composed of real numbers, non-negative real
numbers, and complex numbers, with k elements, are denoted byRk,Rk

+, andCk, respectively.
The set of real k× l matrices is denoted by Rk×l and the set of real n× n symmetric matrices
by Sn. The set of real n× n symmetric matrices that are PSD or PD (see section 3.1 for the
definitions) we denote with Sn+ or Sn++, Sn++ ⊂ Sn+ ⊂ Sn. Similarly, the set of complex k× l
matrices is denoted by Ck×l, the set of Hermitian n× n matrices by Hn, and its subset of PSD
or PD matrices by Hn

+ or Hn
++, Hn

++ ⊂Hn
+ ⊂Hn. We refer to the pair of values k and l (for

matrices of arbitrary size) or n (for square matrices) as the size of the matrix. For n ∈ N+ we
denote [n]≡ {1, . . . ,n}. The relation � denotes the so-called Löwner’s partial order of PSD
matrices [181, 197]. For two symmetric or Hermitian matrices A and B, we have A� B when
A−B is PSD.

Banach spaces, i.e. vector spaces which are complete with respect to a given norm ||· ||,
are denoted with letters X,Y, . . .. Their continuous dual spaces, as defined below, are denoted
with starred letters, X∗,Y∗, . . .. The real and complex Hilbert spaces, i.e. vector spaces with an
inner (scalar) product 〈·|·〉 that are Banach spaces with the norm induced by the inner product,
are denoted with calligraphic letters, X ,Y,Z, . . .. Their continuous dual spaces are denoted
by X ∗,Y∗,Z∗, . . .. Usually, we consider vector spaces of real or complex matrices with the
Frobenius product, defined below in (3), as the inner product; thus the spaces Rk×1 and Ck×1

are the ordinary k dimensional real or complex Euclidean spaces, i.e. finite-dimensional Hilbert
spaces.

In some cases we use finite sets of symbols as indices of vectors or matrices; this will be
particularly useful in the context of moment matrices, see section 4.6. For a set of symbols
Σ we use the standard convention of set theory to denote CΣ (RΣ) the set of all functions
from Σ to C (R). Since there exists a natural isomorphism between CΣ and C|Σ | (RΣ and
R|Σ |), all operations defined for the latter can be easily mapped to relevant operations on the
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former, with an arbitrary ordering of the symbols in Σ, that will be treated here as implicit.
For a metric space (X, d) we denote by BX(x,r) the closed ball centered at x ∈ X with radius r;
BX ≡ BX(0,1) is the unit closed ball.

Consider a Banach space X over the field F. For a linear functional x∗ : X→ F we define
its norm as ||x∗ || ≡ supx∈X:||X ||⩽1 |x∗(x) |. We define X∗ as the continuous dual space, or the
topological dual space, or simply the dual space, i.e. the space of all linear continuous func-
tionals on X with this norm. The weak topology of X is the weakest topology in X in that all
elements of X∗ are continuous. For X∗ we consider also the weak* topology, defined as the
weakest topology on X∗ for that every element x ∈ X corresponds to a continuous functional
on X∗. We denote the bidual spaces X∗∗ ≡ (X∗)∗. Spaces for that X= X∗∗ are called reflexive.
It can be seen that every finite-dimensional normed space is reflexive.

The action of a conjugate element x∗ on an element x, i.e. x∗(x), is further denoted as 〈x∗,x〉
to make the linearity explicit. This is to be contrasted with the inner (scalar) product 〈·|·〉 for
Hilbert spaces. The Riesz–Fréchet representation theorem [288, p 182][138, p 31] states that
every linear continuous functional x∗ on a Hilbert space X can be represented by the inner
product with a certain unique element x of X , in the sense that ∀x ′∈H〈x∗,x ′〉= 〈x|x ′〉.

To provide the most explicit formulations, we usually denote the elements of a conjugate
space with the star symbol ∗, e.g. x∗ ∈ X ∗. The symbol is barely a notation suggesting an ele-
ment of a conjugate space and has no algebraic meaning. Similarly, we optionally (with no
special mathematical meaning) denote with · (dot) a matrix multiplication in places where it
allows us to avoid ambiguity, especially to stress the presence of a scalar product of two vec-
tors. Due to the specificity of our topic closely mixing the explicit numerical representation
of operators as arrays of (numerical) real values with the abstract complex Hilbert formal-
ism of quantum mechanics, we decided to use both this ‘dot’ notation of the scalar product,
and the bra-ket notation, with the latter used in cases not directly related to the computer
implementations.

We denote by L [X ,Y] the set of all linear operators from the Hilbert space X to the Hilbert
space Y . For X = Cn and Y = Cm this set is isomorphic to the set of complex m× nmatrices,
Cm×n. We use the latter whenever our considerations are directly related to computer imple-
mentations. For A ∈ L [X ,Y] we define the adjoint operator, A† ∈ L [Y,X ] as the unique oper-
ator satisfying the scalar product relation

y† ·Ax=
(
A†y
)† · x, (1)

or, in the bra-ket notation, 〈y|Ax〉= 〈A†y|x〉, for all x ∈ X and y ∈ Y . We use the abbreviation
L [X ]≡ L [X ,X ]. For real matrix space, the adjoint is the transposition denoted by T; and for
complex matrices, it is the Hermitian conjugate denoted by †. Thus we denote by x† ∈ X ∗ the
unique linear operator x† : X → F : x ′ 7→ 〈x|x ′〉, where F= C for complex Hilbert spaces; or
by T with F= R for real Hilbert spaces. The symbol of † used for real spaces is equivalent to
T. We define the set of all Hermitian operators acting on a complex Euclidean vector space X
as Herm [X ]≡

{
X ∈ L [X ] : X† = X

}
.

1.2.2. Matrix conventions and the Frobenius product. In this work, we use the MATLAB
notation for elements of matrices. We recall a few examples. In this notation the expression
Mk,l:m means a submatrix consisting of the elements of the matrixM within the row k and with
column indices in {l, l+ 1, . . . ,m}. The expressionM:,k means the vector consisting of the kth
column of the matrix M. Mk,l refers to the element in kth row and lth column. For a vector
v its kth element is vk. Vectors are represented by one-column matrices. Matrix elements are

7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Phys. A: Math. Theor. 57 (2024) 163002 Topical Review

numbered from 1. The identity matrix of size d by d is denoted by 1d; in some cases, instead
of the size we specify a space X and then 1X denotes the identity operator on X . The zero
operator and zero matrix for all spaces are denoted with 0. The Kronecker delta is denoted by
δi,j and is equal 1 for i= j and 0 otherwise. Trace operation is denoted as Tr[·], and partial trace
by Tr{si}i [·], where {si}i enumerates the subsystems which are traced out. Similarly, the partial
transposition of subsystems {si}i is denoted as T{si}i .

The function vec(·) defines a vector containing the elements of the given matrix in column-
wise order. Mat(·) is the inverse of this function. For example, we have

vec

([
a c
b d

])
=


a
b
c
d

 . (2)

We also use the following standard convention in which upper-case letters denote matrices,
and lower-case letters denote vectors of elements of the matrices, e.g. x= vec(X) ∈ Rn2 and
X=Mat(x) ∈ Rn×n. For two matrices A,B ∈ Rm×n we define the relation A⩽ B to hold if and
only if ∀i=1,...,m∀j=1,...,nAi,j ⩽ Bi,j.We define relationsA<B,A⩾ B andA>B in an analogous
way. Diag[(di)i∈[n]] is an n by n diagonal matrix with diagonal entries di.

The Frobenius product of two complex (or real) matrices, A,B ∈ Ck×l (or A,B ∈ Rk×l) is
defined as Tr(A†B) (or Tr(ATB)). We follow the convention common in the literature close to
implementation issues and usually denote the Frobenius product as A •B [10, 111, 169, 216,
293, 305, 307, 319]. It can be easily shown that

A •B≡ Tr
(
A†B

)
= Tr

(
ABT

)
=

∑
i=1,...,k

∑
j=1,...,l

A∗i,jBi,j = vec(A)† · vec B, (3)

and similarly for real matrices. Thus, for real matrices, the Frobenius product is the sum of the
elements of the element-wise product of entries of twomatrices. One can also show that for real
symmetric A and real antisymmetric B we have Tr(ATB) = Tr(AB) = 0. For real symmetric A
we have A •B= Tr(A†B) = Tr(ATB) = Tr(AB). The Frobenius product induces a Frobenius
norm of a matrix, ||· ||F defined as ||A ||F =

√
Tr(A†A). This norm is called also a Hilbert–

Schmidt norm. The Frobenius product is a direct generalization of the vector Euclidean
product, as it can be seen from (3), and the Ck×l (Rk×l) with Frobenius inner product is iso-

morphic with the Euclidean space Ckl (Rkl). For A=

[
A11 A12

A21 A22

]
and B=

[
B11 B12

B21 B22

]
, where

A11,B11 ∈ Cn1×n1 ,A12,B12 ∈ Cn1×n2 ,A21,B21 ∈ Cn2×n1 , andA22,B22 ∈ Cn2×n2 , for some n1 and
n2, we have

Tr
(
A†B

)
= Tr

(
A†11B11

)
+Tr

(
A†12B12

)
+Tr

(
A†21B21

)
+Tr

(
A†22B22

)
. (4)

This equality easily generalizes tomatricesA= (Ar,c)r,c andB= (Br,c)r,c divided into arbitrary
number of blocks, viz. A •B=

∑
r,c (Ar,c •Br,c).

1.3. Software overview, usage, and implementation

The basic tool used to find solutions to SDP is SDP solvers. Modeling languages are use-
ful supporting software aiding in formulating SDPs to be passed to a solver. We refer read-
ers to [214] for a comprehensive overview. From the experience of the author, most of the
analysis involving SDPs in quantum information is conducted using either Python or Matlab
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language. The latter language has two major implementations, viz. the software MATLAB
from MathWorks [2] and its open-source alternative OCTAVE [90].

A standard choice for an SDP solver among the NPA community (see section 4.6)
using Matlab seems to be the SeDuMi solver [291, 292] created by J F Sturm, currently
developed andmaintained by Imre Pólik andOleksandr Romanko under the direction of Tamás
Terlaky [290]. This solver implements self-dual embedding IPM [66] andwas used for instance
in [226–228] and other works implementing NPA. Another SDP solver of particular interest in
Matlab is SDPT3 solver [310, 312] implemented by Toh, Todd, and Tütüncü. It uses infeasible
primal-dual IPMwith so-called Nesterov-Todd (NT) and Helmberg-Kojima-Monteiro (HKM)
search directions (see section 3.8 for the definition of the search directions). Other examples
of SDP solvers include C library for semidefinite programming (CSDP) [35] by Borchers,
DSDP [29], and SDPA [112]. The mentioned solvers are freely available, in most cases in
open-source form. A very efficient commercial SDP solver is Mosek [1], possible to be used
in Python and MATLAB, with a free license for academia. The solver particularly relevant
for large problems is semidefinite programming Newton-CG augmented Lagrangian method
(SDPNAL) [294, 338] that is implementing a Newton-conjugate gradient (CG) augmented
Lagrangian method for SDP [346].

A popular family of solvers is the mentioned SDPA solvers by Fujisawa et al [112, 113,
222, 336, 337]. The SDPA solvers are using the so-called Vandenberghe and Boyd form, or
the SDPA form, of SDPs, see section 3.2.2. The variants cover Matlab interface (SDPA-M),
parallel implementation for large SDPs Semidefinite programming algorithm parallel version
(SDPARA), higher precision arithmetics GNU multiple precision arithmetic library (SDPA-
GMP), quad-double library (SDPA-QD) and double-double (SDPA-DD) structural sparsity
Semidefinite programming algorithm with the positive definite matrix Completion (SDPA-
C), see [335] of an overview. Semidefinite programming algorithm (SDPA) solver imple-
ments primal-dual IPM with Mehrotra type predictor–corrector, see section 3.9. When decid-
ing solver to use, a performance benchmark should be consulted [210].

Plenty of papers [6, 19, 31, 46, 50, 63–65, 104, 191, 257, 286] uses the Python package
NCPOL2SPDA [332] by Peter Wittek, currently under maintenance by Peter J Brown [333].
NCPOL2SDPA implements a framework for global polynomial optimization problems with
SDP relaxations. The functionality of particular interest covers the NPA [226, 227, 254] hier-
archy for non-commuting operators; Lasserre’s hierarchy for commutative polynomials [184];
the more randomness from the same data technique [22, 239]; a hierarchy for bilevel polyno-
mial optimization problem [159]; the Moroder’s hierarchy [221]; and a hierarchy of sufficient
conditions for the steerability of bipartite quantum states [177]. Note that NCPOL2SDPA is
not an SDP solver but a modeling toolbox, used to reduce the human effort when formulat-
ing SDPs, and it requires a solver to be included separately. Other popular modeling tools for
Python are python interface to conic optimization solvers (PICOS) [275] and CVX Python
(CVXPY) [5, 84].

Popular modeling toolboxes to be used with Matlab language are yet another linear mat-
rix inequalities processor (YALMIP) [193] and CVX [127, 128, 132]. They allow the use of
various solvers, including SeDuMi, SDPT3, and Mosek. YALMIP can be supported with a
package QDimSum (symmetric SDP relaxations for qudits systems) [272] that implements
the hierarchy [228] using the symmetrization methods [7, 302] to enhance the performance.
In appendix B.1 a sample simple execution is given with YALMIP.

An alternative to the mentioned modeling tools for Matlab and Python is the JuMP pack-
age (‘Julia for Mathematical Programming’) [89], which is an open-source modeling language
integrated within the Julia programming environment [32]. It allows users to express a wide
range of optimization problems, including linear, mixed-integer, quadratic, conic quadratic,
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semidefinite, and nonlinear, in a clear and intuitive code format. JuMP allows these formu-
lated problems to be solved using open-source and commercial solvers including CSDP [35],
Mosek [1], SCS [241], and SDPA [112].

At this stage, we mention that models in YALMIP and many other modeling languages
are interpreted as so-called dual problems [194], discussed in section 3.2. The dual form of
SDP is given in (81), where the SDP variable Z is in a disaggregated form, i.e. it is a matrix
composed of linear combinations of scalar variables. This is to be contrasted with the primal
form of SDP (80), where the SDP variable X is treated as a single matrix variable. There are
two reasons, why modeling languages prefer the dual form over the primal form. The major
reason is that symbolic manipulations are much easier when the variables are disaggregated.
The other reason is that it was observed that in many different fields, the dual form is more
natural to formulate the problems occurring in them, see e.g. table 1 in section 4.6.

1.4. Basic problems of quantum information

Many useful functions that occur in quantum information belong to the family of the so-called
semi-algebraic functions. These functions can be represented using SDP constraints, and thus
are particularly relevant for this review. On the other hand, many other functions are not semi-
algebraic, like the logarithm function used e.g. in the definitions of such quantities as entropies,
including Shannon, quantum, or their relative or conditional variants. It would be beneficial
to be able to express them, or at least their approximations as SDPs. It revealed that it is pos-
sible when the non-semi-algebraic function is approximated with a polynomial function, for
instance with the support of one of the Gauss quadratures, e.g. the Radau quadrature. Recent
results allowed the use of SDP to approximate the matrix logarithm function [100], and as a
result, the use of SDP to efficiently optimize expressions on various entropies [98]. One recent
article [47] used these methods to determine the lower bounds of the conditional von Neumann
entropy certified in a device-independent approach using an extended NPAmethod [254] using
the NCPOL2SDPA tool [332]. We provide a brief overview of the theory of semidefinite rep-
resentations of semi-algebraic functions in section 4.1.

An important problem in the investigation of the properties of quantum states is to determine
whether they are separable or not. An N-partite state ρ is called separable when it is written as
a convex combination of product states, viz. [327]:

ρ=
∑
i

pi ρ
i
1 ⊗ ·· ·⊗ ρiN. (5)

Determining whether a given state is separable or entangled based solely on the definition
is a challenging task in practice. Thus, the so-called separability problem emerges as one of
the fundamental issues in the study of entanglement. The famous Peres–Horodecki PPT cri-
terion [151, 250] provided a necessary condition for separability of states and says that if a
bipartite state ρAB is separable, then ρTBAB � 0. Another attempt at this issue was [188], where
a constructive algorithm that enables the identification of the optimal separable approxima-
tion for any density matrix associated with a finite-dimensional composite quantum system
was presented. The method established a condition for separability and provided a measure
of entanglement. An important connection of the separability problem with SDP was the so-
called DPS method given in [86, 87], which may be considered as a direct development of the
PPT criterion, providing a hierarchy of SDP approximations discussed in section 4.2.

Another notion is that of quantum channels [329]. A quantum channel is a communication
channel that transmits quantum information. Quantum channels describe any form of state
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evolution either in time or space governed by quantum mechanics. There are multiple dif-
ferent issues to be studied regarding quantum channels. One of the main research problems
related to them is the characterization and classification of different types of channels, like
depolarizing or amplitude-damping channels. Another research problem related to quantum
channels is the development of methods for channel estimation and tomography, or the study
of noisy and imperfect channels. In practice, all communication channels are subject to noise
and imperfections that can degrade the quality of transmitted quantum states. Therefore, it is
essential to develop methods for mitigating the effects of noise and imperfections on quantum
communication. A basic tool used in modeling quantum channels, or more general maps linear
L[H1,H2], for Hilbert spaces H1 and H2, is the Choi–Jamiołkowski isomorphism discussed
in section 4.3.

The Tsirelson bound also referred to as the Cirel’son bound, is a concept in quantum
mechanics that holds significance in the investigation of quantum non-locality. In essence, the
Tsirelson bound establishes a maximum level of correlation achievable between two or more
distant quantum systems. The first examples of such bounds were derived by Boris Tsirelson
in 1980 [72]. Tsirelson bounds carry profound implications for our comprehension of quantum
mechanics and its practical applications. In particular, if the correlations violate the Tsirelson
bound, it implies that quantum physics cannot reproduce them. This observation significantly
contributes to our understanding of entanglement. The Tsirelson bound finds practical utility
in various applications of quantum information theory, including quantum cryptography and
quantum teleportation. For instance, it enables the quantification of the requisite and attainable
level of entanglement for secure communication through quantum cryptography. In section 4.4
we briefly describe the SoS technique and then show an example of how can it be applied to
the derivation of the Tsirelson bound.

A fundamental concept, closely related to the Tsirelson bound is quantum contextuality. It
refers to the property of quantum systems where the outcome of a measurement depends on
the context in which it is measured. In other words, the value of a quantum property is not
determined by the property itself, but by the other properties with which it is measured. This
means that the same quantum system can exhibit different properties depending on how it is
measured, and this property has been shown to be essential for many quantum information
processing tasks. One of the approaches to the analysis of contextuality was given in [57, 58]
where a relationship with the so-called Lovász theta has been established. Themethod revealed
to be very profound [56, 133, 152, 186, 268, 304]. Here, in section 4.5 we describe the SDP
methods for Lovász theta and show how to relate it to contextuality.

We will now briefly review the topic of Bell inequalities and Bell functionals [25], as this
will be needed in many places in this work, especially for section 4.6. Bell inequalities are
mathematical expressions that set a limit on certain probabilities, which cannot be violated in
a classical physics framework but can be exceeded in quantum mechanics. The violation of
Bell inequalities can be observed through experimental measurements, providing conclusive
evidence that the behavior of the world cannot be explained solely by classical physics. Such
groundbreaking experiments were conducted in the 1980s by Aspect et al [16–18]. A Bell
experiment involves two or more separate parties who share a quantum state and perform
measurements with different settings, without any form of communication between them. By
conducting a series of suchmeasurements and analyzing the collected data, it becomes possible
to estimate the set of joint conditional probability distributions, or behaviors, {P(a,b|x,y)} of
the outcomes conditioned on the settings. A bipartite Bell functional is a linear functional that
operates on behaviors over two parties or subsystems of the form

∑
a,b,x,yαa,b,x,yP(a,b|x,y),

where αa,b,x,y ∈ R.
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Classical devices can be described using the following elements. The class L represents
local behaviors that are in accordance with classical physics. The statistical description, i.e. the
behavior, of the pair of devices is of the form

P(a,b|x,y) =
∑
λ

P(λ) ·PA|X,Λ (a|x,λ) ·PB|Y,Λ (b|y,λ) . (6)

Here, P(λ) represents the probability of observing the hidden state λ, and PA|X,Λ(a|x,λ) and
PB|Y,Λ(b|y,λ) correspond to the conditional probabilities of obtaining results a for Alice and
b for Bob, respectively, given their respective settings x and y, and the hidden state λ. PΛ(λ)
refers to the probability distribution of hidden internal states, where λ represents a specific
state and

∑
λ∈ΛPΛ(λ) = 1 ensures normalization.

Next, the non-signaling devices can be characterized as follows. The class N denotes
non-signaling behaviors, which align with the principles of relativistic physics. PA|X(a|x)
and PB|Y(b|y) represent the marginal conditional probability distributions of Alice and Bob,
respectively. These distributions are derived from the behavior {P(a,b|x,y)}, and they satisfy
the conditions ∑

b∈B

P(a,b|x,y) = PA|X,Y (a|x,y) = PA|X (a|x) , and (7a)∑
a∈A

P(a,b|x,y) = PB|X,Y (b|x,y) = PB|Y (b|y) . (7b)

These conditions ensure the consistency of the marginal distributions regardless of the set-
tings of the other party. Non-signaling property implies that the settings chosen by one party
do not have any influence on the marginal distribution observed by the other party. By consid-
ering these elements and properties, we can analyze the behavior of non-signaling devices in
the context of bipartite systems. Optimization over these sets can be performed using LP.

The class Q contains all behaviors that adhere to the fundamental principles of quantum
physics. It is noteworthy that the class of local behaviors L, forms a subset of quantum behavi-
ors, i.e.L⊂Q, andQ⊂N. ABell functional I can exhibit a characteristic where itsmaximum
value allowed on the setQ, denoted as IQ, is strictly greater than its maximum value on the set
L, denoted as IL. The existence of such functionals is a consequence of Bell’s theorem [26].
A Bell inequality is a statement I ⩽ IL that sets a limit on the value of this operator within the
framework of local theories. We say that a Bell inequality is violated if, for a given behavior
{P(a,b|x,y)}, we have I > IL. The task of optimization overQ, in particular Bell functionals,
is NP-hard, as shown by Kempe et al in 2008 at FOCS [166].

The statement {P(a,b|x,y)} ∈Q is true if and only if the following conditions are satisfied,
involving the existence of a (finite or infinite dimensional) Hilbert space H, a state (vector)
|ψ 〉 on H, and a set of operators (measurements) {Eax ,F b

y}a,b,x,y on H such that:

(i) The operators Eax and F
b
y are projectors. From this property, it follows that the operators

correspond to observable quantities with non-negative probabilities.
(ii) Different results with the same setting, represented by Eax and E

a ′

x , are orthogonal to each
other, given by EaxE

a ′

x = 0; similarly for Bob’s measurements F b
y and Fb

′

y . This orthogon-
ality condition signifies that different measurement outcomes are mutually exclusive.

(iii) The sum of all operatorsEax for a fixed x equals the identity operator1, denoted as
∑

aE
a
x =

1. Similarly, the sum of all operators F b
y for a fixed y is equal to 1, expressed as

∑
bF

b
y =

1. These normalization conditions ensure that the probabilities of all possible outcomes
sum up to 1.
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(iv) The operators representing measurements for Alice, Eax , and those for Bob, F b
y, commute

with each other, denoted as [Eax ,F
b
y] = 0. This commutation property indicates that the

order of measurements performed by Alice and Bob does not affect the results.
(v) The joint probability distribution P(a,b|x,y) can be expressed as the expectation value of

the operators Eax and F
b
y acting on the state |ψ 〉, given by

P(a,b|x,y) = 〈ψ |EaxF b
y|ψ 〉. (8)

This equation illustrates that the probabilities arise from performing measurements on the
quantum state |ψ 〉.

We note that the quantum measurements can be represented not necessarily by project-
ors as in the above condition (i), but by a more general set of operators called POVMs.
A POVM {Ma}a satisfies the PSD condition ∀aMa � 0 and the normalization condition∑

aM
a = 1. Since the vector |ψ 〉 can be of arbitrarily high, possibly infinite, dimension, and

by Stinespring’s dilation theorem [289] any POVM on a specific Hilbert space can be repres-
ented by a projective measurement within a sufficiently highly dimensional Hilbert space and
any mixed state can be represented as a subsystem originating from a system in a pure state
in that Hilbert space, the restriction to projectors in (i) and pure states do not lead to a loss in
generality.

From the normalization conditions (iii) we see that for any fixed x (y) any of the operators
{Eax}a,x ({F b

y}b,y), can be expressed using the rest of them and the identity operator. Thus
instead of the full set {Eax ,F b

y}a,b,x,y we can equivalently require existence of the so-called

reduced set of operators {1,Eãx ,Fb̃y}ã,b̃,x,y, where the index ã (b̃) covers all values excluding
the last one. For instance, consider a scenario involving two parties, eachwith two settings from
the set {1,2}, and obtaining two outcomes from the set {0,1}. The reduced set of operators in
this case is {

1,E0
1,E

0
2,F

0
1,F

0
2

}
. (9)

The schoolbook formulation of quantum mechanics involves the notion of Hilbert spaces
and the properties of operators acting over them. In contrast, an effort was made to derive, at
least partially, equivalent physical consequences from a direct axiomatics [51, 69, 74, 136, 137,
148, 156, 201], or principles explicitly basing on information theory. The prominent examples
of such information-theoretic principles include the non-signaling [255], the non-trivial com-
munication complexity [43], the no advantage for nonlocal computation [192], the information
causality [249], the local orthogonality [106], the information content of systems [79]. Of par-
ticular interest in this work are the macroscopic locality [229] and the almost quantum set of
behaviors discussed in section 4.6.1.

Now, we provide a concise overview of the key aspects pertaining to dimension-bounded
scenarios [53, 114, 190, 248]. We will discuss them in detail in sections 4.7 and 4.8. Alice and
Bob are assigned random inputs, x and y. Subsequently, Alice sends a message to Bob based
on her input, where the message takes the form of a quantum state ρx of a specific dimension
d. Bob receives the quantum state and performs a measurement {Mb

y}b on it, yielding a result
b. This leads to a behavior {Pd(b|x,y)} within a prepare-and-measure scheme, Pd(b|x,y) =
Tr
(
ρxMb

y

)
. We assume the absence of entanglement between Alice and Bob in this context.

Let Pd ≡ {{Pd(b|x,y)}{ρx}x,{{Mb
y}b}y ,} be the set of all probabilities of the discussed for in the

given dimension d. We note that we have Pd ⊆ Pd+1, since increasing the dimension of the
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communicated state we can send at most the same amount of data. A dimension witnessW is
a linear function of behaviors, i.e. it has the following form:∑

b,x,y

βb,x,yP(b|x,y) . (10)

The key property of dimension witnesses is that they allow us to distinguish the dimensions
for which inclusion is strict. Using the definition of probability distributions in the prepare-
and-measure scheme, we may introduce a notion of dimension witnesses which is analogous
to the concept of Bell functionals.

2. Mathematical framework of optimization

A general static optimization problem [200], or optimization in finite-dimensional spaces, is a
task of determining the values of a certain variable x ∈ F ⊆ Rn, called the decision variable,
for which a given function f0 : F → R, called target, attains its minimum; these points are
called minimizers, and their set is called the optimal set [24]. The whole set F is called the
feasible set (and other names like feasible region, or solution space, or search space, are often
used) [23]. A point x0 ∈ F with the property that for all x1 ∈ F it holds f(x1)⩾ f(x0) is called
a global minimum. A point x0 ∈ F for which there exists a neighborhood (in metric space
sense) N such that x1 ∈N ∩F =⇒ f0(x1)⩾ f0(x0) is called a local minimum. Every global
minimum is also a local minimum.

The further part of this section covers the crucial topic of duality in optimization. In
section 2.4 we discuss general optimization in Banach spaces, covering essential techniques
and concepts. Next, in section 2.5 we explore the Fenchel–Rockafellar scheme, delving into
strong duality and constraint qualification, which are fundamental principles in optimization.
Then, in section 2.6 we discuss an alternative, but less general, way of construction of dual
problems, viz. the Lagrangian scheme. Lastly, in section 2.7 we delve into the more specific
case of convex cone optimization and show how both dualization schemes apply to it.

2.1. Convex and linear programming

Now, let us specify what we mean by convex optimization problems. In simple words, these
are tasks of minimization of a convex function over a convex set [24, 41]. To be more specific,
the so-called functional form of convex problems is defined as follows. Let m,n ∈ N. The
commonly used general form of convex problems is the following:

minimize f0 (x)

subject to fi (x)⩽ bi, i = 1, . . . ,m,
(11)

where f0, . . . , fm : Rn → R are convex function, i.e. for any x0,x1 ∈ Rn and λ ∈ [0,1] they satisfy
the so-called Jensen’s inequality:

fi (λx0 +(1−λ)x1)⩽ λfi (x0)+ (1−λ) fi (x1) . (12)

If we replace⩽ with< in (12), we say that fi is strictly convex. The set of points satisfying the
constraints of (11), i.e. the feasible set F =

⋂m
i=1{x ∈ Rn : fi(x)⩽ bi} ⊆ Rn, is a convex set.

A crucial property of convex programs is that all their local minimum points are also global
minimum points. What is more, the optimal set for a convex problem is also a convex set.
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If f 0 is strictly convex then there exists at most one global minimum. The optimal value or,
when there is no ambiguity, simply the value, of an optimization problem corresponds to the
optimal objective function value, representing the optimal outcome attainable for the objective
function while adhering to all constraints. The solution to an optimization problem refers to the
collection of decision variables that yield the optimal objective function value. This solution
must satisfy all constraints imposed by the problem. It is worth noting that in certain scenarios,
multiple optimal solutions can exist, indicating that various sets of decision variables yield the
same optimal objective function value.

The terms optimization and optimization problem are often used interchangeably in the liter-
ature to refer to the task of finding the optimal (usually minimal, as above) value of an objective
function. However, the terms have a subtle difference in their meaning. Optimization typically
refers to the act of determining the optimal value itself. The optimization problem encompasses
not only finding the optimal value but also the associated decision variables or parameters that
achieve that optimal value, i.e. the solution. Thus, we distinguish the minimization problems
where the task is to find both the value minx∈F [f0(x)] and the solution argminx∈F [f0(x)], from
the minimization, i.e. the task of finding the infimum infx∈F [f0(x)]. Note that the infimummay
not even be attained, whereas for the minimum there always exists a solution attaining it.

Particular examples of convex optimization problems are LPs and SDPs, being the main
topic of this Review. We start with the formulation of LP. Let m,n ∈ N, and m⩽ n. The so-
called primal canonical form of LP is the following optimization task in variable x:

minimize cT · x
subject to Ax= b,x⩾ 0,

(13)

where A ∈ Rn×m, b ∈ Rm, x,c ∈ Rn. The dual problem of LP is

maximize bT · y
subject to c−ATy= z,

z⩾ 0.

(14)

In the above problems, the variable x is called the primal variable, y the dual variable, z the
dual slack variable, A is the linear constraint matrix, b is the right-hand side (RHS) of the
linear constraint, and c is the linear coefficient.

2.2. Sets and cones definitions

Let X be a Banach space over an ordered field F.
Consider a set C⊆ X. The core of C is the set of all points in C such that for any direction

d in X there exist Td > 0 such that for all t ∈ [0,Td] we have x+ td ∈ C, viz.:

core C≡
{
x ∈ C : ∀ d∈X,

||d ||=1
∃Td>0∀t∈[0,Td] (x+ td) ∈ C

}
. (15)

Contrast it with the interior of C defined as:

int C≡
{
x ∈ C : ∃T>0∀ d∈X,

||d ||=1
∀t∈[0,T] (x+ td) ∈ C

}
. (16)

It is easy to see that intC⊆ coreC.
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C is convex if

∀x1,x2∈C∀λ ∈ [0,1]λx1 +(1−λ)x2 ∈ C. (17)

In particular, ∅ is a convex set. C is absorbing [36, p 244] if it is convex and X=
⋃
t⩾0 tC.

Obviously, 0 ∈ coreC for absorbing C.
A subset K⊆ X is called a cone, or nonnegative homogeneous, if and only if [342]:

x ∈ K,λ ∈ F+ =⇒ λx ∈ K, (18)

where F+ is the set of all non-negative scalars of F. Thus, the cone is simply the set invariant
under multiplication by non-negative scalars. The cone K is convex if and only if [41]

x1,x2 ∈ K =⇒ x1 + x2 ∈ K, (19)

that can be intuitively understood as K+K⊆ K.
For an arbitrary, not necessarily being a cone, subset K⊆ X, the topological dual cone, or

simply the dual cone, is defined as [39, p 16]:

K∗ ≡ {x∗ ∈ X∗ : x ′ ∈ K =⇒ 〈x∗,x ′〉⩾ 0} . (20)

The set K∗ defined by (20) is always a convex cone. If X is also a Hilbert space, then by the
Riesz–Fréchet representation theorem, the definition (20) is equivalent to:

K∗ ≡ {x ∈ X : x ′ ∈ K =⇒ 〈x|x ′〉⩾ 0} . (21)

If K= K∗, then K is called a self-dual cone. Examples of a self-dual cone for m ∈ N+ are: the
positive orthant cone of X = Rm:

Km+ ≡ {x ∈ Rm : x1 ⩾ 0, . . . ,xm ⩾ 0}= Rm
+, (22)

the Lorentz (or second order, or quadratic) cone:

Kmq ≡
{
(x, t) ∈ Rm+1 : ||x ||2 ⩽ t

}
, (23)

and the PSD cone Sn+ discussed further in section 3.1.
A set S ⊆ Rn is called a basic closed semialgebraic set if and only if there exist a set of

polynomials {fi}i∈[m], fi : Rn → R, such that S =
{
x ∈ Rn : ∀i∈[m]fi(x)⩾ 0

}
. Similarly, it is

called a basic open semialgebraic set if and only if S =
{
x ∈ Rn : ∀i∈[m]fi(x)> 0

}
. Compare

this with algebraic sets which have the form S =
{
x ∈ Rn : ∀i∈[m]fi(x) = 0

}
. A set S is called

semi-algebraic if there exists a set {Si,j}i∈[k],j∈[ri] for some k,ri ∈ N+ such that each Si is
a basic closed semialgebraic set or a basic open semialgebraic set or an algebraic set and
S =

⋃
i∈[k]

⋂
j∈[ri]Si,j. Any algebraic set is obviously semialgebraic. A consequence of the

famous Tarski–Seidenberg principle [282, 297] is the fact that the set of semialgebraic sets
is closed under projections, i.e. if S ∈ Rn1+n2 is a semialgebraic set, then also its projection
onto the first n1 coordinates is a semialgebraic set. We refer to chapter 2 of [34] for a detailed
discussion of semialgebraic sets. The positive orthant, Lorentz, and PSD cone are basic closed
semialgebraic sets; the same holds for polyhedra and spectrahedra discussed in section 4.1.
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2.3. Convex analysis: functions, convex conjugate, and Fenchel–Rockafellar theorem

Consider an arbitrary function f : X→ R∪{−∞,+∞}. The function is defined to be proper
if it never takes the value −∞, and is not identically equal to +∞. The epigraph of f is
defined as

epi f≡ {(x,r) ∈ X×R : r⩾ f(x)} , (24)

so it is the set of all points above the graph of the function. The hypograph of f is hypf≡
{(x,r) ∈ X×R : f(x)⩾ r}. One usually formulates the definition of a convex function in terms
of Jensen’s inequality (12); this is the convexity in analytical sense. Alternatively, epigraph
allows to provide a geometric sense of convexity, viz. f is defined to be convex if epif is convex,
and concave if −f is convex; see [198, p 12] for a discussion. The effective domain of f is
defined as

dom f≡ {x ∈ X : f(x)<+∞} . (25)

f is defined to be lower semi-continuous (lsc) if epi f is a closed subset of X×R. The set cont f
is the set of all points where f is finite and continuous.

Let F : X×Y→ R∪{−∞,+∞}, with Y a linear spaces, be convex in both parameters. Let
C⊆ X be a non-empty convex set. Then [41, p 88], the function

θ (y) = inf
x∈C

F(x,y) (26)

is convex in y, as long as

∀y∈Yθ (y) 6=−∞. (27)

The epigraph of θ is epi θ = {(x, t) : ∃y∈Y(x,y, t) ∈ epi F}, and is convex, as a projection of a
convex set epi F. Indeed, let y0,y1 ∈ dom θ. Then

∀ϵ>0∃x0,x1∈CF(x0,y0)⩽ θ (y0)+ ϵ and F(x1,y1)⩽ θ (y1)+ ϵ, (28)

and for any λ ∈ [0,1] we have

θ (λy0 +(1−λ)y1) = inf
x∈C

F(x,λy0 +(1−λ)y1)

⩽ F(λx0 +(1−λ)x1,λy0 +(1−λ)y1)⩽ λF(x0,y0)+ (1−λ)F(x1,y1)

⩽ λθ (y0)+ (1−λ)θ (y1)+ ϵ.

(29)

Since ϵ can be arbitrarily small, Jensen’s inequality (12) for θ follows.
A well-known operation of the holomorphic functional calculus is the extension of a func-

tion defined on real values to Hermitian matrices. This extension allows for the evaluation of
functions that are not originally defined on matrices but can be extended to them through
the use of complex analysis techniques. Any Hermitian matrix H ∈Hn can be diagonal-
ized by a unitary matrix U, so that H= U ·Diag[(di)i∈[n]] ·U†. A function f : R→ R can be
applied to the eigenvalues, and thus the function can then be extended to the entire matrix as
f(H)≡ U ·Diag[( f(di))i∈[n]] ·U†. We say that f is an operator monotone (or matrix monotone)
when for any M1,M2 ∈Hn, from M1 �M2 it follows that f(M1)� f(M2). Next, we say that f
is operator convex (or matrix convex) if it satisfies Jensen’s inequality (12) in Löwner’s partial
order, i.e. λf(M1)+ (1−λ)f(M2)� f(λM1 +(1−λ)M2) for all λ ∈ [0,1] [134]. Finally, we
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say that f is operator concave (or matrix concave) when −f is operator convex [4, 60]. The
matrix epigraph of f is epi f≡

{
(X,R) ∈Hn

++ ×Hn : R� f(X)
}
, and the matrix hypograph of

f is hyp f≡
{
(X,R) ∈Hn

++ ×Hn : f(X)� R
}
.

The (commutative) perspective of a function f : Rn → R is the function Pf : Rn+1 → R
defined as Pf(x, t)≡ tf(x · t−1) with dom Pf = {(x, t) : x/t ∈ dom f, t> 0}. The operation of
perspective preserves the convexity, i.e. if f is convex then Pf is convex [41, p 89]. If
M1,M2 ∈Hn commute, then Pf(M1,M2) is well-defined by extending Pf to matrices [93]. To
cover also the non-commutative case, the non-commutative perspective of an operator convex
function is defined as the unique extension of the corresponding (commutative) perspective that
preserves homogeneity and convexity [92]. The formula for non-commutative perspective is

Pf[M1,M2]≡M1/2
2 · f

(
M−1/2

2 M1M
−1/2
2

)
·M1/2

2 , with dom Pf =Hn×Hn
+ [91]. For instance,

the non-commutative perspective of the negative logarithm function is the operator relative
entropy [107–110], viz.

S(M1|M2) =M1/2
2 · η

[
M−1/2

2 M1M
−1/2
2

]
·M1/2

2 = P(−x logx) [M1,M2]

=−M1/2
1 · log

(
M−1/2

1 M2M
−1/2
1

)
·M1/2

1 = P(− log) [M2,M1]
(30)

for η(x)≡−x logx and invertibleM1 and M2 [109].
In [14, 261] the notion of the matrix geometric mean M1#M2 ≡M1/2

1 ·
[M−1/2

1 M2M
−1/2
1 ]1/2 ·M1/2

1 , which satisfy certain general properties [182], was introduced
for PD M1 and M2. Its direct generalization is the so-called t-weighted matrix geometric
mean

M1#tM2 ≡ P(x7→xt) [M1,M2] =M1/2
1 ·

[
M−1/2

1 M2M
−1/2
1

]t
·M1/2

1 , (31)

and thus M1#M2 =M1#1/2M2 [33, 274]. It can be shown that t-weighted matrix geometric
mean is operator concave for t ∈ [0,1], and operator convex for t ∈ [−1,0]∪ [1,2] [33].

The indicator function of C is defined as

IC [x]≡

{
0 if x ∈ C,
+∞ otherwise.

(32)

The indicator function IC[x] is convex if and only if, the set C is convex. It can also be shown
that the indicator function is lower (upper) semi-continuous if and only if, C is closed (open).

The mean value of a random variable x we denote as 〈x〉, and the standard deviation as
σ [x]. The covariance between random variables xi and xj is defined as cov[xi,xj]≡ 〈(xi −
〈xi 〉) · (xi −〈xi 〉)〉, and their correlation is defined as corr[xi,xj]≡ cov[xi,xj]/(σ [xi ] ·σ [xj]).
The variance of x is the covariance of the variable with itself, var[x]≡ cov[x,x]⩾ 0.

2.3.1. Fenchel conjugate. For an arbitrary function f : X→ R∪{+∞}, where X is a Banach
space, the Fenchel conjugate [102], or convex conjugate, or Legendre transform, or Legendre–
Fenchel transform, or simply the conjugate, being the basic operation in convex analysis, is
defined as

f∗ : X∗→ R∪{−∞,+∞} : x∗ 7→ sup
x∈X

{〈x∗,x〉− f(x)} . (33)
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The conjugate operation can be applied multiple times. For instance the function ( f∗)∗ is
defined on X∗∗. With an abuse of notation by f∗∗ we denote the restriction of ( f∗)∗ to X, so
that [198, p 83]:

f∗∗ : X→ R∪{−∞,+∞} : x 7→ sup
x∗∈X∗

{〈x∗,x〉− f∗ (x∗)} . (34)

It holds

epi f∗ =
⋂
x∈X

epi{〈·,x〉− f(x)}. (35)

Since for any x ∈ X the set epi{〈·,x〉− f(x)} is convex and closed in weak* topology on X∗×R
(and the natural topology on R), we have that f∗ is always a convex and lsc function in that
topology, no matter on the form of f. It is trivial to see that f1 ⩽ f2 =⇒ f∗1 ⩾ f∗2 and f∗(0) =
− infx∈X f(x) [198, p 82].

A direct consequence of the definition (33) is for any f : X→ R∪{−∞,+∞} it holds [138,
p 184]:

f ≡+∞ ⇐⇒ f∗ ≡−∞ ⇐⇒ −∞∈ f∗ (X) , (36)

and, in particular if f∗ is proper, then also f is proper. From ∀x∈X∀x∗∈X∗ f(x)⩾ 〈x∗,x〉− f∗(x∗)
taking supremum over x∗ we get ∀x∈Xf∗∗(x)⩽ f(x), i.e.

f∗∗ ⩽ f. (37)

The inequality (37), together with the convexity and lsc properties of the Fenchel conjugate,
motivate to call f∗∗ a regularization, or a convex lsc relaxation. If f itself is convex and lsc,
and there exist x∗ ∈ X∗ and α ∈ R such that f ⩾ 〈x∗, ·〉+α then the Fenchel–Moreau theorem
states the equality,

f = f∗∗, (38)

see [198, p 84] for the proof.

2.3.2. Subgradient and Fenchel–Rockafellar theorem. Consider an arbitrary function f :
X→ R∪{+∞}. An element x∗ ∈ X∗ is called a subgradient of f at x ∈ dom f when

∀x ′∈Xf(x ′)− f(x)⩾ 〈x∗,x ′− x〉. (39)

The (possibly empty) set of all subgradients of f at x ∈ domf is called subdifferential and
denoted by ∂f(x). Directly from the definitions of subgradient and convex conjugate, it fol-
lows that

∀x∈domf⊆X∀x∗∈X∗x∗ ∈ ∂f(x) ⇐⇒ f(x)+ f∗ (x∗) = 〈x∗,x〉 =⇒ x ∈ ∂f∗ (x∗) . (40)

If f(x) = f∗∗(x), e.g. for f proper convex lsc by the Fenchel–Moreau theorem, then the implic-
ation in (40) becomes equivalence. Note that a part of (40), the so-called Fenchel–Young
inequality,

∀x∈X∀x∗∈X∗ f(x)+ f∗ (x∗)⩾ 〈x∗,x〉, (41)
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always holds [36, p 51]. The notion of the subgradient does not require the function f to be
convex. Nonetheless, it uses global properties of f and is most useful in the context of convex
functions.

The Fenchel–Rockafellar theorem provides sufficient conditions for the subdifferential of
a convex function f : X→ R∪{+∞} to be non-empty at x, i.e. ∂f(x) 6= ∅ [37, p 121], viz.:

(i) f is lsc and x ∈ core(dom f), or
(ii) x ∈ cont f.

2.4. Optimization in Banach spaces

For the rest of this section, let X and Y be Banach spaces. The duality between product space
X×Y and X∗×Y∗ is given by 〈(x∗,y∗),(x,y)〉 ≡ 〈x∗,x〉+ 〈y∗,y〉.

Now, we provide a discussion of the basic concept of duality in optimization. The treatment
we provide is relatively extensive, yet we find this topic to be of particular importance, and,
additionally, often quite confusing. We discuss the two major duality schemes of Fenchel–
Rockafellar and Lagrangian. For SDP the two schemes lead to the same results, but since most
of the works refer to either of those two, it is useful to recognize and understand both. We
consider the general approach, not limited to convex optimization unless explicitly stated. As
wewill show, for an optimization problem formulated as aminimization task, we can formulate
a related maximization task with the property of the so-called duality meaning that the value
of any feasible solution of the former is at least as large as the value of any feasible solution
of the latter. The former optimization task is called a primal problem, and the latter a dual
problem.

For both Fenchel–Rockafellar and Lagrangian schemes, we consider a single, possibly non-
convex, function F : X×Y→ R∪{+∞}. The primal problem is defined as

minimize F(x,0)

subject to x ∈ X,
(42)

and the primal optimization is infx∈X{F(x,0)}; its value is called the primal value and denoted
by p. A value of x ∈ X for that the primal value p is attained, if exists, is called a primal solution.
The primal function, or the target function is

f(x)≡ F(x,0) . (43)

Actually, in most of the cases, one is interested in some, domain-specific, target function f, and
in this sense, F is secondary to f. For a given f there exist many different possible functions F
that satisfy (43). For this reason, F is called a perturbation function of f.

The dual problem is defined as

maximize −F∗ (0,y∗)

subject to y∗ ∈ Y∗,
(44)

and the dual optimization is supy∗∈Y∗{−F∗(0,y∗)}, where F∗ : X∗×Y∗→ R∪{−∞,+∞} is
the Fenchel conjugate with respect to both variables, i.e.

F∗ (x∗,y∗) = sup
(x,y)∈X×Y

{〈(x∗,y∗) ,(x,y)〉−F(x,y)} . (45)
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Its value is called the dual value and denoted by d; a value of y ∈ Y∗ for that the value d is
attained, if exists, is called the dual solution. The dual function is [41, p 216]:

g(y∗)≡−F∗ (0,y∗) . (46)

The value function is defined as

θ : Y→ R∪{−∞,+∞} : y 7→ inf
x∈X

F(x,y) . (47)

The duality property is called weak when the value p of the optimal solution of the primal
problem is greater or equal to the value d of the optimal solution of the dual problem, i.e.
p⩾ d. This property can be obtained directly from the definition of the Fenchel conjugate
giving:

F(x,0)+F∗ (0,y∗)⩾ 〈(0,y∗) ,(x,0)〉= 0. (48)

The duality is called strong, if the equality of the optimal primal and dual solution holds, i.e.
p= d. The difference p− d⩾ 0 is called the duality gap. The duality gap ∆ is defined as

∆≡

{
0 if p= d ∈ {−∞,+∞}
p− d otherwise.

(49)

For the strong duality to hold, we need equality in (48). Since 〈(0,y∗),(x,0)〉= 0, from (40)
it follows that the strong duality for (x̄, ȳ∗) ∈ X×Y∗ is equivalent to [198, pp 101–2]:

(0, ȳ∗) ∈ ∂F(x̄,0) , (50)

and if F(x̄,0) = F∗∗(x̄,0), then also to [198, p 103]:

(x̄,0) ∈ ∂F∗ (0, ȳ∗) . (51)

If the perturbation functions F is proper and is both convex and lsc in the second parameter,
then it is called a dualizing parametrization [271] of the minimization infx∈X{F(x,0)}, resp.
of the primal problem (42). Thus, F provides a family of optimizations infx∈X{F(x,y)}, resp.
problems, parameterized by the so-called parameter variable y [198, pp 100–1]. We stress that
the same primal problem (42) is obtained with any other function F ′ : X×Y→ R∪{+∞}
satisfying F(·,0)≡ F ′(·,0), but a different function F ′ 6= F may lead to a different dual prob-
lem (44).

2.5. Fenchel–Rockafellar dualization scheme

First, for the Fenchel–Rockafellar duality [36, 37, 41, 138], consider a bounded linear map A :
X→ Y, and two, possibly non-convex, functions, f : X→ R∪{+∞} and g : Y→ R∪{+∞}.
For the triple (A, f,g) define

F(x,y)≡ f(x)+ g(Ax+ y) . (52)

The primal problem (42) is thus

minimize f(x)+ g(Ax)

subject to x ∈ X.
(53)
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The value function (47) is equal

θ : Y→ R∪{−∞,+∞} : y 7→ inf
x∈X

(f(x)+ g(Ax+ y)) (54)

with θ(0) = p. We have [198, p 106]:

F∗ (x∗,y∗) = sup
(x,y)∈X×Y

{〈(x∗,y∗) ,(x,y)〉− f(x)− g(Ax+ y)}

= sup
(x,y)∈X×Y

{〈x∗+A∗y∗,x〉+ 〈−A∗y∗,x〉+ 〈y∗,y〉− f(x)− g(Ax+ y)}

= sup
(x,y)∈X×Y

{〈x∗+A∗y∗,x〉+ 〈−y∗,Ax+ y〉− f(x)− g(Ax+ y)}

= sup
x∈X

{
〈x∗+A∗y∗,x〉− f(x)+ sup

y∈Y
(〈−y∗,Ax+ y〉− g(Ax+ y))

}
= sup

x∈X
{〈x∗+A∗y∗,x〉− f(x)+ g∗ (−y∗)}

= f∗ (x∗+A∗y∗)+ g∗ (−y∗) .

(55)

The dual problem (44) is thus equal

maximize − f∗ (A∗y∗)− g∗ (−y∗)
subject to y∗ ∈ Y∗.

(56)

The weak duality, viz. p⩾ d, can be derived directly from the Fenchel–Young inequality (41).
Indeed from the adjoint operator definition (1) we get

∀x∈X∀y∗∈Y∗ (f(x)+ f∗ (A∗y∗))+ (g(Ax)+ g∗ (−y∗))
⩾ 〈A∗y∗,x〉+ 〈−y∗,Ax〉= 〈y∗,Ax〉− 〈y∗,Ax〉= 0.

(57)

2.5.1. Strong duality. Knowing that the weak duality p⩾ d holds, to show the strong duality,
we need to establish when p⩽ d. Suppose that the subdifferential ∂θ is non-empty at 0. We
will show that this suffices for the strong duality, and in section 2.5.2 provide the so-called
constraint qualification conditions that ensure this. Let y∗ ∈ ∂θ(0)⊆ Y∗. From the definition
of subgradient for any x ∈ X we have ∀y∈Yθ(y−Ax)− θ(0)⩾ 〈y∗,y−Ax〉, and thus, from the
definition of the value function (54) we get

∃y∗∈Y∗∀x∈X∀y∈Yθ (0)⩽ θ (y−Ax)−〈y∗,y−Ax〉
⩽ f(x)+ g(y)−〈y∗,y−Ax〉= (f(x)+ 〈A∗y∗,x〉)+ (g(y)−〈y∗,y〉) .

(58)

Since the inequality holds for all x ∈ X and y ∈ Y, taking the infimum of these variables by
the definition of the convex conjugate (33) we get ∃y∗∈Y∗θ(0)⩽−f∗(−A∗y∗)− g∗(y∗) or,
equivalently by negating the sign of y∗ (as also −y∗ ∈ Y∗), we get

∃y∗∈Y∗θ (0)⩽−f∗ (A∗y∗)− g∗ (−y∗) . (59)

This, by (56), shows that p= θ(0)⩽ d, and thus

∂θ (0) 6= ∅ =⇒ p⩽ d, (60)

and the strong duality holds.
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2.5.2. The decoupling lemma. Now, we will discuss the so-called decoupling lemma [37,
38] providing a sufficient criterion, viz. certain constraint qualification condition, for the strong
duality of the Fenchel–Rockafellar scheme. Since this topic is crucial for duality in convex
optimization, for the sake of completeness, we provide in this work in appendix A a summary
of the proof of the theorem, following [37, p 127nn].

Let us assume that f : X→ R and g : Y→ R are both convex and that the map A : X→ Y is
linear and bounded.We provide sufficient conditions for θ as defined in (54) to have non-empty
subdifferential at 0, i.e. ∂θ(0) 6= ∅. We use the Fenchel–Rockafellar theorem, see section 2.3.2.
One can directly check that θwhen f and g are convex, then θ given by (54) is a convex function
with domθ = domg−Adomf, where the set difference is the Minkowski difference. Indeed,
F(x,y) defined as (52) is convex as a sum of convex f and g is of the form (26), and satisfies
the condition (27). The decoupling lemma states that under the condition that both f and g are
lsc and

0 ∈ core(dom θ) , (61)

the function θ defined as in (54) is continuous at 0. Then, from the Fenchel–Rockafellar the-
orem stated in section 2.3.2, it follows that ∂θ is non-empty at 0, as required for the proof of
strong duality as given in section 2.5.1.

2.6. Lagrangian dualization scheme

Next, for the Lagrangian duality [138, 198], consider a single, again possibly non-convex,
function F. Nonetheless, again, if F is convex in both parameters, then θ is of the form (26)
and satisfies (27), thus θ is convex in this case. The Lagrangian of F is defined as [138, 198,
271]

L : X×Y∗→ R∪{−∞,+∞} : (x,y∗) 7→ −sup
y∈Y

{〈y∗,y〉−F(x,y)} , (62)

where one can easily recognize the Fenchel conjugate with respect to the parameter (i.e. the
second) variable.

The Lagrangian allows reformulating the primal problem (42). From the definition (62) it
follows that

∀x∈X∀y∗∈Y∗∀y∈YF(x,y)⩾ L(x,y∗)+ 〈y∗,y〉. (63)

When F is a dualizing parametrization, then by the Fenchel–Moreau theorem, see (38), the
equality in (63) holds. From (63) we have for the primal optimization, see (42):

inf
x∈X

{F(x,0)}⩾ inf
x∈X

sup
y∗∈Y∗

L(x,y∗) . (64)

Also the dual optimization, see (44), can be easily expressed with the Lagrangian, viz. [198, p
109]:

sup
y∗∈Y∗

{−F∗ (0,y∗)}= sup
y∗∈Y∗

{
− sup

x∈X,y∈Y
{〈(0,y∗) ,(x,y)〉−F(x,y)}

}

= sup
y∗∈Y∗

{
−sup

x∈X
sup
y∈Y

{〈y∗,y〉−F(x,y)}

}
= sup

y∗∈Y∗
inf
x∈X

L(x,y∗) .

(65)
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The inner infimum of the last expression is sometimes used as an alternative definition [41, p
216] of the dual function (46):

g(y∗)≡ inf
x∈X

L(x,y∗) . (66)

A direct consequence of (64) and (65) is another proof of the weak duality:

inf
x∈X

{F(x,0)}⩾ inf
x∈X

sup
y∗∈Y∗

L(x,y∗)⩾ sup
y∗∈Y∗

inf
x∈X

L(x,y∗) = sup
y∗∈Y∗

{−F∗ (0,y∗)} . (67)

The second inequality follows from the well-known max–min inequality [313]. A value
(x̄, ȳ∗) ∈ X×Y∗ is defined to be a saddle point of L when

∀x∈X∀y∗∈Y∗L(x̄,y∗)⩽ L(x̄, ȳ∗)⩽ L(x, ȳ∗) , (68)

i.e. in other words, when

sup
y∗∈Y∗

L(x̄,y∗) = L(x̄, ȳ∗) = inf
x∈X

L(x, ȳ∗) . (69)

From (67) we also directly get that for F being a dualizing parametrization the strong duality
for (x̄, ȳ∗) is equivalent to saying that (x̄, ȳ∗) is a saddle point of L, see e.g. [198, p 110] for a
proof.

2.7. Convex cone optimization and duality

We have introduced the general framework for optimization and discussed its duality. Now, we
concentrate on a particular problem of convex cone programming, i.e. the optimization over
variables belonging to a convex cone [41, 81, 214, 235]. We write convex cone optimization
problems as:

minimize c†x

subject to Ax= b,

x ∈ K⊆X ,
(70)

in the primal form, see (42), and in the dual form, see (44), as:

maximize 〈y∗,b〉
subject to c†−A†y∗ = z∗,

z∗ ∈ K∗ ⊆X ∗,
(71)

where K is a nonempty, closed convex cone in an Euclidean space X , see (19),A : X → Rm is
a linear operator, the operatorA† : (Rm)

∗→X ∗ is its adjoint, b ∈ Rm, y∗ ∈ (Rm)
∗ and c ∈ X .

Note, that the spaces Rm and (Rm)
∗ are isomorphic with the transposition operation as the

isomorphism.
To derive (71) from (70) we need a parametrization of the family of problems [198, pp

111–2]. One of the possibilities is to introduce a variable y used as the parameter for the linear
constraints and take

F(x,y) =

{
c†x+ I{x:Ax−b=y} [x] if x ∈ K,
+∞ otherwise

(72)
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where we used the indicator function (32). We stress that this is only one of the multiple
examples of a dualizing parametrization (note that the indicator is over a convex closed set,
and thus is convex and lsc): the most direct and simple, but yet arbitrary. To get the dual
problem (44) we calculate

−F∗ (0,y∗) =− sup
x∈X,y∈Y

{〈y∗,y〉−F(x,y)}= inf
x∈K,y∈Y

{
c†x+ I{x:Ax−b=y} [x]−〈y∗,y〉

}
= inf

x∈K

{
c†x−〈y∗,Ax− b〉

}
= inf

x∈K

{
〈c†−A†y∗,x〉+ 〈y∗,b〉

}
.

(73)

The term 〈c†−A†y∗,x〉 is non-negative for all x ∈ K if and only if c†−A†y∗ belongs to the
dual cone K∗; and if a negative value can be attained for some x ∈ K, then the infimum is−∞.
Thus

−F∗ (0,y∗) =

{
〈y∗,b〉 if c†−A†y∗ ∈ K∗,
−∞ otherwise.

(74)

The problem (71) is derived as supy∗∈Y∗{−F∗(0,y∗)}, see (44), by introducing z∗ = c†−
A†y∗.

The same result can be equivalently achieved, but more step by step, with the approach
using the Lagrangian (62), which if x ∈ K for F given by (72) is [41, p 266]:

L(x,y∗) =−sup
y∈Y

{〈y∗,y〉−F(x,y)}= inf
y∈Y

{F(x,y)−〈y∗,y〉}

= inf
y:Ax−b=y,y∈Y

{
c†x−〈y∗,y〉

}
= 〈c†−A†y∗,x〉+ 〈y∗,b〉

(75)

and L(x,y∗) = +∞ if x /∈ K. The dual is derived as, see (65) and (73):

sup
y∗∈Y∗

inf
x∈X

L(x,y∗) = sup
y∗∈Y∗

inf
x∈K

L(x,y∗) . (76)

In particular, we see that the dual function (66) is the same as in (74):

g(y∗) = inf
x∈X

L(x,y∗) = inf
x∈K

L(x,y∗) =−F∗ (0,y∗) =

{
〈y∗,b〉 if c†−A†y∗ ∈ K∗,
−∞ otherwise.

(77)

3. Theory of SDP

In this section, we delve into the foundational concepts and principles underlying the field
of SDP. The section 3.1 elucidates the fundamental properties and criteria for positive semi-
definiteness of matrices, which form the basis for semidefinite optimization problems. In
section 3.2 we investigate various primal and dual formulations present in the literature. Next,
section 3.3 explores the duality theory associated with SDP, highlighting the relationships
between primal and dual problems, and section 3.4 discusses how a solution of a dual prob-
lem can provide a useful linear (affine) bound on a range of parameterized primal problems.
Finally, sections 3.5 and 3.6 cover specialized topics, shedding light on the utilization of com-
plex variables, the incorporation of slack and surplus variables, and the treatment of mixed
problems and equalities in the context of SDP. In section 3.7 we discuss simple tricks related
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to the Schur complement. Then, in section 3.8 we briefly discuss implementations of SDP
solvers, and in section 3.9 we outline selected internal solver mechanisms that may impact the
performance.

The following overview can be supplemented with numerous other applications and con-
structions. These include the famous MAX-CUT and MAX-k-SAT relaxations by Goemans
and Williamson [123], finding maximum eigenvalues, matrix norms optimizations, and com-
binatorial optimization problems [8, 9, 30, 121, 130, 140, 215, 240, 323, 325].

3.1. Definition and characterization of positive semidefiniteness

Discussion of SDP requires us to introduce the concept of PD or simply positive matrices,
as well as PSD or simply semi-definite matrices. We denote a positive (or semi-positive)
matrix M by M� 0 (or M� 0). PSD matrices are also referred to as non-negative definite
or simply non-negative. Several equivalent definitions or characterizations of such matrices
can be found in the literature, and here we present three of them. Thus, a symmetric mat-
rix M ∈ Rn×n is considered positive (or non-negative) if all its eigenvalues are positive (or
non-negative). Alternatively, M is positive (or non-negative) if and only if for all x ∈ Rn with
x 6= 0, it holds that xTMx> 0 (or xTMx⩾ 0). Similarly, for a Hermitian matrix M ∈ Cn×n, it
is PD (or PSD) if and only if for all x ∈ Cn with x 6= 0, we have x†Mx> 0 (or x†Mx⩾ 0).
The former definition based on eigenvalues seems to offer a greater intuitive understanding,
while the latter is more prevalent in the existing literature on the subject. A more compre-
hensive exploration of the properties of PD and PSD matrices can be found in [150, 209]. It
should be noted that a real PD (PSD) matrix satisfies the conditions for Hermitian matrices,
making it a complex PD (PSD) matrix as well. Conversely, for a complex PD (PSD) mat-
rix M=MR + iMI (where MR and MI are real symmetric and antisymmetric matrices), we
observe that ∀x∈Cn x 6=0x†

1
2 (M+M†)x= x†MRx⩾ 0, implying that the matrix MR is a real PD

(PSD) matrix. It is evident that PSD matrices of size n form a convex cone Sn+, as indicated in
equation (19), and this cone is self-dual.

Now we state two very important properties characterizing PSD matrices by their possible
decompositions [209, 316]. It can be shown that for a Hermitian (symmetric) matrixM ∈ Cn×n

(M ∈ Rn×n) we have that M� 0 is equivalent to each of the following statements:

(i) There exists L ∈ Cn×n (L ∈ Rn×n) such, that M= L†L (M= LTL), and L is a lower trian-
gular matrix.

(ii) There exists a set of vectors {vi}i∈[n], vi ∈ Cn (vi ∈ Rn), such that Mi,j = v†i · vj (Mi,j =
vTi · vj).

In the first of these characterizations, a non-unique matrix L is called the Cholesky decom-
position ofM. The second characterization is equivalent to the existence of a matrix B ∈ Cn×n

(B ∈ Rn×n), such that M= B†B (M= BTB), so, in other words, M is a multiplication table of
vectors {vi}i being columns of B. Some authors [324, 326] existence of such matrix B use as
the definition of positive semi-definiteness. We say that M is a Gram matrix, or a Gramian.
The relation between the existence of a set of vectors and PSD property can be generalized
to infinite-dimensional spaces [206]. Trivially, the set of vectors is linearly independent if and
only if the determinant of its corresponding Gram matrix is non-zero.

The notion of PD and PSD is also characterized by the Sylvester criteria, formulated as fol-
lows. LetM be anm× nmatrix, and consider sets I⊆ [m] and J⊆ [n] of equal sizes. Let (M)I,J
be a submatrix with elements contained in rows from I and columns from J. The determin-
ant of (M)I,J or, in other words, the determinant of a square submatrix obtained by removing
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some rows and columns of a larger matrix, is called a minor of the matrix. If I= J, then the
minor is called principal. If I= J= [k], for k⩽ n,m, then the principal minor is called leading.
Sylvester’s criteria provide necessary and sufficient conditions for positive definiteness and
semi-definiteness of a Hermitian matrix [117]. Sylvester’s criterion for positive definiteness
states that a Hermitian matrix is PD if and only if, all its leading principal minors are posit-
ive. Sylvester’s criterion for positive semi-definiteness states that a Hermitian matrix is PSD if

and only if, all principal minors are non-negative. For example an SDP constraint

[
1 x
x 1

]
� 0

implies by the second Sylvester’s criterion that |x |⩽ 1.
For the Löwner’s partial order � it can be easily shown that if A,B� 0, then A+B� 0. If

we multiply a PSD matrix by a non-negative constant, we get another PSD matrix. Thus the
set of PSD matrices forms a pointed convex cone. It also follows for A,B� 0 that Tr(AB)⩾ 0
and A

1
2 exists and is PSD.

3.2. Formulations of semidefinite optimization problems

In the literature there exist a couple of equivalent formulations of SDPs, each has both primal
and dual forms. The author prefers the so-called standard or canonical form of SDP given
below in (80) and (81) in section 3.2.1, and used in many of the classical textbooks [15, 36,
116], reviews [231, 306], SDP fundamental papers [10, 216, 293, 305, 307] and implement-
ations [214, 292, 309, 310, 312], sometimes with slight changes in labeling [27], different
notations for the Frobenius product (3), and more general form of conic formulations [66,
236]. Another important formulation is the one used by Vandenberghe and Boyd [41, 315],
which we provide in section 3.2.2. This form seems to be preferred in many quantum inform-
ation papers [42, 95, 160, 227] with direct influence of [315], which is apparently the default
reference to the SDPs. The third important formulation was given by Watrous in his lecture
notes [324] and textbook [326], see section 3.2.3 below. It has an elegant symmetric form and
also is used in many quantum information books and papers [61, 311], especially involving
quantum channels [54, 183, 199, 207, 251].

The paradigmatic part of all the formulations are LMIs, i.e. expressions of the form [40]:

F(x)� 0,where (78a)

F(x)≡ F0 +
∑
i∈[m]

xiFi, (78b)

x ∈ Rm is a variable, and Fi, for i = 0, . . . ,m, are symmetric constant matricesRn×n. The origin
of LMIs is in control theory including solving Lyapunov stability problems, and their inter-
connection with convex optimization has been noted e.g. by Pyatnitskii and Skorodinskii [40,
262]. In fact, SDPs can be intuitively viewed as optimization problems with linear target func-
tions and LMIs as constraints. Any SDP can be formulated as either a primal or dual problem
of the formulations given below. From the form of constraints (78a) it directly follows that
they are convex:

F(λx+(1−λ)x ′) = λF(x)+ (1−λ)F(x ′)� 0 (79)

for λ ∈ [0,1]. The linear target function is obviously also convex. Thus the SDP problems are
convex, so we can use the methods of section 2. We also note that any number of LMIs can be
reformulated as a single LMI involving block-diagonal matrices, with each block referring to
a relevant LMI. We refer to [68] for an overview of applications of LMIs.
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3.2.1. The canonical or standard form. Again, let m,n ∈ N, m⩽ n(n+1)
2 . An SDP problem in

a canonical, or standard, primal form is the following optimization task in a variable X ∈ Sn:

minimize C •X
subject to Ai •X= bi, for i ∈ [m]

X� 0,

(80)

where C ∈ Sn and A1, . . . ,Am ∈ Sn are symmetric matrices. The matrices Ai, C, and vector
b ∈ Rm define the SDP problem. Note that the fact that these matrices are symmetric is not
restrictive. For a symmetric matrix X and a matrix C we have C •X= Tr

(
1
2 (C+CT)X

)
,

and thus we may always take a symmetric matrix 1
2 (C+CT) instead of C. We assume that

A1, . . . ,Am are linearly independent (otherwise we can reduce this set). Obviously, LP prob-
lem (13) may be written in the form of SDP (80), if X is constrained to be a diagonal matrix,
with the diagonal entries used as the x variable. Thus, LP can be considered as a particular
case of SDP. The goal expression C •X= Tr(CX), but the former notation is more often used;
similarly Ai •X= Tr(AiX).

A canonical dual SDP problem for (80) is the optimization task in variables y ∈ Rm and
Z ∈ Sn of the following form

maximize bT · y

subject to C−
∑
i∈[m]

yiAi = Z

Z� 0.

(81)

Some authors [45, pp 39–40] rewrite the canonical form (80) and (81) with substitutions Fi
instead of Ai, −C instead of C, and −λi instead of yi, turning the primal problem to maximiz-
ation, and the dual problem to minimization.

Similarly as in LP, X is called the primal variable, y the dual variable, Z the dual slack
variable, {Ai} are linear constraint matrices, b is the RHS of the linear constraint, and C is
the linear coefficient. If X,Z ∈ Rn×n and y ∈ Rm satisfies conditions specified by (80) and (81),
then they are called a feasible solution. A feasible variable X is called a primal solution, and
feasible variables Z and y constitute the dual solution. An optimal solution is required to be
feasible. The values of C •X and bT · y are called the values of the primal and dual solutions, or
values of the problem, respectively. We have C •X⩾ bT · y. Usually, an SDP solver is expected
to find both primal and dual solutions. If either C= 0 ∈ Rn×n or b= 0, then such a problem
is called feasibility problem and refers to finding whether any solution of given, the primal or
dual, problem exists. As the dual form is often delivered from the Lagrange duality 2.6, and y,
in that case, plays the role of Lagrange multipliers, this name is also usually attributed to the
dual variable y [41].

The fact that primal formulation refers to minimization and dual to maximization problems,
is not restrictive.We can always change the sign of thematrixC or the vector b to get the desired
optimization problem fitting into the standard form in (80) and (81). What is more, a problem
formulated in one of the forms given by (80) and (81)may be reformulated in the other one. The
issue of choosing the proper formulation is not always obvious and can have a very significant
impact on the difficulty of the problem to a solver [194]. This can be illustrated by the example
in table 1 showing the sizes of some SDP problems in dual and primal formulations. Generally,
one should choose the formulation which leads to a smaller number of constraints, given by
the number m unless some special properties of the structure of the formulation can be used
to further simplify the process of solving the problem, see e.g. section 3.9.
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3.2.2. The Vandenberghe and Boyd and the SDPA forms. In the formulation popularized
by [41, 315] the primal optimization task is:

minimize cT · x
subject to F(x)� 0,

(82)

where F(x) is given by (78b). As stated in [315] the aim of this formulation is to make the
primal formulation ‘as explicit as possible’. The dual of (82) is

maximize −Tr [F0Z]

subject to Tr [FiZ] = ci, for i ∈ [m] ,

Z� 0,

(83)

where the variable is a symmetric matrix Z ∈ Rn×n.
The form where F0 takes an opposite sign is often referred to as the SDPA, see section 1.3

for a discussion. Stated explicitly, keeping the original notation and naming of the variables
(note using the label Y instead of Z in the dual), the SDPA primal form is [113]:

minimize
∑
i∈[m]

ci xi,

subject to X≡−F0 +
∑
i∈[m]

Fi xi � 0,
(84)

and the SDPA dual form is:

maximize Tr [F0Y]

subject to Tr [FiY] = ci, for i ∈ [m] ,

Y� 0.

(85)

3.2.3. The Watrous symmetric form. The third common form of SDPs is given by
Watrous [324, 326]. This form is designed to show the symmetry between the primal and
dual problems and is particularly convenient for quantum channel analysis. For two com-
plex Euclidean spaces X and Y , a semidefinite program in the Watrous form is defined as
a triple (Φ,A,B), where Φ : L [X ,X ]→ L [Y,Y] is a Hermitian and trace-preserving map,
A ∈ HermX , and B ∈ Herm(Y). The primal problem in the Watrous form is:

maximize 〈A,X〉
subject to Φ(X) = B,

X� 0,

(86)

and the dual is:

minimize 〈B,Y〉
subject to Φ† (Y)� A,

Y ∈ Herm(Y) ,

(87)
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with a remark that in the original notation of [324, 326] Watrous uses ∗ instead of † to denote
the Hermitian conjugate,⩾ instead of� to denote the Löwner’s partial order, and X ∈ Pos(X )
instead of X� 0.

3.2.4. The Kronecker-canonical form for convex cones. Here we briefly show the method-
ology that offers an alternative way of expressing the canonical formulation of (80) and (81),
resembling the LP formulations in (13) and (14). This formalism, in fact, is more encompassing
and applicable to a wide range of conic optimization problems, as discussed in section 2.7. The
general formulation (70) and (71) is highly convenient and valuable, as it facilitates a seam-
less transition between primal and dual formulations for any convex cone by establishing the
corresponding dual cone.

It can be easily verified that for any real matrices A, B, and C, the relationship (A⊗
B)vec(C) = vec(BCAT) holds. We define a matrix A≡ [a1; · · · ;am] ∈ Rn2×m, where ai =
vec(Ai), referring to the matrices in (80). Hence, ai represents the ith column of A.
Consequently, we have vec(

∑
i∈[m] yiAi ) =Ay and Ai •X= (ATx)i, where (ATx)i denotes

the ith element of the vector ATx, c= vec(C), and x= vec(X). When K represents the self-
dual cone of real or convex PSD n by n matrices, substituting these expressions into (70)
and (71) yields an alternative and equivalent formulation for the canonical SDP, commonly
used, for instance, in [214, 236, 291, 309], as illustrated in (111a) and (111b).

3.3. Duality of SDP

Recall that an important property of primal and dual formulations is that any feasible solution
to a primal problem provides an upper bound on all feasible solutions to the dual problem. The
weak duality property of SDP, viz. C •X⩾ bT · y is derived as follows:

C •X− bT · y=

Z+ ∑
i∈[m]

yiAi

 •X− bT · y

= Tr(ZX)+
∑
i∈[m]

yi ·Tr(AiX)− bT · y= Tr(XZ)⩾ 0.

(88)

In LP, the value of the primal and dual problems are always equal meaning the strong duality.
Now, we provide a sufficient condition for strong duality to occur in SDP, as it is observed in
many cases. Let p∗ be the optimal value of the primal SDP problem, and d∗ be the optimal value
of the dual SDP problem. One can show that it holds p∗ = d∗ if at least one of the conditions
is satisfied [9, 140]:

(i) There exist y ∈ Rm, such that C−
∑

i∈[m] yiAi � 0, i.e. the dual problem is strictly feasible
(then also the value d∗ is attained).

(ii) There exists X� 0, such that Ai •X= bi, i.e. the primal problem is strictly feasible (then
also the value p∗ is attained).

These statements are called the Slater conditions [285].
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One of the most confusing and intriguing questions in the theory of SDP is asking whether
the dual of the dual form is the primal form. The affirmative answer can be derived in the
following way:

sup
y

{
bT · y : C−

∑
i

(Ai yi)⪰ 0

}
= sup

y
inf
X�0

{
bT · y+

(
C−

∑
i

(Ai yi)

)
•X

}

⩽ inf
X�0

sup
y

{
C •X+

∑
i

yi · (bi −Ai •X)

}
= inf

X�0,
Ai •X=bi

{C •X} .

(89)

Indeed:

inf
X�0

{
bT · y+X •Z

}
=

{
bT · y if Z� 0

−∞ otherwise
, and (90a)

sup
y

{
C •X+

∑
i

yi · (bi −Ai •X)

}
=

{
C •X if ∀iAi •X= bi
+∞ otherwise

. (90b)

3.4. Affine bounds from dual problems

Wewill now show how by solving a dual problem one can get a linear bound on the solution of
a parameterized family of primal problems. For the sake of illustration, we will use the SDPA
form (84) and (85) with additional linear variables (see section 3.6 for further discussion), but
similar reasoning can be applied to pairs of primal and dual problems of any other form.

Suppose that for given k,m,n ∈ N+, and c ∈ Rm, {Fi}mi=0 ⊂ Sn and {qj}j∈[k] ⊂ Rm we want
to find a lower bound on a function S : Rk → R defined as:

S(v)≡ inf
x∈Rm

∑
i∈[m]

ci xi : ∀j∈[k]qj · x− vj = 0;−F0 +
∑
i∈[m]

Fi xi � 0

 . (91)

For fixed value of v ∈ Rk the value of S(v) is given by the solution of the following SDP,
see (84):

minimize
∑
i∈[m]

ci xi,

subject to X≡−F0 +
∑
i∈[m]

Fi xi � 0,

qj · x− vj = 0 for j ∈ [k] .

(92)
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Following the Lagrangian dualization scheme from section 2.6, we get

S(v) = inf
x∈Rm

sup
β∈Rk

Y∈Sn+

∑
i∈[m]

ci xi −

∑
j∈[k]

βk · (qj · x− vj)

−

−F0 +
∑
i∈[m]

Fi xi

 •Y


⩾ sup

β∈Rk

Y∈Sn+

inf
x∈Rm

F0 •Y+
∑
j∈[k]

βjvj+
∑
i∈[m]

xi ·

ci −∑
j∈[k]

βjqj i−Fi •Y


= sup

β∈Rk

Y∈Sn+

F0 •Y+
∑
j∈[k]

βjvj : ∀i∈[m]ci −
∑
j∈[k]

βjqj i−Fi •Y= 0

= sup
(β,Y)∈F

S̃β,Y (v) ,

(93)

where F ≡
{
(β,Y) ∈ Rk⊗Sn+ : ∀i∈[m]

∑
j∈[k]βjqj i+Fi •Y= ci

}
is the feasible set of the

problem, and S̃β,Y(v)≡ F0 •Y+
∑

j∈[k]βjvj. Thus, the dual of (92) is:

maximize Tr [F0Y] +
∑
j∈[k]

βjvj

subject to Tr [FiY] +
∑
j∈[k]

βjqj i = ci, for i ∈ [m] ,

Y� 0.

(94)

In consequence, by taking any feasible pair (β,Y) one obtains an affine lower bound S(v)⩾
S̃β,Y(v). From the strong duality, it follows that the bound is tight for (β,Y) being the optimal
solution of (94).

3.5. Complex variables in semidefinite problems

In section 3.2.1 we considered SDPs where the problems were defined by real matrices and
vectors, and the optimization was carried over real-valued variables. One of the first works
showing how to reduce a problem where some of the elements of the problem involve complex
numbers was [122].

Let B ∈ Cn×n be a Hermitian matrix, BR and BI its real and imaginary parts, respectively,
i.e. B= BR + iBI and BI =−BI. Then B� 0 if and only if[

BR −BI

BI BR

]
� 0. (95)

Indeed, for any complex vector w= u+ i v ∈ Cn we have

w†Bw=
(
uT − i vT

)(
BR + iBI

)
(u+ i v) =

(
uTBRu+ vTBRv− uTBIv+ vTBIu

)
+ i
(
uTBRv− vTBRu+ uTBIu+ vTBIv

)
⩾ 0

(96)

if and only if
[
uT vT

][BR −BI

BI BR

][
u
v

]
� 0. This is because uTBIu= vTBIv= 0 and uTBRv=

vTBRu. Thus any SDP problem defined in terms of complex vectors and Hermitian matrices
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can be stated as a problem involving only real vectors with symmetric matrices. For instance,
let us consider the case when both the linear coefficient C and the primal variable X are com-
plex matrices, C= CR + iCI, with CR,CI ∈ Rn×n and X ∈ Cn×n. When we reframe this as a

real-valued SDP, then the target function takes the form of

[
CR −CI

CI CR

]
, see (95), and the

primal real-valued variable X(R) =

[
X11 X12

X21 X22

]
does not require explicit constraints. Instead,

the resulting complex variable X is retrieved as X≡ 2X11 + i
(
X12 −XT

12

)
.

We now briefly discuss the formulation of complex SDP problems for which the target
is given by real linear coefficient C. Consider C ∈ Sn, and X ∈Hn. Let X= XR + iXI, where
XR ∈ Sn and XI ∈ Rn×n. We have:

Tr(CX) = Tr
(
CXR

)
+ iTr

(
CXI
)
= Tr

(
CXR

)
. (97)

Since XI is antisymmetric, the Frobenius product of symmetric and antisymmetric matrix is
always equal to 0. Thus if C is real and we are interested only in finding the value of the
solution, then we can ignore the imaginary part occurring in the problem.

3.6. Slack and surplus variables, mixed problems and equalities

Slackness and complementary slackness are both concepts used in optimization theory, par-
ticularly in convex optimization. Slackness refers to the idea that in an optimal solution, some
of the inequality constraints are satisfied with equality, i.e. there is no slack or excess capa-
city in the system. The extent to which they diverge from the equality can be expressed as a
new PSD variable, which then can be introduced to convert inequality constraints to equality
constraints, as elucidated below. The concept of slack variables is commonly used in LP and
SDP. Recall that in LP and SDP formulations, the objective function is optimized subject to a
set of constraints, where the constraints can be in the form of equalities or inequalities. In the
case of linear constraints of the form Ax⩽ b, where A is an m× n matrix and b is a column
vector of length m, introducing a slack variable x̃i for each constraint i allows us to convert
the inequality constraint into an equality constraint. The idea is to add a non-negative variable
x̃i to the left-hand side of the ith constraint so that the resulting expression becomes equality.
Specifically, if the ith constraint is:

ai1x1 + · · ·ainxn ⩽ bi (98)

then we can add a slack variable x̃i ⩾ 0 to obtain an expression that is equivalent to the previous
constraint:

ai1x1 + · · ·ainxn+ x̃i = bi. (99)

The new variable x̃i is called a slack variable because it measures the amount by which the
left-hand side of the ith constraint falls short of the RHS bi. If the left-hand side is already
equal to bi, then x̃i is zero.

On the other hand, if we have inequality constraints of the form Ax⩾ b, then we introduce
a surplus variable x̃i that measures the amount by which the left-hand side of the ith constraint
exceeds the RHS bi. Specifically, we add a non-negative variable x̃i to the left-hand side of the
ith constraint, so that the resulting expression becomes an equality:

ai1x1 + · · ·ainxn− x̃i = bi. (100)
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Therefore, we can see that the use of slack and surplus variables allows us to convert any
inequality constraint into an equality constraint, which makes it easier to fit into the canonical
form.

On the contrary, complementary slackness, refers to the idea that for an optimal solution,
the primal variables and the corresponding dual variables are complementary, in the sense that
their product is zero. In other words, slackness is a condition that holds between the primal
variables (e.g. the decision variables in an LP) and the primal constraints, while complement-
ary slackness is a condition that holds between the primal solution and the dual solution in a
convex optimization problem. For instance, when the strong duality of SDP holds, we have
p∗ = d∗, i.e. C •X= bT · y= Ai •X · y. Thus 0= (C−

∑
i∈[m] yiAi) •X= Tr [ZX]. This means

that if the solutions of primal and dual SDP problems exist, then strong duality is equival-
ent to complementary slackness. Summing up, whereas slackness conditions tell us which
constraints are active in the optimal solution (i.e. satisfied with equality), the complementary
slackness conditions tell us which constraints are binding (i.e. have nonzero dual variables)
and which are nonbinding (i.e. have zero dual variables). Both conditions are important for
understanding and characterizing optimal solutions in optimization problems.

One often considers the so-called mixed LP-SDP cone. The primal mixed problem in vari-
ables (xL,XS) ∈ RnL × SnS×nS is of the following form:

minimize cTL · xL +CS •XS

subject to
(
AT
L

)
i,:
· xL +ASi •XS = bi, for i ∈ [m]

xL ⩾ 0,XS � 0

(101)

where AL ∈ RnL×m, b ∈ Rm, xL,cL ∈ RnL , CS ∈ SnS×nS and AS1, . . . ,ASm ∈ SnS×nS . The dual
mixed problem in variables (y,zL,ZS) ∈ Rm×RnL × SnS×nS is given by the formula:

maximize bT · y

subject to cL −ALy= zL,CS −
∑
i∈[m]

yiASi = ZS,

zL ⩾ 0,ZS � 0.

(102)

We note that as any LP can be reformulated as SDP, the mixed problems are not more general
than the SDP problems. One can see that to embed an LP in SDP it is sufficient to place the
nL linear variables on the diagonal of a new SDP variable of size nL + nS, where nS is the size
of the SDP original variable. On the other hand, mixed problems are useful for efficient solver
implementations, as the numerical methods needed to solve SDP are more expensive in terms
of computational effort than LP. Thus, when stating the problem in the mixed form, one may
obtain a reduction of the computational cost of the solver.

We now discuss, how equality constraints are expressed in the canonical form of SDP.
Recall that in the primal canonical SDP (80), equalities have the form Ai •X= bi for i ∈ [m],
where m is one of the two parameters describing the size of the problem. Thus, to add a linear
constraint on variables within X we add a new matrix Ai increasing size of the problem to
m+ 1. On the other hand, if we add a linear constraint in the dual form (81), we can do one
of the following. The first possibility is to eliminate one of the variables yi, e.g. with lower–
upper decomposition (LU) or QR decomposition, and thus reduce size of the problem tom− 1.
This simplifies the SDP but requires an additional effort of variable elimination, which itself
requires some computational resources and is not always implemented. For instance, the elim-
ination is performed in YALMIP when the user passes an option 'removeequalities' to
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the model, as discussed in appendix B.1. The second possibility is to reframe the optimiz-
ation problem over (xF,XS) ∈ RnF × SnS×nS for some nF,nS ∈ N in a form different than the
canonical form, see (101), viz.

minimize cTF · xF +CS •XS

subject to
(
AT
F

)
i,:
· xF +ASi •XS = bi, for i ∈ [m]

XS � 0.

(103)

where AF ∈ RnF×m, b ∈ Rm, xF,cF ∈ RnF , CS ∈ SnS×nS and AS1, . . . ,ASm ∈ SnS×nS , and there is
no constraint on xF. The dual problem of (103) in variables (y,zF,ZS) ∈ Rm×{0}nF ×SnS×nS
is of the following form:

maximize bT · y
subject to cF −AFy= zF,

CS −
∑
i∈[m]

yiASi = ZS,ZS � 0.
(104)

The forms (103) and (104) are sometimes called the standard form with free variables [135].
Note that the trivial cone {0}nF appearing in (104) is the dual cone of RnF appearing in (103).
Since this implies zF = 0, the first condition in (104) is equivalent to AFy= cF, providing a way
to express equality constraints on the dual variable y. This possibility of treating the equality
constraint requires the solver to be able to deal with free variables in the primal problem.
This is beyond the capabilities of the usual IPMs as discussed in section 3.8, see also [208].
The standard way of dealing with free variables, implemented in SeDuMi and SDPT3, is to
represent a vector xF ∈ RnF as a difference of two vectors x(+),x(−) ∈ RnF

+ as xF = x(+) − x(−).
This guides us to the third possibility of representing equality constrain (AF)i,: · y= cFi, as two
inequalities:

(AF)i,: · y⩾ cFi − ϵ,

(AF)i,: · y⩽ cFi + ϵ,
(105)

for some small ϵ. In consequence, equalities even in the dual form are increasing the complex-
ity. For instance, YALMIP allows the user to specify, how to treat the explicitly stated equality
constraints with the mentioned option 'removeequalities', or, in case the chosen solver
requires it, YALMIP does it automatically with the function solveequalities. A detailed
discussion of conversion the problems (103) and (104) to the canonical form (80) and (81) is
provided in [175].

3.7. Schur complement and submatrices

Consider a partition of a squarematrixM ∈ C(n1+n2)×(n1+n2) to submatrices, viz. M=

[
A B
C D

]
,

where A ∈ Cn1×n1 andD ∈ Cn2×n2 are square matrices. Recall that the principal submatrix of a
square matrix is the special case of a submatrix where the same rows and columns are removed.
Thus A and D are principal submatrices. It is easy to see that a principal submatrix of a PSD
matrix is also PSD. For instance consider an arbitrary vector v ∈ Cn1+n2 with non-zero entries
only in the first n1 positions, and a vector v ′ ∈ Cn1 with entries equal to the first n1 entries of
v. Obviously, since v†Mv⩾ 0 it also holds that v ′†Av ′ ⩾ 0.
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Assume the submatrix D to be invertible. For numerical implementations, it would also be
desirable forD to be well-conditioned to give accurate results under finite-precision arithmetic
upon inverting it. The Schur complement of blockD is given byA−BD−1C and denotedM/D.
Similarly, M/A≡ D−CA−1B [41, 115, 158, 281]. We have M� 0 =⇒ M/D� 0; and for
symmetric M (i.e. B= CT):

M� 0 ⇐⇒ A,M/A� 0, and (106a)

A� 0 =⇒ [M� 0 ⇐⇒ M/A� 0] . (106b)

Obviously, the same holds for D. The Schur complement method [343] allows redu-
cing a large system of equations to a smaller one, involving only a subset of variables, e.g.

M

[
x1
x2

]
=

[
y1
y2

]
, by solving two simpler equations, namely (A−BD−1C)x1 = y1 −BD−1y2,

and thenCx1 +Dx2 = y2. The reason why this method is useful is that one usually needsO(n3)
operations to solve linear equations with n variables, and thus it is profitable to decompose the
initial equation into two smaller equations.

Schur complement is also a tool for introducing the following useful trick. Consider an
LMI: [

t c(x)
cT (x) F(x)

]
� 0, (107)

where x ∈ Rk for some k, F(x) ∈ Rm×m is a linear matrix expression of the form (78b) for some
m, c : Rk → Rm is a linear function, and t is a positive number. From (106b) it follows

t⩾ c(x) ·F−1 (x) · cT (x) . (108)

The expression (108) allows for expression fairy generic non-linear constraints as LMIs,

e.g. taking k= 2, m= 1 with c(x) = x1 and F(x) = x2 we get the constraint t⩾ x21
x2
. Similarly,

from Schur lemma it follows that for A,B,R ∈Hn:[
A R
R B

]
� 0⇔ B� RA−1R⇔

[
A−1/2BA−1/2

]1/2
� A−1/2RA−1/2 ⇔ A#B−R� 0, (109)

where the 1/2-weighted matrix geometric mean is given by (31).

3.8. How does a solver use IPMs?

Even though the topic of implementation of IPM is not specific to quantum information, from
our experience, it is useful to have at least a general understanding of how actually a solver
is deriving its results. This helps to identify potential problems, estimate the difficulties, and
interpret the outputs of the solver. An important concept in path-following IPMs is the central
path, which consists of a set of feasible solutions (X,y,Z) parameterized by a non-negative
variable ν [124, 178, 179, 218, 219, 256, 345]. The central path is defined by the following
conditions:

X,Z� 0 (PSD matrices), (110a)

Ai •X= bi for i ∈ [m] (linear constraints), (110b)

C−
∑
i∈[m]

yiAi = Z (dual feasibility), (110c)
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XZ= ν1 (approx. complementary slackness), (110d)

where {Ai}, bi, and C are problem-specific matrices for the canonical formulation described
in section 3.2.1. The central path captures a family of solutions that gradually approaches
the optimal solution as ν increases. By following this path, usually employing the concept of
the Newton steps, IPMs efficiently navigate the feasible region of the SDP problem toward
the optimal solution. Equivalently (110) can be written in Kronecker-canonical form, see
section 3.2.4:

ATx= b (111a)

c−Ay= z, (111b)

XZ= ν1, (111c)

together with X,Z� 0. Further in the text, the expression Tr(ZX) is referred to as the gap.
Note that the strong duality of an SDP problem implies the complementary slackness, see
section 3.6, stating that the optimal primal and dual variables are orthogonal, i.e.

Tr(ZX) = 0, (112)

meaning that the gap is equal to 0. On the other hand, it should be stressed that the gap (112)
and the duality gap are closely related but different terms. The former is defined in terms
of the primal and dual variables X and Z, even if they do not provide a feasible solution,
i.e. even if they do not satisfy the conditions in (80) and (81). The latter is defined as (49)
and expresses the difference between the optimal primal and dual solutions of the problem.
We note here that practical implementations of SDP solvers usually find solutions that are not
feasible in a strict sense. Instead, the solutions satisfy the condition from (80) and (81) only
with some accuracy. Here we discuss the expressions we use further in this work to evaluate
primal and dual infeasibility. See [214] for more details on the issue of infeasibility norms. Let
c≡ vec(C), x≡ vec(X) and z≡ vec(Z), as in the Kronecker-canonical form, see section 3.2.4.
Let us define the following terms, viz. the residuals for feasibility conditions in (80) and (81),
see (111a) and (111b):

rp ≡ b−ATx ∈ Rm, (113a)

rd ≡ c−Ay− z ∈ Rn2 . (113b)

Using the above conditions (111) we get that the Newton step (∆X,∆y,∆Z) is supposed
to satisfy the following formulae:

AT∆x= rp,

A∆y+∆z= rd.
(114)

If the method assumes that both rp and rd are zero, rp = rd = 0, it is referred to as a feasible
IPM. Otherwise, it is considered an infeasible IPM. The conditions (114) are supposed to
iteratively bring the variables (X,y,Z) closer to the feasibility constraints, (111a) and (111b).
On the other hand, note that those two equations do not determine fully the solution; yet we
still need to consider (111c) somehow. At the same time, from the strong duality, we get that
the optimal solution, (X∗,y∗,Z∗) has the property that it is on the central path at the point
with ν= 0, i.e. the gap is 0, see section 3.3. Thus, the Newton step should not only ensure
feasibility but also reduce the gap between primal and dual solutions. Actually, the condition
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imposed on the Newton step from the condition (111c) is most problematic for another reason.
The problem arises from the fact that the matrices X(i) and Z(i), where i stands for the current
iteration, possibly do not commute. For this reason, the following form of conditions on the
target of the Newton step is imposed:

Θν (X,Z) = ν1 ∈ Rn×n, (115)

where Θν(X,Z) is a symmetrization of XZ; we discuss a couple of symmetrizations below.
The algorithm stops when residual norms and the gap |Tr(XZ) |, are all less than the spe-
cified threshold. Examples of the primal and dual residual norms used e.g. in [211] are

1
1+|b|F

∣∣b−ATx
∣∣
F
, and 1

1+|c|F |c−Ay− z |F, respectively, where we recognize normalized
norms of the expressions (113a) and (113b).

The problem of efficiently solving the Newton system (111) numerically is discussed in
detail in chapter 5 of [211]. It is worth noting that by employing the Schur complement method,
see section 3.7, we can reduce the system of equations to a smaller size. Solving a linear system
of k equations typically requires O(k3) floating point operations (FlOps). In the initial system,
we have k= 2n2 +m equations, where n>m. Consequently, obtaining the solution requires
O(n6) FlOps. However, the Schur complement equation has a size of m and only requires
O(m3) FlOps.

Now let us examine the search directions discussed earlier. Consider the condition stated
in (111c), namely XZ= ν1. When we take a step, we have the equation (X+∆X)(Z+∆Z) =
ν1, or, neglecting the second-order term ∆X∆Z, we have ∆XZ+X∆Z= ν1−XZ. It is
required that the steps ∆X and ∆Z be symmetric. The second equation in (114) reveals that
∆Z is always symmetric, given the numerical precision. However, the same cannot be said for
∆X, whichmay not be symmetric. Consequently, there is a necessity to symmetrize (111c). For
instance, in 1998 the following natural symmetrization of (111c), called AHO, was introduced
by Alizadeh et al [10]:

ΘAHO
ν (X,Z)≡

(
1
2
(XZ+ZX) = ν1

)
. (116)

While the search direction defined by this symmetrization holds historical significance, it is no
longer widely utilized by the majority of SDP solvers. For instance, recent implementations
of SDPT3 [310] have omitted this particular search direction. Another search direction, called
HKM, has been introduced independently by Helmberg et al [141], Kojima et al [180] and
Monteiro [216], and is used by many modern solvers. The HKM has the following primal
form:

ΘHKM,primal
ν (X,Z)≡

(
Z

1
2XZ

1
2 = ν1

)
, (117)

and the dual form ΘHKM,dual
ν (X,Z)≡ (X

1
2 ZX

1
2 = ν1). A third important search direction is the

Nesterov and Todd [235, 236], or NT, direction. Its definition is more involved than in the cases
of AHO andHKM. To define it, we consider amatrixW satisfyingW−1XW−1 = Z.With the aid
of the matrix W, the symmetrization of (111c) can be formulated as 1

2 (W
− 1

2XZ+ZXW−
1
2 ) =

νW−1.
Thework ofMonteiro and Zhang (MZ) from 1998 [217, 220, 344], introduced the following

family of search directions, which includes the three mentioned directions, viz. AHO, HKM,
and NT. The linear transformation of MZ is given by the following formula

HP (M)≡ 1
2

(
PMP−1 +P−TMTPT

)
, (118)
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with P being an invertible matrix. Next, we define Θν(X,Z)≡ (HP(XZ) = ν1). By selecting
different invertible matrices P, we can observe that each of the search directions discussed
can be obtained. Specifically, when P= 1, we obtain the AHO search direction. On the other
hand, choosing P= Z

1
2 and P= X−

1
2 leads to the primal and dual HKM search directions,

respectively. Furthermore, if we consider an invertible matrix P satisfying the condition PTP=
W−1, we obtain the NT search direction.

Once the search direction has been determined, the next step in an IPM is to select the
appropriate step length in that direction. This step length is crucial for ensuring the feasibility
of the iterates. Specifically, the IPM chooses a step-length, represented by a pair of constants
α and β in the range (0,1], such that the following conditions are satisfied:

X+α∆X� 0, (119a)

Z+β∆Z� 0. (119b)

It is important to note that while Newton’s method is used to determine the direction, the
iterative solver does not necessarily take the full Newton step. To provide further clarity, it is
worth mentioning the following points. According to [308], the value of t that solves the optim-
ization problem defined byM and ∆M can be obtained in the following way. The objective is
to maximize t subject to the constraintM+ t∆M� 0. The formula to compute this step length
is given by max

(
eig(C−T∆MC−1)

)
, where C represents the Cholesky decomposition of M.

By using this formula, we can determine the appropriate step lengths α and β for the IPM. It
is important to note that convergence proofs of IPM algorithms often necessitate that at each
step, the current solution is in close proximity (in some defined sense) to the central path. This
requirement imposes additional constraints on the step length. However, for the sake of effi-
ciency, these constraints may be relaxed, at the cost of losing the guarantee of convergence.
Furthermore, it is worth highlighting that a common cause of failure in IPM algorithms arises
during the Schur complement matrix decomposition. This issue tends to occur when the iter-
ates approach the optimal solution and the primal variable and dual slack variables become
nearly orthogonal, resulting in Tr(XZ)≈ 0. In such cases, the Schur complement matrix may
become ill-conditioned, leading to numerical instability or inaccurate results.

3.9. Solver internal mechanisms: predictor–corrector, warm start, problem structure

Now, we will discuss several internal mechanisms employed by solvers to provide a deeper
understanding of their functionality and potential challenges or performance gains. We begin
by introducing the concept of predictor–corrector, shedding light on its significance and usage
within solvers. Additionally, we explore the application of perturbations to iterates, which
can prove beneficial when tackling numerical issues while solving complex problems with
stringent constraints. Furthermore, we emphasize the importance of leveraging the structure
of specific problems to unlock potential solver optimizations and fine-tune performance. By
highlighting these aspects, we aim to provide insights into the diverse approaches and strategies
that can be employed in solver implementations.

As we mentioned above, when discussing the constraint (111c), we expect an SDP solver to
approach the value ν= 0. But here a question arises: should this be done immediately or gradu-
ally? And in the latter case: how gradually? One of the most popular answers has been given by
Mehrotra [205], who introduced the so-called predictor–corrector mechanism. The predictor–
corrector method is a powerful numerical technique widely used in solvers for solving com-
plex mathematical problems efficiently. This iterative algorithm combines two essential steps:
prediction and correction. In the prediction step, an approximate solution is computed based
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on the available information. This predicted solution is then refined in the correction step by
incorporating additional calculations or adjustments to improve its accuracy and convergence
toward the proper solution.

The first step of the predictor–corrector mechanism is the calculation of the predictor direc-
tion, sometimes referred to as an affine scaling direction [292], which employs an aggressive
strategy to advance along the central path. In this approach, the target for the Newton step is set
to ν= 0 in (115), indicating that the predictor step aims to approach the optimal solution. Let
(δX, δy, δZ) represent the predictor step, with the step-length determined by αP and βP. These
quantities are subsequently used to compute the value of ν that will serve as the objective for
the Newton step direction in the subsequent iteration of the SDP solver. The predictor step
itself is not taken but rather employed to derive a second-order correction for the corrector, or
centering, direction. The actual procedure of calculation of the new value of ν is quite com-
plicated. We refer reader to section 6.5 of [211] for more details. Just to provide some taste of
the method we mention that e.g. in SDPT3 solver the value αP is upper bounded by a certain
user-specified parameter gam, and the following formula for the corrector step [307, 310]:

1
n
Tr(XZ) ·

(
Tr((X+αPδX)(Z+βPδZ))

Tr(XZ)

)expon_used

, (120)

where expon_used is a variable whose value is either a constant or is determined with some
other algorithm based on another user-specified parameter expon. Next, in the corrector part
of the iteration, one sets the new value of ν and calculates the Newton step (∆X,∆y,∆Z) for
the second time, with a different RHS. Often, to the goal ν1 in (111c), an additional term
F(X,Z, δX, δZ) with a second order correction is added. Finally, the step-lengths αC and βC

for the corrector step are computed to ensure the preservation of positivity. In the subsequent
iteration, the IPM algorithm sets the following:

X≡ X+αC∆X, (121a)

y≡ y+βC∆y, (121b)

Z≡ Z+βC∆Z. (121c)

The concept of warm start in solvers plays a crucial role in optimizing computational effi-
ciency and reducing solution times for various optimization problems. Warm start refers to
the technique of providing an initial feasible solution to a solver, obtained as a guess, or some
generic scheme, or has been calculated from an already solved similar or related problem.
Rather than starting the solver from scratch, the warm start approach utilizes the information
from a previously solved problem to accelerate the convergence of subsequent iterations. By
leveraging this initial solution, warm start techniques can significantly improve the overall
performance of solvers. We will only briefly overview the warm start in solvers, and refer
to section 6.3 of [211] for a detailed discussion. It has been observed that it is desirable
for the initial iterate to have the magnitude of at least the same order as the optimal solu-
tion. The following method of cold-start is used in SDPT3 [310]: X(0) ≡ ξ1, Z(0) ≡ η1, and
y(0) is the zero vector of the relevant dimension, where ξ ≡max(10,

√
n,nmaxi∈[m]

1+|bi|F
1+|Ai|F )

and η ≡max(10,
√
n, |C|F,maxi∈[m] |Ai|F). In [211] we proposed and analyzed warm start

strategies for NPA problems.
Another mechanism used in SDP solvers, which proved to be advantageous to certain scen-

arios, is the utilization of perturbations during iterations. Perturbations involve introducing
slight modifications to the current iterates under specific conditions. The primary purpose of
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employing perturbation strategies is to prevent solvers from becoming stuck near the bound-
ary of e.g. the PSD cone. While the primary objective of perturbations is not to reduce the
number of iterations or CPU time, but rather to circumvent failures, it has been observed that
in instances where the solver does not encounter failures, the most efficient solution tends to
be one without perturbations [211]. By incorporating perturbations into the iterative process,
the solver can navigate away from critical regions and explore a wider solution space, poten-
tially avoiding numerical instabilities or convergence issues. While we will not delve into the
details of perturbation strategies, we present a simple example in algorithm 1 to illustrate their
form. The purpose of this strategy is to strike a balance between improving the duality gap
and ensuring feasibility. In our observations of SDPs occurring in NPA [211], we have found
that the reduction of the size of the gap often presents the greatest challenge. Specifically, the
iterates tend to reach the feasibility threshold relatively quickly, and the majority of iterations
are dedicated to reducing the gap. It is important to note that the efficiency and effectiveness
of perturbation strategies may vary depending on the problem and solver being employed. In
cases where the solver encounters failures, perturbations can provide a crucial mechanism to
overcome such issues and continue the iterative process. However, it is worth noting that in
scenarios where the solver operates smoothly without failures, perturbations may introduce
additional computational overhead without providing substantial benefits in terms of solution
quality or convergence speed. Overall, the use of perturbations in iterations offers a valuable
approach to enhance the robustness and reliability of solvers when tackling problems involving
the PSD cone. Nevertheless, the decision to incorporate perturbations should be made con-
sidering the specific problem characteristics, solver behavior, and desired trade-offs between
reliability and computational efficiency.

Algorithm 1. Example of a perturbation of the iteratively improved solution in an SDP solver.

if gap> 100 · ϵP then
X← X+ 0.01 · tp ·1

end if
if ϵP > 100 · ϵD then

Z← Z+ 0.1 · tp ·1
end if

The last mechanism we mention is exploiting the specific structure of the problem by a
solver to enhance its performance. It allows for tailored solver optimizations that can signific-
antly enhance performance. By exploiting the problem structure, solvers can take advantage
of inherent characteristics such as symmetry, sparsity, or specific constraints to reduce com-
putational complexity. This approach enables the solver to focus computational resources on
the most relevant parts of the problem, leading to faster convergence and more efficient solu-
tions. Additionally, by understanding the problem structure, solvers can employ specialized
algorithms and techniques that are specifically designed to leverage the problem’s unique prop-
erties, further improving solution quality and computational efficiency. For instance, in [211]
we have proposed a special data format to improve the performance of operations taken by a
solver dedicated to the problems occurring in the dual formulation of NPA problems, where
such properties as the sparsity and entries pattern was taken into account.

One of the first generic approaches exploiting sparsity patterns was given by Fujisawa
et al [111], where the methods to leverage the sparsity of the problem matrices to improve
efficiency were explored. The computation of the Schur complement matrix, as discussed in
section 3.7, is often recognized as the most computationally intensive step in solving an SDP
problem. One strategy they employ to support the Schur complement calculations is reordering
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the matrices {Ai}i. They demonstrate that the most effective reordering is one that arranges the
matrices in a non-increasing order based on the number of nonzero elements fi. Additionally,
due to the symmetry of the Schur complement B, only entries Bi,j with j ⩾ i need to be dir-
ectly evaluated. Fujisawa et al presented three different methods for computing the element
Bi,j, with the choice depending on the sparsity patterns of matrices Ai and Aj. For highly
sparse matrices, they utilize the formula Bi,j =

∑
a,b,c,d∈[n](Ai)c,dWc,aWd,b(Aj)a,b to compute

the Schur complement. The calculation of this quantity requires (2fi + 1)fj multiplications.
The work [318] introduces the so-called correlative sparsity pattern graph, which relates to
a certain sparse structure in the objective and constraint polynomials of unconstrained and
inequality-constrained sparse polynomial optimization problems. The graph is used to obtain
sets of the supports for SoS polynomials and get the improved performance of relevant SDPs.
Sparsity patterns that are more specific to non-commutative polynomial optimization, particu-
larly relevant to quantum information problems, were investigated in [172]. The method sug-
gested partitioning the input variables into cliques based on the so-called correlative sparsity
pattern exhibited by the polynomials present in the objective function and constraints. In [320]
another particular type of sparsity occurring in the input data for large-scale sparse noncom-
mutative polynomial optimization problems, called term sparsity is introduced.

4. Constructions of SDP useful for quantum information

In this section, we provide an overview of popular constructions which are used as build-
ing blocks for more complicated optimization problems used in quantum information. In
section 4.1 we discuss semidefinite representations of semialgebraic functions which allow
e.g. to express approximations of various types of quantum entropies as SDPs. In section 4.2
we provide an overview of the separability criteria of quantum states originating from the
famous PPT criterion. Next, in section 4.3 we describe the Choi–Jamiołkowski isomorph-
ism and highlight its relation to PSD constraints. Then, in section 4.4 the SoSs decomposi-
tion important for polynomial optimization is discussed, and in section 4.5 we describe the
famous Lovász θ function. Afterward, we will discuss the application of moment matrices in
the realm of quantum information and explore different aspects of their use. These include
section 4.6 which discusses the relationship between correlation matrices and the so-called
moment matrices, together with the NPA hierarchy which is a method for optimization over
non-commuting variables; sections 4.7 and 4.8, which investigates three distinct methods for
optimizing probability distributions or behaviors subject to dimension constraints.

4.1. Semidefinite representations of semialgebraic sets

Spectrahedron is defined as a geometric object that can be characterized as a solution set of an
LMI (78a) or, in other words, it is an intersection of the PSD cone with a linear affine subspace.
This representation allows spectrahedra to capture the feasible regions of SDPs. When spec-
trahedra are subjected to linear or affine transformations, the resulting shapes are referred to
as projected spectrahedra, or spectrahedral shadows, or SDP representable sets [145]. These
projected spectrahedra retain the convexity property and also belong to the class of semialgeb-
raic sets. It is worth noting that while every spectrahedral shadow is a convex semialgebraic
set, but the converse statement, which was posed as a question by Nemirovski in [231], previ-
ously conjectured [145] to be true until 2017 [280], does not hold in general. This means that
not all convex semialgebraic sets can be represented as spectrahedra. The notion of spectra-
hedra was introduced in [267]; see [317] for an overview, and [28] for a detailed discussion of
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their relation to the geometry of quantum states. An example of a spectrahedron of particular
interest to quantum information is the spectraplex, which is the set of all PSD matrices in a
given dimension with trace 1, i.e. the normalized quantum states.

To be more specific, we say that a set S ⊆ Rn is LMI representable or has an LMI repres-
entation [147] if there exists a set of n+ 1 symmetric n× n matrices {Ai}i∈{0}∪[n] ⊂ Sn such
that

S =

x ∈ Rn : A0 +
∑
i∈[n]

Ai xi � 0

 . (122)

The question of which closed convex sets can be SDP represented for n= 2 was first posed
by Parrilo and Sturmfels in [247]. Suppose that for some N ∈ N+ there exist the following
two sets of symmetric n× n matrices: {Ai}i∈{0}∪[n] ⊂ Sn and {Bj}j∈[N] ⊂ Sn, such that S is a
projection to Rn of the set

Ŝ =

(x,u) ∈ Rn+N : A0 +
∑
i∈[n]

Ai xi +
∑
j∈[N]

Bjuj � 0

 , (123)

so that S =
{
x ∈ Rn : ∃u∈RN(x,u) ∈ Ŝ

}
. Then, we say that S is SDP representable, or has

an SDP representation or a lifted LMI representation, or is a spectrahedral shadow [280]. For
instance, from (109) it follows that the hypograph of the matrix geometric mean, viz. hyp[#] ={
(X,Y,R) ∈Hn

++ ×Hn
++ ×Hn : X#Y−R� 0

}
, has an SDP representation. As shown in [99,

prop. 1], for a odd p ∈ N+, and l ∈ N+, with p< 2l, it holds that

hyp
[
#p/2l

]
=

{
(X,Y,Rl) : ∃(Ri)i∈[l−1]⊂Hn ,∀i∈[l]

[
X#miY Ri
Ri Ri−1

]
� 0,R0 = Y

}
, (124)

where (mi)i∈[l] is the binary expansion of p/2l, i.e. p/2l =
∑

i∈[l]mi /2l−i+1 andm0 = 0. Thus,
there exist an SDP representation of hyp[#p/2l ] consisting of l LMI, each of size 2n by 2n.

A necessary condition for a set to be LMI representable is to be convex and basic closed
semialgebraic. If a set is SDP representable, then it might not be basic closed semialgebraic, but
it must be convex semialgebraic. In [145, 146] sufficient conditions for SDP representability
were given. It was also shown that the set of all SDP representable sets is closed under taking
linear images or preimages, finite intersections, or convex hulls of finite unions [145, 238].
In [237] it was shown that the interior of an SDP representable set is again an SDP representable
set. The result of [279] was that closed convex hulls of one-dimensional semialgebraic sets are
also SDP representable. The seminal work [245] showed how to construct a complete family
of SDPs of polynomial size, which can be used to prove the infeasibility of a finite set of
polynomial constraints.

Since the feasible set of SDP is a semialgebraic set, SDPs cannot be directly used to model
non-semialgebraic sets and functions, even if they are convex. The work [100] provided a
method to approximate certain useful non-semialgebraic sets with SDP representations of
relatively small size. Consider a non-semialgebraic concave function g : R→ R. Suppose it
has an integral representation g(x) =

´ 1
0 ft(x)dt, and that the integral can be approximated,

e.g. using one of the Gauss quadratures [263], and then g(x)≈ rm(x)≡
∑

j∈[m]wjftj(x), where
the weights wj and nodes tj depend on the quadrature. The quantity m that defines how many
terms occur in the quadrature is called the order of the quadrature. The order of the quad-
rature determines the accuracy of the approximation, with higher orders resulting in more
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accurate approximations. For a function of particular interest, the logarithm, we have log(x) =´ 1
0

x−1
t·(x−1)+1dt. For any fixed t, the hypograph of the concave function ft(x)≡ x−1

t·(x−1)+1 has

an SDP representation, viz. ft(x)⩾ r if and only if

[
x− 1− r −

√
tr

−
√
tr 1− rt

]
� 0. One can show

that the matrix hypograph of ft for any t ∈ [0,1] has the following SDP representation [100,
proposition 2]:

hyp ft =
{
(X,R) ∈Hn

++ ×Hn : (X−1) · [t · (X−1)+1]
−1 � R

}
=

{
(X,R) ∈Hn

++ ×Hn :

[
X−1−R −

√
tR

−
√
tR 1− tR

]
� 0

}
.

(125)

The approximation logx≈ rm(x) is most accurate for small values of x. Since we
have log(x) = 1

h log(x
h), it is often beneficial to use another approximation, viz. rm,k(x)≡

2krm(x1/2
k
). It can be shown that rm,k is operator concave [100, proposition 3] and Prm,k [Y,X] =

2kPrm [X#2−kY,X] [100, equation (18)]. What is more, consider V,X ∈Hn
++ and R ∈Hn.

It holds [100, p 272] R ′ � P−rm [Y,X] if and only if there exist (R ′i )i∈[m] ⊂Hn such that

R ′ =
∑

i∈[m]R
′
i and ∀i∈[m]

[
Y−X+R ′i

√
tiR ′i√

tiR ′i X+ tiR ′i

]
� 0.

From (30) and logx≈ rm,k(x)we can expect S(X|Y)≈ P(−rm,k)[Y,X] and thus is some sense:

epiS(X|Y)≈ Knm,k ≡
{
(X,Y,R ′) ∈Hn

+ ×Hn
+ ×Hn : R ′ � P(−rm,k) [Y,X]

}
=
{
(X,Y,R ′) ∈Hn

+ ×Hn
+ ×Hn : R ′ �−2kPrm [X#2−kY,X]

}
.

(126)

This, together with the SDP representation (124), shows that the setKnm,k has an SDP represent-
ation [100, theorem 3]. This, in consequence, allows optimizations over quantum entropies [46,
98] using SDP.

4.2. DPS conditions of separability

The DPS [86, 87] method is a powerful technique used to determine the separability of multi-
partite quantum states, by providing a hierarchy of SDP relaxations that approximate the separ-
ability conditions. To bemore specific, DPS introduces a hierarchy of conditions involving par-
tial transpositions allowing for a test of separability, with strength increasing with the hierarchy
level. This approach is relevant also for studying the separability of multipartite quantum sys-
tems with more than two parties. The DPS method utilizes a series of SDP relaxations, where
each relaxation, pertaining to higher levels, introduces additional variables and constraints.
Thus, at each level of the hierarchy, the DPS method formulates an SDP. The PSD conditions
play a crucial role in these relaxations, as they express the constraint that the obtained solutions
are physically valid quantum states. Roughly speaking, in the DPS method for a given state
ρAB one asks whether there exist a hierarchy of symmetric extensions, i.e. a family of states
ρAB1···BN defined for any N, such that ∀i∈[N]ρAB = TrBj:j 6=i[ρAB1···BN ]. It happens that the state
ρAB is separable if and only if such a hierarchy exists for each natural N. The state ρAB is
separable if and only if a hierarchy of symmetric extensions exists for every natural number
N. For a given fixed value of N, the task of verifying the existence of a symmetric extension is
equivalent to an SDP. Consequently, an algorithm can be devised by incrementally examining
the extendability condition for increasing values of N. This algorithm is guaranteed to termin-
ate if the initial state ρAB is entangled, thus it detects the non-separability. However, if the
state is separable, the algorithm will continue indefinitely without termination.
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Let us provide a more detailed overview of the concept of DPS. Consider a state ρAB resid-
ing in the composite Hilbert space A⊗B, which exhibits separability, meaning that it can be
expressed as a convex combination of pure product states:

ρAB =
∑
i

λi |ϕi 〉〈ϕi |A⊗ |φi 〉〈φi |B, (127)

where the coefficients λi satisfy the conditions
∑

iλi = 1 and λi ⩾ 0. Consider a Hilbert space
Ak⊗Bl, and let ρ̃ be a state on that space. If ρ̃ satisfies the condition:

TrAk−1Bl−1 [ρ̃] = ρAB, (128)

where the partial trace is taken over all but the first copy of each space, then ρ̃ is called an
extension [97, 264] of ρ. Let SA represent the set of all permutation operators among copies
of the space A, and the same applies to B. The state extension ρ̃ is considered symmetric if,
for every P ∈ SA⊗SB, the following condition holds:

ρ̃= Pρ̃P. (129)

On the other hand, the state extension ρ̃ is classified as PPT if ρ̃ remains positive after applying
any partial transposition on the subsystems. When ρAB is separable, it is guaranteed that for
any values of k and l, there exists an extension ρ̃ that is a PPT symmetric extension of ρAB.
The fundamental principle behind the DPS hierarchy is to examine whether a PPT symmetric
extension of ρAB exists for fixed values of k and l, and if not, this implies that ρAB is not
separable. As the constraints of PPT symmetric extension can be expressed as SDPs, the DPS
method enables optimization over a relaxation of the set of separable states on the given spaces.
As the values of k and l increase, the relaxation approaches the actual set of all separable states
more closely. Therefore, starting from a PPT symmetric extension state ρ̃, it is possible to
construct a state ϱ on A⊗B that is, in a certain sense, close to being separable.

The method can be applied analogously to more than two parties, as in the following
example involving three subsystems. We will now demonstrate an application of DPS, which
involves a method for representing quantum states and measurements using a single SDP vari-
able. Consider three unit vectors: |Φλ〉=

∑
i∈[dA]

∑
j∈[dB]ϕi j| ij〉AB, |uλ〉=

∑
i∈[dA]µ

λ
i | i〉A,

and |vλ〉=
∑

j∈[dB] ν
λ
j | j〉B. Here, λ represents a global hidden variable with an arbitrary prob-

ability distribution pλ. Next, we define the following operator

WABA ′B ′ ≡
∑
λ

pλ ·
[
|Φλ〉〈Φλ |AB⊗ |uλ〉〈uλ |A ′ ⊗ |vλ〉〈vλ |B ′

]
. (130)

For two subsystems S1, S2, both of dimension dS, the SWAP operator is defined in the following
way:

SWAP(S1,S2)≡
∑

i,j∈[dS]

| i j〉〈j i |S1S2 . (131)

The idea that a tensor product of the density matrix ρ and measurements {M} contain all
elements necessary to express the probabilities of the form Tr(ρM) was formulated in [327].
In [223], where the so-called Navascués–de la Torre–Vértesi (NTV) SDP hierarchy was intro-
duced, it was recognized that this idea in combination with DPS hierarchy allows approx-
imating the probabilities Tr(ρM) as entries in SDP variables. NTV provided one of the
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methods to approximate the set of quantum correlations with dimension constraints; other
such methods are discussed in section 4.7. A similar approach was used in [341, equation
(4)] to express a constraint of purity of the state, and in consequence to develop a method
of providing rank constraints on the considered operators. Direct calculations show that
Tr [WABA ′B ′ (SWAP(A,A ′)⊗SWAP(B,B ′))] is equal to:

∑
λ

pλ ·Tr
[
W̃λ
ABA ′B ′

]
=
∑
λ

pλ ·

 ∑
i1,i2∈[dA]

∑
j1,j2∈[dB]

ϕλi1j1ϕ
λ∗
i2j2µ

λ
i2µ

λ∗
i1 ν

λ
j2ν

λ∗
j1


=
∑
λ

pλ ·Tr
[
|Φλ〉〈Φλ |AB

(
|uλ〉〈uλ |A⊗ |vλ〉〈vλ |B

)]
,

(132)

where W̃λ
ABA ′B ′ is defined as:∑

i1,i2,i3,
i4,i5,i6∈[dA]

∑
j1,j2,j3,

j4,j5,j6∈[dB]

ϕλi1j1ϕ
λ∗
i2j2µ

λ
i3µ

λ∗
i4 ν

λ
j3ν

λ∗
j4 | i1j1i3j3〉〈i2j2i4j4|i5j5i6j6〉〈i6j6i5j5 |ABA ′B ′ . (133)

The resulting expression is the probability of projection of the state on some projective meas-
urements. With similar calculations, we also obtain:

Tr [WABA ′B ′ (SWAP(A,A ′)⊗1BB ′)] =
∑
λ

pλ ·Tr
[
|Φλ〉〈Φλ |AB

(
|uλ〉〈uλ |A⊗1B

)]
.

(134)

We see that operators created in a similar way like (130) contain entries expressing Frobenius
products (3) of a state and measurements, and SWAP operators provide a tool to extract them
to obtain quantum probabilities. It is easy to generalize the above formulae to cover cases
involving e.g. more projective measurements and more parties. Obviously, the operator (130)
is separable, and this constraint is imposed with the discussed DPS method.

The DPS method implementation is given in appendix B.4, together with an example of a
Tsirelson bound calculation using NTV method.

4.3. Choi–Jamiołkowski isomorphism and quantum channels

The Choi–Jamiołkowski isomorphism introduced in 1972 by Jamiołkowski in [155] and, inde-
pendently in 1975 by Choi in [70] is a fundamental concept in quantum information theory that
establishes a correspondence between quantum states and quantum channels, see [161] for a
detailed discussion and historical remarks. The isomorphism also called a state-channel dual-
ity, provides a mathematical framework to represent quantum channels as density matrices,
enabling the study and manipulation of quantum processes using tools from quantum state
theory. We say that a map is PSD when it is transforming PSD matrices to PSD matrices; it is
completely positive if E ⊗1 is PSD for1 acting over arbitrary space; a linear map is a trace pre-
serving when the trace of the input matrix is equal to the trace of the output matrix. The Choi–
Jamiołkowski isomorphism is defined as follows. Given a linear PSDmap E : Cd×d → Cd ′×d ′

,

i.e. E ∈ L
[
Cd×d,Cd ′×d ′

]
, that transforms input states on Cd×d to output states on Cd ′×d ′

, its

corresponding Choi matrix J(E) ∈ Cd ′×d ′ ⊗Cd×d is the PSD matrix defined in the following
way:

J(E)≡
∑
i,j∈[d]

E [| i〉〈j |]⊗ | i〉〈j |= d · (E ⊗1d)
[
|Φ+〉〈Φ+ |

]
, (135)
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where |Φ+〉 ≡ 1√
d

∑
i∈[d] | i〉⊗ | i〉 is the maximally entangled state.

Given a PSD matrix, it is possible to reconstruct the corresponding quantum channel. This
reconstruction process allows us to extract useful information about the properties and beha-
vior of the quantum channel. Let us consider a state ρ=

∑
k,l∈[d] ρk,l|k〉〈l | ∈ Cd×d. Then

1d ′ ⊗ ρT =

 ∑
m∈[d ′]

|m〉〈m |

⊗

∑
k,l∈[d]

ρk,l| l〉〈k |

=
∑
m∈[d ′]

∑
k,l∈[d]

ρk,l|m〉〈m | ⊗ | l〉〈k|,

(136)

and we have

J(E) ·
(
1d ′ ⊗ ρT

)
=
∑
i,j∈[d]

∑
k,l∈[d]

∑
m∈[d ′]

ρk,l · (E [| i〉〈j |]⊗ | i〉〈j |) · (|m〉〈m | ⊗ | l〉〈k |)

=
∑

i,j,k,l∈[d]

∑
m∈[d ′]

ρk,l · (E [| i〉〈j |] · |m〉〈m |)⊗ (| i〉〈j | · | l〉〈k |)

=
∑

i,j,k∈[d]

∑
m∈[d ′]

ρk,l · (E [| i〉〈j |] · |m〉〈m |)⊗ | i〉〈k |

=
∑

i,j,k∈[d]

ρk,l · E [| i〉〈j |]⊗ | i〉〈k| ≡ Y.

(137)

Then, we take the partial trace of Y over the second subspace, removing the input space:

Tr2Y=
∑
l∈[d]

〈l |Y| l〉=
∑

i,j,k,l∈[d]

ρk,l · E [| i〉〈j |]〈l|i〉〈k|l〉

=
∑
i,j∈[d]

ρl,jE [| l〉〈j |] = E

∑
i,j∈[d]

ρl,j| l〉〈j |

= E [ρ] .
(138)

Thus we have the following crucial property:

Tr2
[
J(E) ·

(
1d ′ ⊗ ρT

)]
= E [ρ] . (139)

A direct consequence of (139) is that for a POVM {Mb}b on Cd ′×d ′
, we have

Tr
[
J(E) ·

(
Mb⊗ ρT

)]
= Tr

[
E [ρ]Mb

]
, which is the probability of the outcome b of the POVM

applied to the output state of the channel.
It can be shown, that any linear map E is completely PSD if and only if its Choi matrix (135)

J(E) is PSD. Similarly, the Choi–Jamiołkowski isomorphism captures the property of trace
preserving with the constraint that the Choi matrix after tracing out the output subsystem is
equal to the identity operator on the input subsystem, i.e.:

Tr1 [J(E)] = 1d. (140)

Trivially, for J(E) defined in (135) and trace preserving E we have Tr [E [|i〉〈j |]] = Tr[|i〉〈j |] =
δi,j and thus Tr1[J(E)] = 1d. Conversely, consider a matrix X ′ ∈ Cd ′×d ′ ⊗Cd×d satisfying
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Tr1[X] = 1d. Let X ′ =
∑

i,j∈[d]X
′
i,j⊗ | i〉〈j |. Then since Tr[| i〉〈j |] = δi,j, we have ∀i,jTr[X ′i,j] =

δi,j, and thus for any ρ it holds that:

Tr
[
X ′ ·

(
1d ′ ⊗ ρT

)]
= Tr2

∑
i,j∈[d]

Tr1
[
X ′i,j⊗

(
| i〉〈j | · ρT

)]= Tr2

∑
i∈[d]

| i〉〈i | · ρT
= Tr [ρ] .

(141)

It is possible to employ the Choi–Jamiołkowski isomorphism to express other properties
of quantum channels. Consider a channel EA ′B ′←AB transforming states states on CnA×nA ⊗
CnB×nB to states on CnA ′×nA ′ ⊗CnB ′×nB ′ , for some nA, nA ′ , nB, and nB ′ , with the Choi mat-
rix J(EA ′B ′←AB) ∈ CnA ′×nA ′ ×CnB ′×nB ′ ⊗CnA×nA ⊗CnB×nB . One usually interprets A and B as
inputs and A′ and B′ as outputs of Alice and Bob, respectively. For instance, one can show that
the marginal output state of Alice is a result of a fixed operation on the marginal input state
of Alice, or, in other words, the channel is non-signaling from Bob to Alice [78] if and only if
TrB ′ [J(EA ′B ′←AB)] = TrBB ′ [J(EA ′B ′←AB)]⊗1B [187, equation (22)]; similar relation holds for
channels non-signaling from Alice to Bob. Suppose that Alice and Bob are controlling ancil-
lary subsystems, Ã and B̃, respectively. A channel is called PPT-preserving when it transforms
a bipartite PPT state ρAÃBB̃, i.e. a state satisfying ρ

TBB̃
AÃBB̃

� 0, to a biparitites PPT state [265, 266].

In [266] it was shown that EA ′B ′←AB is PPT-preserving if and only if [J(EA ′B ′←AB)]
TBB ′ � 0.

We refer to [187] for a detailed discussion of other properties of quantum channels possible to
be expressed with constraints in SDPs.

In summary, the PSD condition is essential in the Choi–Jamiołkowski isomorphism as it
ensures the validity of the represented quantum channels. It provides a mathematical frame-
work to analyze and manipulate quantum processes, allowing for the exploration of various
properties and applications in quantum information theory. The discussed methods are, in par-
ticular, used to express bounds on various types of channel capacities as SDPs [96, 296, 322]
or for channels discrimination [330].

4.4. SoS decomposition of polynomials

The SoS technique is a powerful tool used in SDP to represent nonnegative polynomials as
sums of squares of other polynomials. Recall that in SDP, the goal is to optimize a linear
objective function subject to LMI constraints. However, many optimization problems involve
nonnegative polynomials, and checking the nonnegativity of a polynomial can be challenging.
The SoS technique provides a way to approximate these nonnegative polynomials using sums
of squares, which can be readily handled in SDP. This technique is useful in many areas of
mathematics, including optimization, control theory, and signal processing. One application
of the SoS decomposition is in optimization problems. In particular, it can be used to determine
whether a polynomial is non-negative over a given domain. This is important in optimization
because many optimization problems involve minimizing or maximizing a polynomial subject
to certain constraints. By using the SoS decomposition, one can determine whether the poly-
nomial is non-negative over the feasible region, which can help in finding the optimal solution.
The method found various applications in multiple areas of science and is particularly useful
for polynomial optimization, robust control, and polynomial system analysis, as it allows for
tractable representation and computation of nonnegative polynomials in SDP frameworks [67,
157, 195, 243–246, 258].

The main idea behind the SoS technique is to express a nonnegative polynomial as an SoSs
of lower-degree polynomials. This is achieved by introducing additional variables and using
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semidefinite constraints. Specifically, the nonnegative polynomial is decomposed into a SoSs
of polynomials, where each polynomial is multiplied by a semidefinite matrix. The positivity
of the original polynomial is then guaranteed by the positivity of the semidefinite matrices.
Let us consider a homogeneous polynomial h(x), where x ∈ Rn, and all terms of h(x) have a
degree of 2m. We say that h(x) is a SoS polynomial if and only if, for some k there exists a set
{gi}i∈[k], where each gi is a polynomial of degree m and h(x) =

∑
i∈[k] gi(x)

2. Obviously, any
SoS polynomial is always positive. Moreover, the interesting property of the SoS polynomials
is that any real non-negative polynomial can be approximated arbitrarily closely by a sequence
of SoS polynomials, known as the SoS hierarchy [185]. For any polynomial gi(x), we can
express it as the inner product of a vector vi and the basis of monomials x(m) of degree m.
Mathematically, this can be written as gi(x) = vTi · x(m). The basis x(m) consists of monomials
of degree m, and the dimension of this basis is given by d≡

(n+m−1
m

)
, thus vi ∈ Rd. If SoS

exist, then a set S ≡ {vi}ki=1 also exist and:

h(x) =
∑
i∈[k]

gi (x)
2
=
∑
i∈[k]

(
vTi · x(m)

)2
=
∑
i∈[k]

(
x(m)T · vi

)(
vTi · x(m)

)

=
∑
i∈[k]

x(m)T
(
vi v

T
i

)
x(m) = x(m)T

∑
i∈[k]

vi v
T
i

x(m) ≡ x(m)TMx(m).

(142)

Hence, even if the set S is not explicitly known, it is evident that M≡
∑

i∈[k] vi v
T
i � 0, M ∈

Sd×d. This observation implies that verifying whether a polynomial h(x) is SoS is equivalent to
determining the existence of a PSDmatrixM� 0 that satisfies the relation h(x) = x(m)TMx(m).

Now, let us consider a symmetric matrix H ∈ Sd, not necessarily PSD, such that h(x) =
x(m)THx(m). Constructing such a matrix is straightforward, as it suffices to assign the relevant
coefficients from h(x) onto the diagonal elements of H. Let {Ni}i∈[D], for some D, ∀iNi ∈ Sd,
be a basis of the space of all symmetric d by dmatrices satisfying the equation x(m)TNi x(m) = 0.
The dimension of this space depends on m, i.e. the degree of the polynomial h(x), as well as
n, the number of variables. The objective now is to verify the feasibility of the so-called Gram
representation of the SoS polynomial. This representation is expressed as H+

∑
i yiNi � 0,

where yi are coefficients. Finally, the feasibility of the Gram representation of the SoS poly-
nomial is examined by checking if the matrix H+

∑
i yiNi is PSD. This assessment allows for

the determination of whether the given polynomial can be represented as an SoS.
The non-commutative analog of SoS called sum of Hermitian squares or non-commutative

SoS [204] was introduced in [144]. We say that a Hermitian polynomial p(X) in non-
commutative variables X= (Xi)i is a non-commutative SoS (or, simply, SoS) when there exist
polynomials (rj(X))j such that p(X) =

∑
j r
†
j rj. For operators used as non-commuting variables,

being SoS means that the polynomial of the operators is PSD, meaning, in particular, that its
expectation value is non-negative for all quantum states. The non-commutative polynomial is
weighted SoS (WSoS) generated by a collection of Hermitian polynomials in non-commutative
variables P when it is of the form [85]:∑

j

r†j rj︸ ︷︷ ︸
SoS

+
∑
k

∑
l

s†k,lpksk,l︸ ︷︷ ︸
weighted term

(143)

for pi ∈ P , and some polynomials (rj(X))j and (sk,l(X))k,l. An algorithm for finding a sum
of Hermitian squares decompositions for Hermitian polynomials in non-commuting variables
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based on SDP was given in [173]. The SoS decompositions were used to provide the so-called
self-testing of quantum states and measurements in [21, 202, 339], see [295] for a review and
discussion.

As a direct example of the application of SoS in quantum information, we will analyze the
so-called quantum moment problem. In this problem, we ask whether, for a given probability
distribution, there exists a quantum state and measurements that produce such distribution (see
section 1.4). A complementary problem is to decide whether a given instance of the quantum
moment problem is unsatisfiable. A crucial tool for this purpose is one of the versions of the
Positivstellensatz. Positivstellensatze are theorems in real algebraic geometry that provide a
way to determine whether a polynomial is positive on a semi-algebraic set, or if it can be
written as an SoS; see [34, chapter 4] of an introduction for the commutative variables case,
and [143, 278] for the non-commutative variables case.

Suppose that the quantum setup of interest involves the measurement operators X= (Xi)i.
We briefly show that many of the desired properties of measurements can be expressed as a
requirement that certain polynomials of these operators vanish. One of the requirements is
that the measurements over different subsystems commute. Indeed, the condition [Xi,Xj] = 0
is equivalent to statement the Hermitian polynomial i [Xi,Xj] is equal zero. If for a certain
set M the operators {Xi}i∈M are constituting a projective measurement, then the normaliz-
ation condition is expressed as the requirement that the Hermitian polynomial 1−

∑
i∈MXi

is equal zero; similarly the idempotency condition of Xi is expressed as X2
i −Xi is equal zero.

Another simple constraint possible to be expressed with vanishing Hermitian polynomials is
the requirement that X has eigenvalues in {+1,−1}; this is equivalent to the requirement that
1−X2 is equal zero. Let us define P to be the set of all Hermitian polynomials of one of these
forms, as well as their negatives, where each of the polynomials imposes a constraint that is
desired in a given scenario.

Consider an expression G≡
∑

a,xαa|xpa|x[X]. We are interested in finding the Tsirelson
bound [72] of such an expression. If for any quantum state |Φ〉 and measure-
ment operators X it holds 〈Φ |G[X]|Φ〉⩽ q for some q ∈ R, then trivially q ·1−
G� 0. In [85, theorem 4.3] the following form of Positivstellensatz was given: if[
∀X
(
∀p∈Pp[X] = 0 =⇒ ∀|Φ〉〈Φ |(q ·1−G)|Φ〉> 0

)]
, then v ·1−G is WSoS. In other

words, if the Hermitian polynomial q ·1−G in non-commuting variables X is a PD operator
(expressed as ∀|Φ〉〈Φ |(q ·1−G)|Φ〉> 0) under the assumption that X are quantum meas-
urements (expressed as ∀p∈Pp[X] = 0), then it can be written in the WSoS form. Thus, this
Positivstellensatz says that if there exists no quantum state and measurements attaining the
value q, then q ·1−G is WSoS.

Now, the question is, how to derive the value of q using SDP. We do not have informa-
tion regarding the degree of polynomials (rj(X))j and (sk,l(X))k,l occurring in (143). The res-
ult of [85, section 5] is a hierarchy of relaxations allowing to get a sequence qn such that
limn→∞ qn = q, with qn ⩾ q. For the level n of the relaxation, we require that rj and sk,l are of
degree at most n and n− 1, respectively.

Consider the first level, n= 1 in the CHSH scenario [73], with G= A1B1 +A1B2 +A2B1 −
A2B2, where Eax and F b

y are commuting projective measurement operators of Alice and Bob,
respectively, see section 1.4, and Ax ≡ E0

x −E1
x and By ≡ F 0

y−F 1
y. The basis of polyno-

mials of degree 1 in variables occurring in G is e.g. x(1) = [A1;A2;B1;B2]. The SoS part of
WSoS (143) is thus

∑
j r
†
j rj = x(1)TMx(1), see (142), for some M� 0. The only constraint

expressed in P are those imposing that Ax and By have eigenvalues in {+1,−1}; let us denote
the relevant constraint polynomials as p(A)x ≡ (1−A2

x) ∈ P and p(B)y ≡ (1−B2
y) ∈ P , respect-

ively. Indeed, the polynomials p(A)x and p(B)y vanish if and only if these eigenvalue constraints
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on Ax and By are satisfied. Since sk,l are at this level all of degree n− 1= 0, they are real

numbers; let us denote them as γ(A)x ∈ R and γ(B)y ∈ R, respectively. The WSoS decomposi-
tion (143) is now of the form:

q1 ·1− (A1B1 +A1B2 +A2B1 −A2B2) = x(1)TMx(1) +
∑
x∈[2]

γ(A)x Ax+
∑
y∈[2]

γ(B)y By. (144)

To find the value q1 we can solve the problem of minimizing q1 subject to (144) and M� 0;
this clearly is an SDP. The result is

2
√
2 ·1− (A1B1 +A1B2 +A2B1 −A2B2)

=
1

2
√
2

(
r†1r1 + r†2r2

)
+

1√
2

(
p(A)1 + p(A)2 + p(B)1 + p(B)2

)
,

(145)

where r1 ≡ A1 +A2 −
√
2B1 and r2 ≡ A1 −A2 −

√
2B2. The Tsirelson bound is thus 2

√
2.

4.5. Lovász theta and contextuality

The concept of zero-error capacity plays a significant role in information theory as it pertains
to the flawless transmission of information through a communication channel. This notion
is of utmost importance as it guarantees the reliability and precision of data transfer, which
holds immense significance in diverse domains, including telecommunications, computer net-
working, and cryptography. The notion of a zero-error capacity of a channel represented by
a graph was introduced by Shannon in 1956 in the paper The zero error capacity of a noisy
channel [283], as defined below. The calculation of this entity, unfortunately, poses signi-
ficant challenges. Lovász addressed this problem in [196] by formulating an SDP relaxation
known as the Lovász θ function, or Lovász number. The introduction of this function had a
profound influence not only in classical and quantum information theories [71, 76, 88] but also
in related fields such as graph theory [164, 171]. Its impact transcends disciplinary boundaries,
highlighting its importance and wide-ranging implications.

Consider an alphabet consisting of n letters that need to be communicated through an erro-
neous channel. We can represent this communication scenario using a graph G, where each
vertex corresponds to a letter from the alphabet. The edges of the graph indicate the possible
confusion between letters, based on the communication model being considered. It is evident
that the count of one-letter messages that are guaranteed not to be confused is equivalent to
the size of the largest independent set in the graph, denoted as α(G).

In the context of zero-error communication in the asymptotic limit, where multiple uses of
the communication channel and non-trivial coding schemes are allowed, it often becomes pos-
sible to transmit a higher average number of letters per channel use. To illustrate this concept,
let us consider the number of k-letter messages that can be transmitted without confusion,
denoted as α(Gk). It is observed that α(Gk)⩾ α(G)k, indicating that the size of the largest
independent set, α(G), raised to the power of k provides a lower bound on the number of dis-
tinct messages that can be encoded without the risk of confusion. For instance, if a single-letter
message allows for l= α(G) different messages without confusion, then with k letters, we can
encode at least lk distinct messages without the risk of confusion. As an example, consider the
cycle graph C5 with five vertices, where α(C5) = 2 and α(C2

5) = 5.
The Shannon capacity of a graph G is a measure defined as follows. It is denoted by Θ(G)

and is given by the supremum over all values of k of the expression α(Gk)
1
k , i.e. over all

possible lengths of messages encoding a chunk of information:
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Θ(G) = sup
k
α
(
Gk
) 1
k . (146)

Here,α(Gk) represents the size of the largest independent set in the graphGk, which is obtained
by taking the strong product of G with itself k times. The Shannon capacity provides an
important characterization of the graph’s ability to transmit information without errors, and
it is widely used in the field of information theory.

To provide the formulation of SDP relaxation of the Shannon capacity, and thus also of the
independence number of a graph, introduce the concept of the strong product of two graphs.
Let us consider a pair of graphs,G andH, and define their strong product asG⊠H. The vertex
set of G⊠H, denoted as V(G⊠H), is the Cartesian product of the vertex sets of G and H,
i.e. V(G⊠H) = V(G)×V(H). In this construction, a vertex (x1,y1) in G⊠H is adjacent to
another vertex (x2,y2) if and only if one of the following conditions holds:

• vertex x1 is adjacent to vertex x2 in G, and vertex y1 is adjacent to vertex y2 in H;
• vertex x1 is equal to vertex x2, and vertex y1 is adjacent to vertex y2 in H; or
• vertex x1 is adjacent to vertex x2 in G, and vertex y1 is equal to vertex y2.

This construction is known as the strong product of graphs. To extend this notion, we define
G1 = G, and for k+ 1, we have Gk+1 = Gk⊠G.

An orthonormal representation (OR) of G in Rd for some d is a set of vectors
{|ui 〉}i∈V(G) ⊂ Rd satisfying 〈ui ,uj〉= 0 for all pairs of non-adjacent vertices i, j ∈ V(G). We
denote by OR(G) the set of all OR of G in any dimension. The value of the OR is

min
|Ψ〉∈Rd,
||Ψ〉=1 |

max
i∈V(G)

1

|〈Ψ ,ui 〉 |2
. (147)

AnyΨ for that the minimum in (147) is attained, is called a handle of OR. If {|ui 〉}i∈V(G) and
{|vj〉}j∈V(H) are OR of graphs G and H, then {|ui 〉⊗ |vj〉}i∈V(G),j∈V(H) is an OR of the graph
G⊠H [196, p 2]. If the vectors are inCd instead ofRd, then the term orthogonal embedding is
used instead of OR. The orthogonal rank of G, denoted ξ(G) is the smallest positive integer d
such that there exists an orthogonal embedding [44, 59]. Lovász’s function, denoted as θ(G),
is defined as the minimum of (147) over OR(G).

Lovász’s θ(G) plays an important role in the study of the Shannon capacity. It possesses
the property that the Shannon capacity Θ(G), is bounded from above by θ(G), Θ(G)⩽ θ(G).
To provide an SDP formulation of θ(G), let us consider a set A consisting of all symmetric
matrices {Ai}i that satisfy the following conditions: for any two nodes i and j in the graph
G, if i= j or if i and j are not adjacent in G, then the entry Aij is set to 1. The remaining
entries of these matrices are left unconstrained. The value of θ(G) is equal to the minimum
of the largest eigenvalue among all matrices in the set A [196, theorem 3]. This relaxation
technique provides an effective approach to approximate the Shannon capacity of a graph and is
possible to be expressed as an SDP. Indeed, the constraints defining the setA are linear, and the
SDP is

minimize λ

subject to X ∈ A
λ ·1−X� 0.

(148)
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Alternatively, it can be shown [196, theorem 5] that

θ (G) = max
{|ui 〉}i∈OR(Ḡ)

max
|Ψ〉∈Rd,
||Ψ〉 |=1

∑
i∈V(G)

|〈Ψ ,ui 〉 |2 , (149)

where Ḡ is the complementary graph of G.
In [129] Grötschel, Lovász and Schrijver introduced the weighted version of θ func-

tion, intending to derive the maximum weight independent sets in perfect graphs. Let w=
(wi)i∈V(G) be weights of nodes in a weighted graph G. The generalization of the θ func-
tion (147) to weighted graphs is defined as [131, p 4]:

θ (G,w)≡ min
{|ui 〉}i∈OR(G)

min
|Ψ〉∈Rd,
||Ψ〉 |=1

max
i∈V(G)

wi

|〈Ψ ,ui 〉 |2
. (150)

A direct generalization of (149) is [131, theorem 2.3]:

θ (G,w) = max
{|ui 〉}i∈OR(Ḡ)

max
|Ψ〉∈Rd,
||Ψ〉 |=1

∑
i∈V(G)

wi |〈Ψ ,ui 〉 |2 . (151)

The value of (151) can also be expressed as SDP [129].
The fundamental role of the Lovász θ for quantum correlations and contextuality was recog-

nized in [57] and developed in [58]. The results state that the maximal value of correlations
allowed by quantum mechanics is given by the Lovász number of the so-called exclusivity
graph. Here we briefly sketch the results, and we refer to [3] for a discussion and further
advancements.

The exclusivity graph of a multi-partite correlation experiment represents the possible
events with vertices and the exclusion of pairs of events by edges. We say that the events
e1 and e2 are exclusive if and only if there exist two jointly measurable observables (tests) µi
and µj that distinguish between them. The experiments with space-like separated tests are Bell
inequalities [25, 73] as discussed in section 1.4. More general scenarios are non-contextual
inequalities, which distinguish between theories in which outcomes are predefined from con-
textual theories, including quantum mechanics [120, 176, 287]. For instance, in the CHSH
Bell experiment [73] there are four tests, each providing binary results, viz. two measurements
performed by Alice, and two measurements performed by Bob.

Consider a positive linear combination of events, or positive non-contextual game expres-
sion, of the form

∑
i wiP(ei), with all wi > 0. The CHSH Bell inequality [73] can be rewritten

in this form as ∑
a∈{0,1}

P(a,a|0,0)+P(a,a|0,1)+P(a,a|1,0)+P(a,¬a|1,1)⩽ 3. (152)

The exclusivity graph of the positive non-contextual game expression is the induced subgraph
of the exclusivity graph of the experiment, see figure 1. In [58] it was shown that from (151)
it follows that the attainable upper bound on the positive non-contextual game expression in
quantum mechanics is exactly θ(G,w), where G is the exclusivity graph of the positive non-
contextual game expression [273].

The work [82] reveals another association between the Lovász number and fundamental
quantum phenomena, viz. the uncertainty relations [139, 167, 270], which characterize the
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Figure 1. Exclusivity graph for the two-partite Bell scenario with two settings and two
outcomes for each of the parties. The events are labeled as ab|xy, with the settings of
Alice and Bob denoted as x and y, and their outcomes as a and b. Sets of pairwise
exclusive events are those lying on the same line or in the same circle. The exclusivity
graph for the positive non-contextual game expression (152) is the induced subgraph
containing only the black nodes.

limitations in precisely predicting outcomes of simultaneous measurements in quantummech-
anics. The findings have practical implications and can be applied to formulate entropic uncer-
tainty relations, separability criteria, and entanglement witnesses.

The mentioned above orthogonal rank ξ(G) has a direct relation to the one-round quantum
communication complexity of calculation of a function f(x,y), which is equal to dlog2(ξ(G))e,
with the promise that the joint input (x,y) ∈ D ⊂ V(G)×Y . The vertices i and j in G are
connected if and only if ∃y∈Y(i,y) ∈ D∧ ( j,y) ∈ D [83, theorem 8.5.2]. As discussed in [225],
the so-called almost quantum or Q1+AB SDP relaxation of the set of quantum behaviors, see
section 4.6, is also closely related to the Lovász θ.

4.6. Correlation matrices, moment matrices, and optimization over non-commuting variables

Consider a sequence of real-valued random variables S = (x1, . . .xn). The covariance matrix of
S is defined as the matrix whose entries are given by relevant covariations of pairs of variables,
Cov[S] = [cov[xi,xj]]xi,xj∈S ∈ RS×S . The rows and columns, in this case, could be indexed

with the numbers of the variables, and thus belong to [n] and then it would be Cov[S] ∈ Rn×n.
Instead, we take a more generic approach and index the rows and columns with the variables
themselves. Such matrices, indexed by labels or other expressions are calledmoment matrices.
Now, consider a vector of constant coefficients v= (v1, . . .vn) ∈ RS×1. We have

vTCov [S]v=
∑
i,j∈[n]

vi · cov [xi,xj] · vj = cov

∑
i∈[n]

xi,
∑
j∈[n]

xj

= var

∑
i∈[n]

xi

⩾ 0, (153)
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and thus the covariance matrix is PSD. The correlation matrix corr(S) is the mat-
rix whose entries are given by relevant correlation of pairs of variables, i.e. Corr[S] =
[corr[xi,xj]]xi∈S,xj∈S ∈ RS×S . Equivalently, the correlation matrix is equal to the covari-

ance matrix of all variables rescaled to have variance 1, Corr[S] = Cov[S̄], for S̄ =
(x1/σ [x1] , . . .xn/σ [xn]). In consequence, all diagonal values of the correlationmatrix are 1 and
the matrix is also PSD. If variables are linearly independent, then it is PD. A sample numer-
ical calculation with a correlation matrix is given in appendix B.2. The concept of moment
matrices is used in the methods discussed further in this section.

The methods discussed in this work using moment matrices find a major application in
optimizing linear functions of probabilities in various quantum scenarios, such as entangled
parties with separated sharing or communication of a quantum system with a given dimension.
These methods have gained significant popularity due to their effectiveness and applicabil-
ity in quantum optimization tasks. It is worth noting that earlier studies in 2004 focused on
optimizing success probabilities without utilizing moment matrices [94]. Instead, they relied
on the formalism of Lagrangian in close connection with the concept of convex optimization.
Particularly, researchers explored the problem of determining optimal success probabilities
for static linear optics quantum gates, and intriguingly, it was found to be related to convex
optimization theory. Through this connection, they successfully derived upper bounds for the
success probability of networks implementing single-mode gates. Moreover, the concept of
Lagrange duality played a crucial role in providing rigorous proofs for these derived bounds.

4.6.1. The NPA hierarchy. Now, we provide a brief introduction to the optimization over non-
commuting variables, with a concentration on the so-called NPA method. The NPA method
is based on SDP, as presented in the paper Bounding the set of quantum correlations by
Navascués et al (2007) [226, 227]. Moment matrices are a basic element of the technique.
The concept was inspired by the seminal work by Lasserre [184].

The problem at hand is to find a way to characterize, at least approximately, the class of all
quantum behaviors Q without resorting to the formalism of quantum theory. To this end, the
NPA method introduces a hierarchy of SDP problems {Qk}∞k=1. Each level of the hierarchy
corresponds to a specific SDP problem, where higher levels yield more accurate solutions.
In other words, as we increase the level k, the set Qk+1 becomes a subset of Qk, Qk+1 ⊂
Qk, providing a progressively better approximation of Q. However, as the level increases, the
SDPs become more complex and computationally demanding. It is important to note that the
hierarchy of SDP problems converges to the quantum set Q, meaning that the intersection
of all sets in the hierarchy is equal to Q, viz. ∩∞k=1Qk =Q. By considering all levels of the
hierarchy, we can accurately capture the entire quantum set Q without explicit involvement
of the formalism of Hilbert spaces, and when we restrict considerations to a particular level,
then we can effectively approximate the optimization over the set of all quantum behaviors Q
using SDP.

A sequence of operators, which is formed by concatenating projective measurement operat-
ors, plays a crucial role in the context of quantum systems. Consider an illustrative example of
such a sequence, denoted as E1

2E
3
2F

2
1E1

1, consisting of four operators. The operators associated
with Alice, denoted as Eax , commute with the operators corresponding to Bob, denoted as F b

y.
This allows us to rearrange the sequence without altering the original action of the operators.
Thus, we can rewrite the sequence as E1

2E
3
2E

1
1F

2
1 by interchanging the operators while respect-

ing the commutation relationship between Alice’s and Bob’s measurements. This reordering is
made possible by the commutativity property exhibited by the operators belonging to Alice’s
and Bob’s measurements.
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In a sequence of operators, we can exploit the orthogonality property EaxE
a ′

x = 0 and
F b

yFb
′

y = 0 for a 6= a ′ and b 6= b ′. Applying this property and utilizing the commutation
property, we can rearrange operators within the sequence. For instance, let us consider the
expression E2

1F
3
3E1

1. By utilizing the commutation property, we can rearrange the operators
as E2

1E
1
1F

3
3, which equals zero due to the orthogonality between E2

1 and E1
1. Additionally,

it is worth noting that since Eax and F b
y are projectors, we have the property (Eax)

k = Eax for
any k⩾ 1, and the same holds for F b

y. This property further aids in simplifying the expres-
sions involving repeated application of the projectors. To characterize the length of a sequence
of operators, we define it as the minimum number of projectors required to represent the
sequence. In this context, we consider the identity operator 1 as the null sequence, denot-
ing no projectors, and its length is defined to be zero. This notion of length provides a measure
of the complexity or number of steps involved in a sequence of operators.

We will now be considering sets of sequences of operators from the reduced set of operators
discussed in section 1.4. Using the NPA method, we can construct a hierarchy of relaxations
by choosing different sets of sequences. Specifically, we define a set Sk to be the set of all
sequences of operators {Eãx ,Fb̃y}ã,b̃,x,y of the length at most k (including the sequence of length

0, i.e. 1), with the indices ã and b̃ covering all values excluding the last one. We also define
the so-called intermediate sets of sequences, where only specific sequences are included, for
instance

S1+AB = S1 ∪
{
EaxF

b
y
}
ã,b̃,x,y

=
{
1,Eãx ,F

b̃
y ,E

ã
xF

b̃
y

}
ã,b̃,x,y

. (154)

The hierarchy of level Q2 means that the set S consists of all sequences of measurement
operators of length 2, whereas in level Q1+AB, S is a set of all sequences of length 1 and
sequences with one operator of Alice and one of Bob.Q1+AB revealed to be so efficient that it
is called an almost quantum set of behaviors [225].

The key idea of the NPA method can be summarized as follows. Consider a behavior
{P(a,b|x,y)} and suppose that it is quantum. This means that there exists a specific realiz-
ation involving a quantum state |ψ 〉 and projective measurements {Eax ,F b

y} such that, for all
settings x and y, and outcomes ã and b̃, the relation (8) holds, and expresses the probability of
obtaining outcomes a and b when measurements x and y are performed on the quantum state
|ψ 〉. In the context of the NPA method, the notion of moment matrices is used as follows. For
any operators Oi and Oj belonging to the set S of size n, we define the element of the moment
matrix as:

ΓOi,Oj ≡ 〈ψ |O†i Oj|ψ 〉. (155)

This equation establishes a connection between certain elements of the moment matrix and
joint probability distributions. Specifically, we have

ΓEãx ,Fb̃y
= P

(
ã, b̃|x,y

)
, (156)

which demonstrates that the elements of the moment matrix correspond to the probabilit-
ies of obtaining outcomes ã and b̃ for the measurements x and y. Additionally, we have
the element Γ1,1 = 1, which represents the identity operator, indicating that its contribu-
tion to the moment matrix is unity, and |ψ 〉 is normalized. This definition results in an
n× n moment matrix, where the rows and columns are indexed by the elements of the
set S. Hence, the moment matrix serves as a representation of the moments associated
with the considered behavior. For instance, the sequence of operators with a length of
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at most 1 in the case of the reduced set (9) is represented by S1 = {1,E0
1,E

0
2,F

0
1,F

0
2} ≡

{O1,O2,O3,O4,O5}. From (155) and (156) we have PA(0|0) = Γ1,E0
0
≡ y1, PA(0|1) = Γ1,E0

1
≡

y2, PB(0|0) = Γ1,F 0
0
≡ y4, PB(0|1) = Γ1,F0

1
≡ y7, P(0,0|0,0) = ΓE0

0,F
0
0
≡ y5, P(0,0|1,0) =

ΓE0
1,F

0
0
≡ y6, P(0,0|0,1) = ΓE0

0,F
0
1
≡ y8, and P(0,0|1,1) = ΓE0

1,F
0
1
≡ y9. This leads to the fol-

lowing formula for the Γ matrix, which is in this case a 5× 5 real matrix:
1 y1 y2 y4 y7
y1 y1 y3 y5 y8
y2 y3 y2 y6 y9
y4 y5 y6 y4 y10
y7 y8 y9 y10 y7

 . (157)

The probabilities not occurring directly in the matrix can be derived from the non-signaling
constraints (7). For instance, from the matrix (157) we have P(0,1|0,1) = PA(0|0)−
P(0,0|0,1) = y1 − y8.

We can observe that the elements of the moment matrix Γ are subject to the following linear
constraints. For any indices i, j, k, and l, the equality ΓOi,Oj = ΓOk,Ol holds whenever the cor-

responding operators satisfy O†i Oj = O†kOl, i.e. O
†
i Oj = O†kOl =⇒ ΓOi,Oj = ΓOk,Ol . This con-

straint ensures that the inner products of identical operator sequences yield equal moments.
Similarly, if O†i Oj results in the zero operator, then it implies that ΓOi,Oj = 0. This condition
ensures that the moments associated with operator sequences resulting in the null operator are
also zero. These linear constraints provide necessary relations between the elements of the
moment matrix, allowing us to impose consistency and capture important properties of the
behavior. Positive semi-definiteness of Γ is a direct consequence of (155). Indeed, let v ∈ Cn.
For V=

∑
j vjOj we have

v†Γv=
∑
i,j

v∗i ΓOi,Ojvj =
∑
i,j

v∗i 〈ψ |O†i Oj|ψ 〉vj = 〈ψ |V†V|ψ 〉= |V|ψ 〉 |2 ⩾ 0, (158)

and thus Γ� 0. To summarize, we observe the following:

• The sets S1 ⊂ S2 · · · ⊂ S∞ form an increasing sequence, where each set contains longer
sequences of measurement operators.

• The hierarchy levels Q1 ⊃Q2 · · · ⊃Q form a decreasing sequence, indicating a refinement
of the approximation to the quantum set.

• The quantum set Q is equal to the intersection of all levels Qk, i.e. Q=
⋂∞
k=1Qk.

The final equality, which pertains to convergence to the quantum set, has been proven in [227].
The sizes of the sets Sk and, consequently, the sizes of the Γ matrices, grow exponentially,
specifically as O

(
(|A | · |X |+ |B | · |Y |)k

)
. In practice, sets beyond Q3 are rarely utilized, and

due to finite precision arithmetics large matrices may cause numerical issues. The set Q1+AB

is generally sufficient for most purposes and is often referred to as the almost quantum set.
The set Q1 is often called the macroscopic locality set [229]. A comparison of the primal and
dual approaches for imposing the aforementioned operator constraints is presented in table 1.
A comprehensive discussion on this topic can be found in section 2.3.1 of [211]. It is worth
noting that when expressing the constraint of NPA optimizations, the parameterm representing
the size of the canonical SDP form in (80) and (81) is significantly smaller if we opt for the
latter approach. It can be seen that the above example (157) is written in the form C−

∑
i yiAi
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Table 1. Comparison of sizes of SDP formulations of the levels of the NPA in a scenario
with two parties, eachwith two binarymeasurements, when the constraints are expressed
in terms of primal or dual canonical SDP forms.

Hierarchy level n m-dual Average density (dual) m-primal

Q2 13 31 0.183 137
Q3 25 61 0.098 563
Q4 41 101 0.060 1579
Q5 61 151 0.041 3569
Q6 85 211 0.029 7013
Q7 113 281 0.022 12 487
Q8 145 361 0.017 20 663
Q9 181 451 0.014 32 309
Q10 221 551 0.011 48 289
Q11 265 661 0.009 69 563
Q12 313 781 0.008 97 187
Q13 365 911 0.007 132 313
Q14 421 1051 0.006 176 189
Q15 481 1201 0.005 230 159

of the canonical dual formulation (81), and can be easily expressed in other forms discussed
in section 3.2.

There are multiple variants and extensions of NPA. In [254] the inventors of NPA showed
how to apply their techniques to the general problem of polynomial optimization over non-
commuting variables. In [163] it was shown how to use NPA to analyze the so-called extended
non-local games. These games involve three parties, viz. Alice, Bob, and a referee. Initially,
Alice and Bob share a tripartite quantum state with the referee. In these games, the conditions
for Alice and Bob to win may depend not only on their answers to randomly selected ques-
tions but also on the outcomes of measurements performed by the referee on its portion of the
shared quantum state. In a recent work [257] a method for analysis of classical and quantum
correlations in networks with causally independent parties was introduced, providing a way to
use NPA in complex quantum networks. Another work analyzing generalizations of NPA for
characterization of the quantum network correlations, together with convergence results was
given in [269], see [301] for an overview.

The almost quantum correlations are applied and discussed in [149, 277]. Their great theor-
etical importance stems from their role in axiomatics of quantum mechanics [225]. In [225] it
was proposed to consider the set of behaviors allowed in the almost quantum relaxation level
of NPA as a physical theory and hypothesized that the actual physics of the real world is not the
quantum theory but the newly proposed almost quantum theory. It was shown that non-trivial
communication complexity, no advantage for non-local computation, and local orthogonality
are weaker in determining which behaviors are physical than the almost quantum theory. It was
also shown that the almost quantum set is closed under various classical operations, including
post-selection, composition, grouping of parties, and so-called wiring operation [11]. In [191]
a quantitative comparison of several sets of super-quantum behaviors is given.

In [277, appendix A] the NPAmethod has been modified to express a relaxation of the set of
quantum assemblages [62], i.e. sets of unnormalized states toward which a multipartite state
can be steered to [331]. In this method, the Γ matrix’ entries are not numbers but matrices
themselves allowing for introduction in particular the so-called almost quantum assemblages,
see [276] for a physical definition and discussion for its applications. A hierarchy for analysis
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of quantum steering was also given in [177]. The proposed method enables the derivation of
steering witnesses for arbitrary families of quantum states. A framework for the analytical
derivation of non-linear steering criteria was also presented.

The work [221] introduces the so-called Moroder’s hierarchy, where in addition to the NPA
constraints, more restrictions of a certain form regarding entanglement can be imposed on the
quantum state. FromMoroder’s hierarchy a further variant, allowing to imposing of constraints
on Bob’s measuring devices was given in [260].

A prominent application of NPA is in device-independent quantum cryptography, in partic-
ular in quantum randomness certification. The initial methods used a single parameter, the Bell
inequality violation, as the certificate for this task [101, 252, 253]. In [22, 239] it was shown
how to modify NPA so that the full experimental statistics can be imposed as SDP constraints
with the method called more randomness from the same data or the Nieto–Silleras hierarchy.
What is more, the method allows to use of the dual optimization task to derive a new Bell func-
tional suited to provide the most randomness from the particular experimental realization. To
this end, the method described in section 3.4 is used, where the variable β provides the coef-
ficients of the Bell functional, and the equations vj = qj · x express the behavior constraints.

An alternative approach to optimization over non-commutative polynomials is given in [55].
In that work, the problem of minimization of a trace of a given polynomial function in non-
commuting variables using SDP is considered. Next, in [174] a method for constrained trace
and eigenvalue optimization of noncommutative polynomials was introduced. The results were
used in [298] to characterize the classical and quantum correlations that arise in prepare-and-
measure experiments when communication is informationally restricted.

4.6.2. Optimization of von Neumann entropy. In particular, the NPA method can be used to
calculate the lower bound of the von Neumann conditional entropy given any kind of know-
ledge (classical or quantum) that an eavesdropper may possess if is subject to the laws of
quantum mechanics. The method uses the SDP representations of the logarithm function dis-
cussed in section 4.1 together with the Gauss–Radau quadrature rule for the lower bound.
Let wi and ti be the nodes and weights defined by this quadrature. Specifically, this method
can be employed to compute a lower bound on the von Neumann conditional entropy under
the presence of an eavesdropper, considering both classical and quantum knowledge, while
adhering to the principles of quantum mechanics. Let A, B, and E denote the Hilbert spaces
corresponding to Alice’s, Bob’s, and the eavesdropper’s devices, respectively. The quadrature
rule provides a set of nodes, {ti}i, and weights, {wi}i, that are utilized in the computation. The
lower bound formula for the settings selection x∗ and y∗ is given as [49]:

∑
i

ci

 ∑
a,b=0,1

inf
Za,b∈B(QE),

cond(P)

(
1+ϕ

[
Eax∗ ,F

b
y∗ ,Za,b, ti

]) , (159)

where ϕ[Eax∗ ,F
b
y∗ ,Za,b, ti] is defined as

Tr
[
ρABE

(
Eax∗ ⊗F b

y∗ ⊗
(
Za,b+Z†a,b+(1− ti)Za,bZ

†
a,b

)
+ ti

(
1AB ⊗Za,bZ

†
a,b

))]
. (160)

The expression cond(P) means that the behavior {P(a,b|x,y)} satisfies a set of linear con-
straints defined by the protocol, and ci are coefficients calculated from Gauss–Radau quad-
rature as ci ≡ wi /(ti log(2)). The i index in the sum (159) assumes values that index nodes
in quadrature, skipping the last one. An example of the implementation of a method is given
in [48] and described in detail in [47].
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4.6.3. Self-testing with SWAP method. The phenomenon of self-testing is characterized by
the ability to assess both states and measurements of certain quantum devices in a black-
box setting, relying solely on observed statistics without the need for prior device calibration.
However, before the work [340] the existing examples of self-testing are limited in their applic-
ability, as they only provide meaningful assessments for devices that closely resemble the ideal
case. In [340] these limitations were overcome by adopting a novel approach to self-testing,
utilizing an SDP hierarchy for the characterization of quantum correlations. This approach
allows for a more comprehensive and robust assessment of quantum devices, enabling mean-
ingful evaluations even in scenarios where the devices deviate from the ideal case.

We illustrate themethodwith a bi-partite Bell scenario. Suppose we have gathered an exper-
imental description of the behavior of a device {P(a,b|x,y)}, and that we expect that these
statistics should have been obtained using a particular quantum state | ψ̄〉AB and projective
measurements {Ēax , F̄by}. We would like to have a quantitative way of estimating, how close is
the actual state that was prepared in the laboratory, considered as a black box described only by
the statistics, to the theoretical one | ψ̄〉AB. The work [340] proposed a method to perform such
self-testing where the content of the black box is hypothesized to be swapped with a trusted
system in a thought experiment; the method itself is called SWAP. Suppose that it is possible
to formulate four linear functions FE,σx , FE,σz , FF,σx , and FF,σz , such that FE,σx [{Ēax}] = σx,
FE,σz [{Ēax}] = σz, FF,σx [{F̄by}] = σx, and FF,σz [{F̄by}] = σz. Recall the SWAP operator given
in (131). For dS = 2 it takes the form

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

= U [σx] ·V [σz] ·U [σx] , (161)

where

U [X]≡ 12 ⊗ |0〉〈0 |+X⊗ |1〉〈1 |,and (162a)

V [X]≡ 1
2
((12 +X)⊗12 +(12 −X)⊗σx) . (162b)

The black box is possibly using some other quantum state |ψ 〉AB and measurements
{Eax ,F b

y} to implement P(a,b|x,y), but if the considered scenario possesses the self-testing
property, then one can expect that the state and measurements will be not very far from the
theoretical ones | ψ̄〉 and {Ēax , F̄by}. Now, let us perform a thought experiment with hypothes-
ized swapping of the black-box state |ψ 〉AB with trusted ancillary states | ϕ̄1〉A ′ and | ϕ̄2〉B ′

using the black-box measurements {Eax ,F b
y} together with trusted operations on the ancillas,

where we denote by A and B their black-box subsystems, and by A ′ and B ′ the subsystems
of their trusted ancillas. Let us consider the ancillas to be qubits, so that we can apply (161)
to each party, Alice and Bob. Since the operations {Eax} on the black-box subsystem of Alice
are expected to approximate to some extent {Ēax}, we may expect that FE,σx [{Eax}]≈ σx and
FE,σz [{Eax}]≈ σz; and similarly for Bob, viz. FF,σx [{F b

y}]≈ σx and FF,σz [{F b
y}]≈ σz. Thus

for:

SAA ′ ≡ UAA ′ [FE,σx [{Eax}]] ·VAA ′ [FE,σz [{Eax}]] ·UAA ′ [FE,σx [{Eax}]] , (163a)

SBB ′ ≡ UBB ′
[
FF,σx

[{
F b

y
}]]

·VBB ′
[
FF,σz

[{
F b

y
}]]

·UBB ′
[
FF,σx

[{
F b

y
}]]

, (163b)
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we have SWAP(A,A ′)≈ SAA ′ and SWAP(B,B ′)≈ SBB ′ . Define SABA ′B ′ ≡ SAA ′ ⊗
SBB ′ (with proper ordering of the subsystems), and consider the hypothetical state:

ρSWAP ≡ TrAB
[
SABA ′B ′ ·

(
|ψ 〉〈ψ |AB ⊗ | ϕ̄1〉〈ϕ̄1 |A ′ ⊗ | ϕ̄2〉〈ϕ̄2 |B ′

)
· S†ABA ′B ′

]
. (164)

Knowing the explicit form of the trusted ancillas | ϕ̄1〉A ′ and | ϕ̄2〉B ′ and applying algebraic
calculations with (163) on |ψ 〉AB we can derive that the formula for ρSWAP depending on the
elements possible to be retrieved from the NPA moment matrix, see section 4.6. This way
e.g. the fidelity of the state or other linear functions of its element can be optimized with the
same technique as NPA, as proposed in the seminal paper [340], or NV (see section 4.7.2) as
shown in [299].

Without loss of generality, we can assume that the functions F·,· are acting on the reduced

set of operators {1,Eãx ,Fb̃y}ã,b̃,x,y. To illustrate the above concept, we hypothesize that for a
particular behavior certain linear combinations of the operators of Alice and Bob express their
operators σx and σz, i.e.:

Ā0 ≡FE,σz

[{
Ēãx
}]

= σz,

Ā1 ≡FE,σx

[{
Ēãx
}]

= σx,

B̄0 ≡FF,σz

[{
F̄b̃y
}]

= σz,

B̄1 ≡FF,σx

[{
F̄b̃y
}]

= σx.

(165)

Using the formulae (162) and (163) we get the following expression for Alice:

SAA ′ = U [Ā1] ·V [Ā0] ·U [Ā1] =
1
2
(1⊗ |0〉〈0 |+ Ā1 ⊗ |1〉〈1 |) ·

· ((1+ Ā0)⊗1+(1− Ā0)⊗σx) · (1⊗ |0〉〈0 |+ Ā1 ⊗ |1〉〈1 |)

=
1
2

[
1+ Ā0 Ā1 − Ā1Ā0

Ā1 − Ā0Ā1 1+ Ā1Ā0Ā1

]
,

(166)

and similarly for Bob. Let us take the ancillas | ϕ̄1〉A ′ = | ϕ̄2〉B ′ = |0〉〈0 |. Then, from (164)
we have

ρSWAP ≡ TrAB

(SAA ′ ⊗SBB ′) ·


| ψ̄〉〈ψ̄ |AB 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 ·
(
S†AA ′ ⊗S†BB ′

)

=
1
4
TrAB




(1+ Ā0)(1+ B̄0) | ψ̄〉〈ψ̄ |AB 0 0 0
(1+ Ā0)(B̄1 − B̄0B̄1) | ψ̄〉〈ψ̄ |AB 0 0 0
(Ā1 − Ā0Ā1)(1+ B̄0) | ψ̄〉〈ψ̄ |AB 0 0 0

(Ā1 − Ā0Ā1)(B̄1 − B̄0B̄1) | ψ̄〉〈ψ̄ |AB 0 0 0

 ·

·


(1+ Ā0)(1+ B̄0) · · · · · · · · ·

(1+ Ā0)(B̄1 − B̄1B̄0) · · · · · · · · ·
(Ā1 − Ā1Ā0)(1+ B̄0) · · · · · · · · ·

(Ā1 − Ā1Ā0)(B̄1 − B̄1B̄0) · · · · · · · · ·


T ,

(167)
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where we omitted the unnecessary terms in the last matrix. One can easily see that ρSWAP is
represented by a 4× 4 matrix and acts onA ′⊗B ′. Direct calculations show that for instance:

(ρSWAP)2,1 =
1
4
〈ψ̄ |AB (1+ Ā0)

2
(1+ B̄0)(B̄1 − B̄0B̄1) | ψ̄〉AB. (168)

To be more specific, let us focus on the so-called elegant Bell expression [119] which
has a property that whenever its Tsirelson bound is attained, then Alice’s operators satisfy
σz =−1+ 2Ē0

3 = Ā0 and σx =−1+ 2Ē0
1 = Ā1 (x= 1,2,3), and another linear functional can

express σx and σz using the operators of Bob from the reduced set. This allows us to calculate
e.g. lower bound on the fidelity of ρSWAP when the value of the Bell expression is slightly less
than the Tsirelson bound [286].

The SWAP method has found multiple applications, in particular in the analysis of experi-
mental data. The work [75] used the SWAP method to show that for every bipartite entangled
quantum state in arbitrary dimension, there exists a behavior {P(a,b|x,y)} (see section 1.4)
allowing for self-testing of the state. In [321] the method was applied to self-test arbitrary
qutrit states of the form (2+ γ2)−

1
2 (|00〉+ γ|11〉+ |22〉) and used for the analysis of a large

scale quantum optical circuitry.

4.7. Non-commuting variables with dimension constraints

In this section, we will explore two distinct approaches that leverage moment matrices for
optimizing over states and operators of a fixed dimension. The first approach, discussed in
section 4.7.1, builds directly upon the NPA method and incorporates the dimension con-
straint as additional linear constraints. On the other hand, the second technique, presented
in section 4.7.2, shares a similar structure with NPA but adopts a randomized approach to
construct the basis of the space of SDP variables.

4.7.1. Dimension constraints imposed on NPA hierarchy. We present our method, which was
introduced and developed in our previous works [189, 212], and is referred to as MLP hier-
archy. This method enables the analysis of semi-device-independent [248] scenarios using the
powerful techniques of SDP by reducing the problem to a device-independent [203] frame-
work modeled in the NPA hierarchy.

To introduce the SDP relaxation, we first consider a device D0, consisting of two distinct
black boxes assigned to Alice and Bob, respectively. We know the dimension of the messages
exchanged between the two parts. The box of Alices generates and emits quantum states from
some {ρx}x∈X̄. Bob is provided with a separate device that includes settings corresponding to
measurement choices involving measurements denoted as

{
{Mb

y}b∈B̄
}
y∈Ȳ. We denote the con-

ditional probability of obtaining an outcome bwhen settings x and y are selected as PD0(b|x,y).
Suppose we are provided with a dimension witness W in the form presented in (10) earlier.
Assume this dimension witness yields an average value of W0 in experiments conducted on
the D0 device.

Although we do not know the specification of the deviceD0, we can consider an alternative
device denoted as D1, as follows. The device D1 comprises two components, each equipped
with buttons labeled the same way as in D0. In D1 we assume that both parts share a singlet
state of dimension d. Alice’s component performs a projective measurement with outcomes
0 (indicating successful projection) or 1 (otherwise), depending on the chosen input x. This
measurement projects Alice’s part of the singlet onto the state ρx, which corresponds to the
relevant state in the device D0. If the projection succeeds, which occurs with a probability of
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1
d , the device returns a= 0 and transforms Alice’s side into the state ρx. Otherwise, it returns
a= 1. Since the shared state is a singlet, this measurement prepares the same d-dimensional
state on Bob’s side. Bob subsequently performs the same measurements {Mb

y}b as the device
D0 would perform, and he returns the outcome b. Let us denote the probability that Alice
obtains outcome awith setting x, while Bob obtains outcome bwith setting y, as PD1(a,b|x,y).
The case where a= 1 giving the probabilities PD1(1,b|x,y) are not utilized in our relaxation.
Trivially, we have:

PD0 (b|x,y) = d ·PD1 (0,b|x,y) . (169)

Let us now turn our attention to a third device, denoted as D2, which shares the same inter-
face as D1. In contrast to the previous devices, the internal workings of D2 are unrestricted,
meaning that we make no assumptions about the measurements performed. Both Alice’s and
Bob’s parts are now allowed to be in an arbitrary state ρ of any dimension. For this device, we
give an additional constraint

∀xPD2 (0|x) =
1
d
, (170)

where PD2(a|x) is the probability of getting the outcome a by Alice with the setting x with
the device D2. It is important to highlight that the description of this device falls under the
category of device-independent scenarios. Consequently, we can utilize the NPA method to
mathematically represent its behavior, specifically the behavior exhibited by device D2. In the
case of the third device, we can represent the probability of obtaining outcomes a and b for a
given combination of settings x and y for Alice and Bob, respectively, as PD2(a,b|x,y).

It is evident that all the behaviors achievable by the device D1, and equivalently by device
D0, can also be obtained by device D2. Furthermore, as device D2 is a relaxed variant of
the original device D0. It is important to note that one of the key characteristics of the set
of behaviors is its efficient approximation using the NPA hierarchy. An advantageous aspect
of this method is that it provides a bound for any dimension of the communicated system,
with the linear bound being the only parameter that needs adjustment. We conclude that using
the relation P(b|x,y) = d ·P(0,b|x,y), we can impose a dimension constraint to an existing
implementation of the NPA as in (170), i.e. P(0|x) = 1/d.

4.7.2. NV hierarchy. Navascués and Vertesi (2014) proposed [224, 228] a hierarchy of SDPs
aimed at upper bounding quantum correlation and behaviors in scenarios with dimension con-
straint, where similarly as in NPA, the improved accuracy is obtained when increasing the hier-
archy level. The NV hierarchy is particularly useful in dimension-bounded scenarios, where
the number of dimensions of the quantum systems involved is limited. In such scenarios, the
full characterization of quantum correlations becomes computationally challenging due to the
exponential growth of the dimension. NV provides a systematic and tractable approach to
approximate and quantify quantum correlations in these scenarios.

Consider a sequence of operators representing states and measurements, denoted as S =
(O1, . . . ,On), where each operator corresponds to a specific quantum state or measurement or
their polynomial function, for some N. For instance, we can have a sequence that includes
identity operator 1, pure states ρ00, ρ01, ρ10, ρ11, and measurement projectors P1

0, P
1
1, P

2
0, P

2
1. It

is important to note that all states in the sequence are pure and all measurements are project-
ors with fixed rank. In the NV method, a crucial component is a moment matrix denoted as
M= [M]S,S . This matrix is indexed by the sequence S and is defined similarly to the moment
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matrix used in the NPA. The entries of the moment matrix are given by the inner products of
the operators in the sequence, specificallyMOi,Oj = Tr(O†i Oj). It is worth noting that when the
sequence S contains both states and measurements, the moment matrix will have entries that
correspond to the probabilities P(b|x,y) of obtaining outcome b when performing measure-
mentMy

b on the state ρx. This allows the moment matrix to capture the statistical information of
the correlations between states and measurements, providing a framework for characterizing
and quantifying the quantum correlations present in the system.

The implementation of the NV method involves a randomized approach to construct a set
of moment matrices. The first step is to randomize the moment matrices, which will define the
optimization problem in the SDP framework. The goal is to optimize a linear combination G
of the entries P(b|x,y), G=

∑
b,x,yβb,x,yP(b|x,y) for some fixed {βb,x,y} ⊂ R, which may, for

instance, correspond to the average success probability of a quantum random access code. To
provide more detailed steps, the implementation begins with an initialization phase where a
basis of moment matrices is created:

(i) The set M is initialized as an empty set to store the moment matrices, M= ∅.
(ii) Operators in the sequence, specific to the given hierarchy level, are randomized to form

the sequence S .
(iii) The moment matrix Γ̃ is constructed by evaluating the inner products of the operators in

the randomized sequence S, Γ̃≡
[
Tr(O†i Oj)

]
S,S

.

(iv) The matrix Γ̃⊥ is obtained by projecting Γ̃ onto the subspace orthogonal to the span of
the moment matrices in M.

(v) If Γ̃⊥ is a zero matrix, the process of extending the basis of moment matrices M is ter-
minated.

(vi) Otherwise, the orthogonalized moment matrix Γ̃⊥ is added to the set M, M=M∪
{Γ̃⊥}. The process returns to step 2 to generate the next randomized sequence.

By iteratively adding orthogonalized moment matrices toM, the NV implementation con-
structs a basis of moment matrices that captures the possible correlations in the considered
system. These moment matrices form the foundation for the subsequent SDP optimization,
where the objective is to find the optimal values for the entries P(b|x,y) in order to maximize
the value of G. The optimization has the form:

maximize Tr
[
B̂Γ
]

subject to Γ ∈ span(M) ,

(Γ)1,1 = 1,

Γ� 0,

(171)

where we call B̂ the game matrix of the expression G, and construct it to select from Γ the
relevant values Tr[ρxM

y
b]with coefficients defined by probability functional we are considering.

The hierarchy can get a significant boost of performance when symmetries of G are
exploited [7, 302].
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4.8. The see-saw iterative non-linear optimization

The see-saw method is an iterative optimization technique used in SDP to find approximate
solutions for certain optimization problems [242, 328]. It is particularly effective for prob-
lems involving quantum states and measurements. The method involves alternating optimiza-
tion over states and measurements, refining the solutions at each iteration until convergence is
achieved. In the see-sawmethod, the optimization problem is first formulated as an SDP, where
the objective function and constraints are expressed in terms of quantum states and measure-
ments. The method starts with an initial guess for either the states or the measurements, which
is usually a simple randomization. In each iteration, the method optimizes over the states while
keeping the measurements fixed, and then optimizes over the measurements while keeping the
states fixed. This alternating optimization continues until a convergence criterion is met, such
as a small change in the objective function or constraints. The see-saw method leverages the
interplay between states andmeasurements in quantum systems. By iteratively optimizing over
states and measurements, the method explores different combinations that lead to improved
solutions. When a set of states is given, the expression (10) can be optimized using a similar
approach as in QSD [20, 142, 153] by employing SDPs, see appendix B.3. Similarly, if meas-
urements are provided, SDP can be utilized with states as variables to optimize the expression.
In cases where neither states nor measurements are known, SDP can be employed to simultan-
eously find optimal solutions for both. The see-saw method operates based on the following
outline:

(i) Initially, a set of states is chosen randomly as an initial guess.
(ii) Using SDP, the method optimizes over measurements while keeping the states fixed. The

objective is to find measurements that maximize the target expression.
(iii) Next, the method optimizes over states while keeping the measurements fixed. It uses

SDP to find states that maximize the target expression.
(iv) The process iterates by returning to step 2 if certain stopping criteria are not satisfied.

The stopping criteria could be based on the convergence of the objective function or other
specified conditions.

It is important to note that the see-saw method does not guarantee finding the global
optimum of the optimization problem. Instead, it provides an approximate solution that can
be improved iteratively. To enhance the chances of finding better solutions, the method sug-
gests restarting the process multiple times with different initial states. By repeating the see-
saw method with various initial states, the hope is to explore different regions of the solution
space and potentially find better solutions. Although the method may not guarantee the global
optimum, it offers a practical approach for approximating the optimal solution to the optimiz-
ation problem at hand.

In a related results [259] a toolbox designed to determine the optimal discrimination of
optical modes in two distinct scenarios has been introduced. The first scenario, typical of met-
rology, involves the verifier controlling the light source and establishing a reference frame
for the phase. The second scenario, more relevant to cryptography, considers cases where the
verifier only observes states diagonal in the photon-number basis. The toolbox utilizes LP and
SDP methods to deliver rigorous bounds for the discrimination process, enhancing the under-
standing and practicality of the methods in both applications.

An example of a see-saw implementation in Matlab is given in appendix B.5.

65

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Phys. A: Math. Theor. 57 (2024) 163002 Topical Review

5. Conclusions

In conclusion, this paper has delved into the realm of SDP within the context of quantum
information, offering a comprehensive exploration of their mathematical foundations and prac-
tical applications. By elucidating the concepts of convex optimization, duality, and SDP for-
mulations, the study has equipped researchers and practitioners with powerful tools to address
optimization challenges in quantum systems. The insights gained from the research of SDP
have proven invaluable in advancing the field of quantum information, enabling the character-
ization and manipulation of quantum correlations, optimization of quantum states, and design
of efficient quantum algorithms and protocols. The practical implementation of SDP discussed
in the paper, has empowered researchers to effectively formulate and solve optimization prob-
lems in quantum systems, fostering the development of more efficient quantum communica-
tion protocols, self-testing methods, and a deeper understanding of quantum entanglement.
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Recently we learned about other two independent works about SDP in quantum informa-
tion [284, 300]. The content of these works and the current work are to a large extent compli-
mentary. The current review concentrates on providing the mathematical and implementation
background, by a detailed presentation of the general optimization framework, it covers the
discussion of implementations of solvers and is intended primarily for active researchers in
quantum information looking for the answer to the question why the methods work.

Appendix A. Proof of the decoupling lemma

We will now provide a proof of the decoupling lemma used in section 2.5. We follow the line
of [37, 38]. The lemma is used as a constraint qualification condition, i.e. it provides the strong
duality sufficient criteria of the Fenchel–Rockafellar scheme. To this end, we first introduce
the concept of convex series.

A.1. Convex series

The notion of convex series was introduced in [154]; see [37, p 113nn] for a detailed discussion.
Convex series of C are series of the form

∑+∞
i=1 λi xi with ∀ixi ∈ C, ∀iλi ⩾ 0 and

∑+∞
i=1 λi = 1.

66

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

www.quantera.eu
http://mostwiedzy.pl


J. Phys. A: Math. Theor. 57 (2024) 163002 Topical Review

C is defined to be convex series closed if the sum of every convergent convex series of C is
contained in C. One can check that if C is convex series closed, then [37, p 116]:

int C= core C. (A.1)

C is defined to be convex series compact if every convex series of C converges to an element
of C. It can be shown that C is convex series compact if and only if, it is convex series closed
and bounded. Thus, BX is convex series compact.

A.2. Preliminary comment

F defined as (52) is also lsc, since A is continuous. Without loss of generality, we also assume
that f(0) = g(0) = 0, since if it is not the case, we can trivially transform the primal prob-
lem (53) shifting it by a constant value. From this it follows F(0,0) = 0 and

∀λ ∈ [0,1] ,x ∈ X,y ∈ YF(λx,λy)⩽ λF(x,y) . (A.2)

A.3. Step 1: define the convex set S

Let us define [37, p 127]

S≡
⋃
x∈BX

{y ∈ Y : F(x,y)⩽ 1} . (A.3)

Let y0,y1 ∈ S. Then there exist x0,x1 ∈ BX such that F(xi,yi)⩽ 1 for i = 0,1. For any λ ∈ [0,1]
from the convexity of F we have F(λx0 +(1−λ)x1,λy0 +(1−λ)y1)⩽ λF(x0,y0)+ (1−
λ)F(x1,y1)⩽ 1 and thus λy0 +(1−λ)y1 ∈ S implying convexity of S.

A.4. Step 2: show that 0 ∈ core S

From the definition (15) and the assumption given in (61) we get ∀y∈Y∃Ty>0(Tyy) ∈ domθ =
domg−Adomf. Consider arbitrary y ∈ Y and take any xy ∈ domf such that Tyy+Axy ∈ domg.
Then ky ≡ F(xy,Tyy)<+∞. We want to ensure that ∃αy>0αyy ∈ S so that S is absorbing.
Indeed, let αy =min(1/ky,1/ ||xy ||). This implies that F(αyxy,αyy)⩽ 1 (by (A.2)) and that
αyxy ∈ BX, and thus αyy ∈ S. Since y represents arbitrary direction in Y, so 0 ∈ coreS (and,
what is more, S is an absorbing set).

A.5. Step 3: show that core S= int S

We will use (A.1). To this end, we check that S is convex series closed. Indeed, consider any
convergent convex series of S,

∑+∞
i=1 λi yi with ∀iyi ∈ S, summing to some y. It suffices to

show that y ∈ S. From (A.3) it follows that ∀i∃xi∈BXF(xi,yi)⩽ 1. The series
∑+∞

i=1 λi xi con-
verges to some x since BX is convex series compact. We have F(x,y) =

∑+∞
i=1 F(λi xi,λi yi)⩽∑+∞

i=1 λiF(xi,yi)⩽
∑+∞

i=1 λi = 1, where for the first inequality we used the assumption that
F is lsc and (A.2). Thus, y ∈ S, and any convergent convex series of S has sum y contained
in S meaning that S is convex series closed. Using (A.1) we conclude that for S we have
core S= int S.
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A.6. Step 4: show that θ is continuous in the neighborhood of 0

It can be shown [37, p 112] that for a Banach space Z a convex function f : Z→ R∪{+∞},
locally bounded above at z ∈ int(domf) is also locally Lipschitz at z. Thus it is also a fortiori
continuous at z. From (54) and (A.3) it follows that ∀y∈Sθ(y)⩽ 1, so θ is continuous at 0 ∈ intS.

Appendix B. Code samples in Matlab

B.1. Illustration of simple problem formulations using YALMIP

We start code discussions with a trivial example of SDP finding the largest eigenvalue of a
matrix. The purpose of this example is to provide a short overview of the syntax characteristic
of usage of the YALMIP modeling toolbox [193]. To install it one should follow the instruc-
tions from the repository and also install one of the supported solvers, e.g. SDPT3 [309] or
SeDuMi [290, 291].

We start with randomizing a Hermitian 3 by 3 matrix X using the ordinary Matlab syn-
tax. We see in listing 1 that in this instance the eigenvalues were −0.086472, 0.68428, and
3.227.

Next, we define a 3 by 3 Hermitian variable in listing 2. The function sdpvar is used for this
purpose. The first two parameters are the number of rows nr and columns nc of the matrix. The
third parameter specifies the structure of the variable. One of the possibilities includes 'full'
when all entries of the matrix are parameterized independently, meaning nrnc parameters for
real, and 2nrnc parameters for complex matrices. Another possibility for the parametrization
when nr = nc = n is 'symmetric' meaning that the element at ith row and jth column is
exactly equal to the one at jth row and ith column, using n(n+ 1)/2 parameters for real, and
n2 parameters for complex matrices. A third possibility is 'hermitian' meaning that the
element at ith row and jth column is equal to the complex conjugate of the element at jrow and
ith column. Other possible structures are 'diagonal' for diagonal matrices, 'toeplitz' for
symmetric Toeplitz matrices, 'hankel' for unsymmetric Hankel matrices, 'rhankel' for
symmetric Hankel matrices, and 'skew' for skew-symmetric matrices. When a real square
matrix variable is to be created, an abbreviated form sdpvar(n) can be used to create n by n
real symmetric matrix.

We can notice that the coefficient range is {1}, meaning that all coefficients in the variable
S are equal to 1. It is possible to use the parameterized variables of the type sdpvar with
various coefficient ranges. Usually, if the coefficients are spread by several orders of mag-
nitude, meaning that the program is mixing large and small coefficients, this leads a solver to
get into numerical problems. Similar problems may happen if the coefficients are very large
or very small. The variables that occur with very small coefficients usually do not influence
significantly the value of the solution and can be removed using the clean function from the
YALMIP, as shown in listing 3.

Now, we will execute the optimization with the command optimize(F = [S > = 0;
trace(S) = = 1], target = -trace(X * S)). The first argument of this function spe-
cifies the constraints of the optimization, and the second is the target of the optimization.
We assigned the constraints to the variable F. Let us investigate this variable as shown in
listing 4. We have specified the positive semi-definiteness constraint S > = 0 on the com-
plex 3 by 3 matrix S, i.e. S > = 0. This is described as Matrix inequality (complex)
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Listing 1. Random matrix for the YALMIP example.

Listing 2. Creation of a 3 by 3 Hermitian variable in YALMIP.

Listing 3. sdpvarwith large range of coefficients, and removing small coefficients with
clean function.

Listing 4. Investigation of a sample constraint in SDP: positive semi-definiteness of S,
i.e. S > = 0, and trace normalization, i.e. trace(S) = = 1.

3x3. The second imposed constraint of trace normalization, trace(S) = = 1, is described
as Equality constraint 1x1.

An optional third argument to optimize can specify additional optimization parameters,
like the selection of the solver, specification of how much information during the execu-
tion of the optimization should be printed to the screen, the maximal number of iterations
(if the solver allows for it). For instance, to specify that from all available solvers, YALMIP
should use SDPT3, not print any information, and limit the number of iterations to 20 one
can provide a setting sdpsettings('solver', 'sdpt3', 'verbose', 0, 'sdpt3.maxit',
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Listing 5. Stages of YALMIP processing in the discussed example.

Listing 6. Sample information about size of the problem to be passed to the solver as
printed by SDPT3.

20). Another useful option 'showprogress' allows us to see the progress of YALMIP, which
is useful for debugging purposes for very large problems. Recall that with a modeling tool,
before the optimization the problem is being converted to the form suitable for the solver,
usually the canonical form discussed section 3.2.1, or SDPA form discussed in section 3.2.2.
This formulation in some cases may take more time than the actual solver time. The option
'removeequalities' specifies how constraints of the equalities should be preprocessed
before passing to the solver, as discussed in section 3.6. The option 'dualize' tells YALMIP
to fit the problem formulation to the primal instead of the dual form. If multiple optimizations
are to be executed we recommend storing the settings in a separate variable and providing it as
the third optional argument to optimize, especially for smaller problems. The reason for this
is the fact that if this argument is not provided explicitly, then YALMIP will re-create its con-
tent for each execution of optimize, which requires additional computational time. Turning
on the option 'showprogress' shows that the stages with the default settings (with YALMIP
version 20210331) are as shown in listing 5.

At this stage, the control is passed to the specified solver. Recall from the discussion in
section 1.3 that YALMIP provides to the solver the problem framed in the dual form (81). The
solver usually prints the values describing the size parameters of the problem passed to the
solver, as shown in listing 6 for the case of the solver SDPT3. The listing 6 shows that the
dimension of the SDP variable is 6. This stems from the fact, that in the stage Converting
to real constraints YALMIP has reformulated the n by n complex variable to 2n by 2n
real variable, as discussed in section 3.5; in the considered example n= 3. This reformulation
as a real variables problem, requires stating a requirement that the dual SDP variable Z has the
form (95). It is easy to see that this requires n·(n+1)

2 matrices Ai to express that the two blocks

containing BR, and n·(n−1)
2 matrices Ai to express the relation BI =−BI in the off-diagonal

block. This gives in total n2 matrices Ai, what yields 9 in this case, displayed as number of
constraints = 9. Each of the problem’s constraints framed in the dual form corresponds
to an additional free variable in the primal problem, as discussed in section 3.6. The fact that
there is only one equality trace(S) = = 1 in the case, is expressed as dim. of free var
= 1 in listing 6.

Wewill briefly analyze the two of the settings, viz. 'removeequalities' and 'dualize'.
Their default values are both 0, and this is the case analyzed in the previous paragraph. If
we set 'removeequalities' to 1, then the discussed stages will result in output given in
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Listing 7. Size of the sample problem modelled with YALMIP with
'removeequalities' set to 1 framed in the canonical dual form.

Listing 8. Size of the sample problem modeled with YALMIP with 'dualize' set to
1 in order to frame the optimization problem in the canonical primal form.

listing 7. We notice that before calling the solver, two additional stages of YALMIP pro-
cessing are taken, viz. Solving equalities and Converting problem to new basis,
both responsible for the reduction of the number of variables and reformulation of the dual
form, as discussed in section 3.6. Comparing with listing 6 we see that the effect is the reduc-
tion of the number of matrices Ai from m= 9 to 8= m− nF and, at the same time, removal
of the nF = 1 free variables. On the test platform, the problem size reduction resulted in a
drop of the solver time from 0.48s to 0.24s, at the cost of additional YALMIP processing time
increased to 0.14 s from 0.10 s. If we set 'dualize' to 1, then the problem will be framed
in the primal form (80) instead. Again, the complex SDP of size n will be expressed as a real
SDP of size 2n, as explained above and in section 3.5. From listing 8 we see that indeed the
size of the SDP variable is 6, and there is only one constraint {Ai} to express the requirement
trace(S) = = 1.

The SDPT3 solver will provide also information about the chosen algorithm, as shown in
listing 9. In this case, the algorithm uses the HKM search direction, see (117). Other input
parameters of SDPT3 are gam and expon, and they are used to calculate the value of the step-
length αP and expon_used in (120) for the predictor–corrector mechanism, as discussed in
section 3.9.

The core part of solving an SDP is an iterative procedure of gradual improvement of the
solution (X(i),y(i),Z(i)), with a sample progress report shown in listing 10. The first column is
the iteration number, here the solver finished after the 14th iteration. The second and the third
are primal and dual step-lengths, see (119), taken in each iteration. When the step-lengths
are close to 1, it means that the search direction allowed for a large change in the values of
(X(i),y(i),Z(i)), what usually indicates a significant improvement of the solution in the iteration.
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Listing 9. Sample information about size of the parameters of the algorithm used by
SDPT3.

Listing 10. Iterations of interior-point method in SDPT3.

The fourth and fifth columns are residuals norms of the primal and dual solutions, as discussed
in section 3.8. The residual norms are expected to be close to 0 when the solution is feasible,
i.e. satisfies all the imposed constraints. The sixth column is proportional to the gap (112) and
also should be close to 0 when the iterates approach the solution. Due to numerical inaccuracy,
one usually considers values of the gap and the residual norms close to 10−7 as satisfactory. The
7th columns mean(obj) is the mean value of the primal Tr(CX(i)) and dual bT · y(i) solutions
of the current iterate. The 8th column provides the time passed til the current iteration (in
the example it passed less than one second). The following three columns, kap, tau, theta
provide information about specific parameters used in the determination of the step-length, and
the last column provides information about the Cholesky factorization taken in calculation of
the search direction; these information are beyond the scope of this work.

The SDPT3 solver provides a brief summary of its execution, as shown in listing 11. The
data include the number of iterations, the value of the primal solution Tr(CX(i)), and the value
of the dual solution bT · y(i), the value of the gap (112), and the relative gap (i.e. the gap divided
by 1 plus the mean value of the primal and dual solutions), the parameters measuring infeasib-
ility (which should be close to 0), the norms of the solution in the last iteration (X(i),y(i),Z(i)),
the norms of the matrices defining the problem {Ai}i, b, and C, the total CPU time, and the
CPU time per iteration, the termination code. The successful termination code is 0. The val-
ues −1,−5, and −9 indicate a lack of progress, when the improvements are too slow; 1 and
2 indicate dual or primal infeasibility of the solution, −6 indicates that the maximal number
of iteration has been reached before the desired quality of the solution was obtained; there is
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Listing 11. Summary of SDPT3 execution.

Listing 12. Correlation matrix example in YALMIP.

also a couple of value indicating various numerical problems. The last information contains
the so-called DIMACS statistics for standardized benchmarking purposes [213].

B.2. Correlation matrix

Now, we provide an illustration of the concept of SDP optimization over correlation matrices,
as discussed in section 4.6. Let us consider a set S = {x1,x2,x3}. Suppose we have obtained
information, possibly from experimental data, that corr(x1,x2) = 0.7± 0.03 and corr(x1,x3) =
0.8± 0.01. The question of interest is: what is the range of possible values for corr(x2,x3)? To
answer this, we construct a real 3 by 3 correlation matrix with diagonal elements equal to 1 and
impose constraints on its entries based on the specified ranges. We then perform maximization
and minimization of the entry corresponding to corr(x2,x3) to determine its possible range in
listing 12. The results, as shown in listing 13, indicate that corr(x2,x3) lies within the interval
[0.074153,0.99573].

B.3. Quantum state discrimination

In the task of discriminating N non-orthogonal quantum states, the goal is to employ a meas-
urement strategy using operators M1,M2, . . . ,MN in order to maximize the average success of
the discrimination. This average success is quantified by the expression 1

N

∑
i∈[N]Tr(ρiMi ),

where ρi represents the quantum state and Mi corresponds to the measurement operator for
the ith state. By optimizing this expression, one can effectively differentiate between the given
non-orthogonal states.
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Listing 13. Results of the correlation matrix example calculations.

Listing 14. Quantum state discrimination in YALMIP

TheMatlab code provided in listing 14 demonstrates quantum state discrimination using the
YALMIP optimization toolbox. The code begins by generating three random quantum states
of dimension 3: state1, state2, and state3. These states represent the quantum systems
to be discriminated. Next, the code declares three measurement variables, meas1, meas2, and
meas3, using the sdpvar function from YALMIP. These variables are Hermitian matrices of
size 3 by 3, representing the measurement operators corresponding to each state. The optimiz-
ation problem is formulated using the optimize function, which takes an objective function
and a set of constraints as inputs. The objective function aims to maximize the average success
rate of discrimination, given by the expression -trace(state1*meas1 + state2*meas2 +
state3*meas3)/3. This expression calculates the average trace of the product of the state and
measurement operators. The division by three accounts for the number of states being discrim-
inated. The constraints include ensuring that each measurement operator is PSD (meas1 > =
0, meas2 > = 0, meas3 > = 0) and that the sum of all measurement operators equals
the identity matrix (meas1 + meas2 + meas3 = = eye(3)). These constraints guarantee
that the measurement operators are valid and form a valid measurement scheme. The output
of the optimization will provide the optimal measurement operators that achieve the highest
discrimination performance.

We note that in the discrimination process, it is sometimes useful to consider scenarios
where the weights of the different states are specified. By assigning specific weights to
each state, the discrimination problem can be formulated in a more structured manner. This
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Listing 15. The header of the function creating variable with DPS constraints.

approach allows for a more targeted optimization of the average success metric, leading to
enhanced discrimination capabilities. By leveraging knowledge about the weights of the states,
researchers can design measurement schemes and strategies that are tailored to maximize the
overall success rate in discriminating the non-orthogonal quantum states.

B.4. Implementation of the Doherty–Parillo–Spedalieri method

The code from listing 15 defines a header of a function called GetDPS, which is designed
to create YALMIP variables for quantum states, along with associated constraints, specific-
ally tailored for applying the relaxed separability criteria of the DPS method discussed in
section 4.2. These variables and constraints can be used for conducting optimizations involving
separable quantum states. The function takes inputs such as the dimensions of subsystems, the
number of copies, and the configuration of PPT tests. The bNormalize parameter allows to
choose whether the trace of the resulting state should be exactly 1 or not greater than 1. The
function outputs the YALMIP variable rho, the corresponding YALMIP constraints F, and the
symmetric extension variable rhoSymExt.

The part of the code from listing 16 performs some initial calculations and checks based
on the provided input. It ensures that the boolean variable bNormalize is set to true if not
explicitly specified, confirming that trace normalization is the default behavior. The code then
asserts that the dimensions of subsystems and the number of copies match and that the total
number of copies aligns with the number of columns in the provided PPTs matrix. The number
of subspaces is determined, considering the input dimensions and the number of copies. The
dimensions of the symmetric extension are computed, including those for subsystem copies,
which are identified. Finally, the total dimension of the symmetric extension is calculated by
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Listing 16. Initialization of variables and input validation for the function creating vari-
able with DPS constraints.

Listing 17. Calculation of the basis of symmetric extension matrices in the function
creating variable with DPS constraints.

taking the product of the individual dimensions. These preliminary steps ensure the consist-
ency and validity of the input.

The code given in listing 17 focuses on creating a basis for the symmetric extension
matrices. It begins with an initial basis vector [1], which will accumulate the vectors span-
ning the symmetric extension subspace. For each subspace specified in the input, it computes
the eigenvalues and eigenvectors of a symmetric projection matrix constructed based on the
dimensions and the number of copies using a relevant subroutine SymmetricProjection
from the package QETLAB [162]. Note that the eigenvalues of the symmetric projection are
either 0 or 1, and thus the symmetric subspace can be determined by selecting the eigenvectors
corresponding to eigenvalues greater than, for instance, 0.5. The basis of all vectors spanning
symmetric extension subspace stored in the variable basis is updated accordingly using the
Kronecker product. This process continues for all subspaces, ultimately generating a basis with
vectors that span the symmetric extension space. The variable nBasis records the number of
basis vectors.
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Listing 18. Creation of a variable containing a symmetric extension of the function
creating variable with DPS constraints.

Listing 19. Application of the PPT constraints on the approximately separable quantum
state in the function creating variable with DPS constraints.

The code from listing 18 is responsible for creating the rhoSymExt variable, which rep-
resents the symmetric extension of a quantum state. It starts by defining rhoSymBasis,
which is an nBasis by nBasis Hermitian complex matrix. The symmetric extension matrix
rhoSymExt is then constructed by performing matrix operations involving the basis vectors.
After constructing rhoSymExt, a cleaning operation is applied to remove small numerical
artifacts that could affect the numerical calculations during SDP optimizations. The variable
F is used to store constraints associated with rhoSymBasis. If the bNormalize flag is set,
the trace constraint enforces that the trace of rhoSymExt equals 1, indicating a normalized
quantum state.

The part of the code from listing 19 is responsible for creating the rho variable, which
represents the quantum state constrained to satisfy the selected DPS criteria. It is derived from
its previously created symmetric extension rhoSymExt by tracing out the copies of subsystems
(as specified by the variable subsystemsCopiesPos). Following that, the code iterates over
the specified on the input PPT checks (passed to the function in the variable PPTs). Each
PPT check corresponds to a constraint that enforces the partial transpose of the symmetric
extension of the state to be PSD. The partial transposition is performed using the function Tx
from the package Quantinf [77]. The constraints are added to the variable F, which collects all
the constraints to be used in later optimization problems.

Let us now use the defined function to the example from section VII.B from the paper by
Doherty et al [87]. We define auxiliary lambda functions ket and bra that are creating vectors
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Listing 20. Illustration of working of the function creating variable with DPS con-
straints applied on a separability witness .

| i〉⊗ | j〉 and 〈i | ⊗ 〈j | in two ququart spaces. Next, we use them to express the witness Wwhich
is non-negative on all product states, as derived in [87]. Next, we use the function GetDPS to
create a variable under DPS constraints, where the second subsystem has two copies and two
PPT constraints are imposed: for partial transposition of the second and third subsystems. The
optimization shows that the maximal value of the witness possible to be obtained by states
satisfying these constraints is 0, as expected. A unit testing example is shown in listing 20.

The second example involves the NTV method discussed in section 4.2, as shown in the
unit test from listing 21. We use the Bell functional P(0,0|1,1)+P(0,0|1,2)+P(0,0|2,1)−
P(0,0|2,2)−PA(0|1)−PB(0|1) with the Tsirelson bound 1√

2
− 1

2 [52]. This Bell functional
is a form of the CHSH functional [73]. The GetDPS function is used to prepare a variable W
that satisfies the relaxed separability criteria DPS method. The dimensions of the four subsys-
tems are specified as [4 2 2]. The first two subsystems are passed jointly as a four dimen-
sional subsystem to reflect that they represent an entangled two-qubit state. The remaining two
subsystems represent single qubit measurements. This code creates operators for performing
measurements on the entangled state in the following way. The PA1 operator represents SWAP
operators between Alice’s qubit and Alice’s first measurement stored in the third subsystem.
Similarly PB1 is the SWAP between Bob’s qubit and Bob’s measurement contained in the
fourth subsystem of W. They are created using the sysexchange function from the mentioned
Quantinf package. PA2 and PB2 are the computational basis measurements for Alice and Bob,
respectively. The target variable is calculated as the trace of the operator W times the CHSH
operator. The code uses YALMIP’s optimize function to solve the SDP problem, with con-
straints defined in F, and the goal is to maximize the target value. Finally, it asserts that the
computed value of the target is close to the expected value.

B.5. Implementation of the see-saw method

We will demonstrate a simple implementation of the see-saw technique discussed in
section 4.8.

To this end, let us now delve into the concept of a random access code (RAC), which aims
to compress a uniformly randomized n-digit string into a single digit, allowing Bob to recover
any of the n digits with a high probability [12, 13]. In this scenario, Alice receives a uniformly
distributed random input string x comprising n digits. She computes the value a using the func-
tion f[x] and transmits it to Bob. Upon receiving a and another uniformly distributed input y,
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Listing 21. Illustration of working of the function creating variable with DPS constraints
for implementation of the Navascués-de la Torre-Vértesi (NTV) method to find the
Tsirelson bound of a variant of the CHSH Bell functional.

Bob employs the function g(a,y) to compute the value b. The protocol is considered successful
if b is equal to the yth digit of x.

Let us explore a specific case of a 22 → 1 RAC. Here, Alice aims to encode two bits into a
single bit. The mappings providing the optimal success probability of the task are as follows:
f(00) = 0, f(01) = 0, f(10) = 1, f(11) = 1. On Bob’s side, the decoding is defined as follows:
g(a,1) = a and g(a,2) = 0. The success probability of this classical RAC is 3

4 .
In the quantum scenario, Alice tries to encode two bits into a qubit system. Here an encoding

allowing to get the optimal quantum value is as follows. Take

f(00) =

[
cos π

8
sin π

8

]
, f(01) =

[
cos π

8
−sin π

8

]
, f(10) =

[
sin π

8
cos π

8

]
, f(11) =

[
sin π

8
−cos π

8

]
. (B.1)

Bob performs his decoding using the projectors

P1
0 =

[
1 0
0 0

]
,P1

1 =

[
0 0
0 1

]
,P2

0 =

[
1
2

1
2

1
2

1
2

]
,P2

1 =

[
1
2 − 1

2
− 1

2
1
2

]
. (B.2)

The optimal success probability is 1
2

(
1+

√
2

2

)
≈ 0.85355.

The first step in the implementation of see-saw in Matlab with the YALMIP toolbox is to
provide a proper definition of the variables used to express the quantum states for the encoding,
see (B.1).We provide such code in listing 22. Frho is a critical component in the formulation of
constraints that guarantee the validity of the operators stored within the cell-type data structure
rhoCellVar as quantum qubit states. These constraints collectively ensure that the stored
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Listing 22. Preparation of SDP variables to store the optimized quantum states in the
22→ 1 quantum RAC for see-saw implementation with YALMIP.

Listing 23. Preparation of SDP variables to store the optimized quantummeasurements
in the 22→ 1 quantum RAC for see-saw implementation with YALMIP.

density matrices meet the essential criteria for a valid quantum state: they are Hermitian, PSD,
and normalized. Note that even though the optimal states in (B.1) are pure, the form of SDP
constraints allows for expressing them only as density matrices.

The next code segment from listing 23 focuses on defining variables and constraints related
to measurements. The mCellVar cell array is employed to store measurement operators, and
the Fmeas set of constraints is used to ensure the validity of these operators. The constraints
stipulate that the measurement operators must be Hermitian, PSD, and sum to the identity
matrix, i.e. form a POVM. The nested loops over y and b create these measurement operators
and add the corresponding constraints to the Fmeas list variable. The constraint of summation
to the identity in this example is given outside the loops.

The code snippet from listing 24 is setting up the remaining initialization for the see-saw
optimization. The Succ variable is defined as a success probability function for the QRAC.
This function is defined as the so-called lambda expression taking two parameters, and it com-
putes the success probability based on input density matrices rhoCellIn and measurement
operators mCellIn for the given quantum states and measurements. The nested loops initialize
quantum states, i.e. rhoCell with random density matrices using a RandomState function,
ensuring that the dimension is set to 2. Additionally, an empty cell array mCell is created
to store the current measurement operators in the ‘saw’ step. Finally, we choose the solver
settings, with SDPT3 solver in this example.

The major element of the see-saw is shown in listing 25 which represents the process
involving three iterations. The objective of every step is to maximize the success probability of
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Listing 24. Initialization of values of the encoding states with random values, and defin-
ition of the success probability in the 22→ 1 quantum RAC for see-saw implementation
with YALMIP.

Listing 25. Intertwined ‘see’ and ‘saw’ steps in the 22→ 1 quantumRAC in the see-saw
implementation example with YALMIP.

81

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Phys. A: Math. Theor. 57 (2024) 163002 Topical Review

the quantum RAC by alternately optimizing measurement operators and quantum states. The
loop consists of two main steps: the ‘see’ step and the ‘saw’ step. In the ‘see’ steps, the code
optimizes the measurement operators mCellVar while keeping the quantum states fixed in
rhoCell. After each optimization, the optimized measurements are stored as constants in the
mCell variable. Then, the success probability with these updated measurements is computed
and recorded in the progressTab array. In the ‘saw’ step, the code optimizes the quantum
states rhoCellVar while keeping the measurements fixed in mCell. Similar to the ‘see’ step,
the optimized states are stored as constants in the rhoCell variable. The success probability
with these updated states is again computed and recorded in the progressTab array. The pro-
cess continues for just three iterations as specified. The stopping criteria for the process can be
customized based e.g. on progress in optimizing the target value. Already the second iteration
provides the optimal result in this simple case.
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