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ABSTRACT Object detection Through-the-Walls enables localization and identification of hidden objects
behind the walls. While numerous studies have exploited Channel State Information ofMultiple Input Multi-
ple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI)
to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls
human motion direction prediction system based on a Single-Input-Single-Output (SISO) communication
channel model and Shallow Neural Network (SNN). The motion direction prediction accuracy of SNN is
highlighted against the other types of Machine Learning (ML) models. The comparative analysis of models
in this study shows that unique human movement patterns, superimposed on received pilot radio signal,
can be classified precisely by SNN, with an accuracy of approximately 89.13% compared to the other ML
based models. The results of this study would guide scholars, active in developing humanmotion recognition
systems, intrusion detection systems, or Well-being and healthcare systems, and in processes that innovate
and improve processing techniques for monitoring and control.

INDEX TERMS Artificial intelligence, artificial neural networks, classification algorithms, data analysis,
feature extraction, feedforward neural networks, machine learning, modeling, neural networks, pattern
analysis, software radio.

NOMENCLATURE
CFR Channel Frequency Response.
CNN Convolutional Neural Networks.
COTS Commercially available Off-the-self.
CSI Channel State Information.
CW Continuous Wave.
DNN Deep Neural Networks.
DTW Dynamic Time Wrapping.
DWT Discrete Wavelet Transform.
FCNN Fully Connected Neural Network.
FPGA Field Programmable Gate Arrays.
HAR Human Activity Recognition.
HCI Human-Computer interaction.
HMM Hidden Markov Model.
HMR Human Motion Recognition.
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ISM Industrial, Scientific and Medical band.
KNN K-Nearest Neighbours.
LDA Linear Discriminant Analysis.
LOS Line of Sight.
MAF Moving Average Filter.
MEMS Micro-electromechanical systems.
MIMO Multiple Input Multiple Output.
MLP Multi-layer Perception.
mmWave Millimeter Wave.
NLOS Non Light of Sight.
NNN Narrow Neural Networks.
ODTTW Object Detection Through-The-Walls.
PCA Principal Component Analysis.
PSD Power Spectral Density.
RCT Randomized Control Trial.
RFPSP Radio Frequency Pilot Signal Processor.
RSK Real-Signal Kurtosis.
RSS Received Signal Strength.
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RSSI Received Radio Signal Strength Indicator.
RX USRP based Receiver.
SDR Software Defined Radio.
SISO Single Input Single Output.
SNN Shallow Neural Network.
SVM Support Vector Machines.
TPR True Positive Rate.
TWRI Through Wall Radar Imaging.
TX USRP based Transmitter.
USRP Universal Software Radio Peripheral.
UWB Ultra-wideband.

I. INTRODUCTION
Recent advancements in wireless and communication tech-
nology are driving researchers towards developing systems
that exploit Channel State Information (CSI) of radio com-
munication devices for localization and pattern recognition
based applications. Several research studies focussed on areas
of human motion detection, gesture detection, and facial
recognition systems have been proposed [1]–[5]. Wireless
communication devices available in themarkets at present are
grounded on Software Defined Radio (SDR) sub-units that
enable support to multi radio subcarrier transmission, thereby
enabling communication of different types of data. These
SDR sub-units facilitate the acquisition of CSI in wireless
communication devices, and the collected CSI data is then
explored to uncover hidden human motion patterns. Some
Commercially Available Off-The-Shelf (COTS) devices even
output CSI directly via their in-built radio subsystems [6].
Likewise, WiFi devices available today, also output CSI and
outperform against the other human motion sensing sys-
tems. However, Human Activity Recognition (HAR) pro-
cesses using WiFi based solutions prerequisite acquisition
of CSI for accurate estimation and prediction of human
activities [7], [8].

A review of recent studies unveils that CSI signals show
randomized behavioral patterns. This randomized behavior
prevails due to signal reflections in the multipath signal prop-
agation and mainly serves as a source of distortion in the
received signals [9]–[11]. The statistical random variations
observed in the CSI data primarily exist due to the Non
Line of sight (NLOS) propagation characteristics. Any errors
introduced by the reflections, scattering, and diffractions of
signals are mainly considered as obstacles in signal propaga-
tion [12]. Random patterns in CSI exist due to the dynamic
motion of objects in the near vicinity of the transmission
source that inevitably influence the elementary behaviour
of received signals. Although CSI employs physical layer
properties to differentiate between the amplitude and phase
characteristics whilst being sensitive to the dynamics of the
environment, the multipath effect is observed to be con-
structive, when it comes to its applications in localization
systems that are based on fingerprinting [13]. While the
amplitude of CSI could be a stable metric, the added external
noise to the signal from the system and the environment

distorts the signal considerably [14]. The distance between
a transmitter and receiver, and radio reflection, refraction,
diffraction, absorption, polarization, and scattering, termed
as multipath effects, considerably attenuate the amplitude
and introduce phase shift in CSI signals [15]. Apparently,
the complex nature of acquired CSI data revealing random
probability distribution, requires efficient processing mech-
anisms of noise removal and signal decomposition, before
some meaningful information can be extracted from it, or in
particular signal features that are imperative in the pattern
recognition processes and applications. To identify the behav-
ioral characteristics or patterns in any given CSI dataset,
successive remarkable attempts have been made so far by
the research communities, uncovering the potential of CSI
for human motion recognition. Various approaches of sig-
nal processing have been used so far, for instance, Discrete
Wavelet Transform (DWT) is used for noise removal and
Linear Discriminant Analysis (LDA) for feature engineer-
ing by [16], feature extraction using Principal Component
Analysis (PCA) by [9], [10], [17], the CLEAN algorithm
by [18], Doppler spectrum by [19] and even scale and time
shift projections by [16]. Signal processing methods as such
prerequisite high speed processing elements, and in addition
to being process intensive, running these algorithms on tiny or
resource constrained hardware devices may not be an optimal
solution. Also, the primitives - rising edges, falling edges, and
pauses defined at the primitive layer in [16] attempt to address
issues as mentioned, however, in a generic sense. Therefore,
the need to reduce the complexity of CSI processing and
application of innovative filtering techniques merely result in
an increase in the number of processing elements as well as
leads to additional system costs.

Whereas numerous research studies based on WiFi have
been used for developing applications for localization and
pattern recognition, the resulting systems are highly accurate
in recognizing human activities, in particular human motion,
and mostly employ either machine learning or deep learn-
ing algorithms for pattern recognition or classification. CSI
can reveal patterns in the data, which come from different
domains, for instance, motion sensing systems, object recog-
nition systems, and pose estimation. However, it requires pro-
cessing, modelling, and training specific to the each domain.
WiFi sensing performance relies mostly on noises and out-
liers that exist in the collected raw CSI data [9], and the
CSI data acquisition with off-the-shelf WiFi cards, may not
always be a readily available option, since CSI data acquisi-
tion features are unavailable in some WiFI cards. In addition,
there are concerns relating to processing complexity of CSI
signals, portability of WiFi devices, adaptability to current
networks, unreliability to due fading channel propagation,
lower precision due to random nature of CSI, and inefficient
system designs due to complex signal processing architec-
tures. The radio subunits provide CSI that often requires
hardware and software signal processing mechanisms, and
subsequently the developed systems adumbrate need of com-
plex signal processing circuitry.
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Although the motion detection accuracy of Wifi is high
compared to the other radio devices, CSI data is dependent
on the availability of multiple WiFi channels for consistent
monitoring of activities under consideration. If one of the
channel experiences interruption, the detected activity, for
example human motion prediction, accuracy may decrease
significantly. This leads us to propose a single communica-
tion channel only for activity recognition purposes instead
of employing multiple radio communication channels. The
proposed method alleviates the level of processing, when
compared to the processing used for multiple CSI sub-
carriers, and implements a Single Input Single Output (SISO)
channel model for activity recognition, in this study human
motion direction prediction. Using SISO, there exists a single
transceiver pair, modelling the system to enable detection of
human motion. This study presents a testbed for modelling
SISO communication system model, and an experimental
setup to evaluate the prediction accuracy of the single channel
based human motion direction prediction system. A human
surveillance system is presented that predicts the direction
of human motion under the realm of detection through the
walls. For human motion classification, this study employs
machine learning models to identify different human motion
patterns of four different humans employed in this study.
The motion patterns were collected in a controlled lab envi-
ronment. Therefore, the study extends scope of the current
research in human activity or motion recognition systems,
and proposes the development of an efficient human motion
direction identification system. In addition to demonstrating
the SISOmodel based humanmotion direction prediction, the
study also highlights the practical implementation of SDRs
for human motion surveillance and activity monitoring.

In this paper, a Shallow Neural network [20] based system
model is proposed that acquires and processes received Radio
Signal Strength (RSS) data from a SISO communication
channel to identify the direction of human motion, through
the walls. A testbed is setup and configured in a real time sce-
nario to validate the proposed model, and estimate the detec-
tion accuracy of the proposed system model. The proposed
system processes unique human motion signatures, superim-
posed on the RSS, and then attempts to unveil the direction
of human motion from RSS using various machine learn-
ing models. In abreast to showcasing predictions on human
motion direction, which CSI-based and other HAR studies
have never focused before, the study shows direction predic-
tion accuracies resulted by different machine learning models
for comparative analysis, enabling us to determine the best
prediction model. The study hypothesis bases on the assump-
tion that Shallow Neural Networks (SNNs) can provide the
optimal human motion direction prediction accuracy (SNNs)
by classifying the human motion patterns, acquired from a
continuous time pilot carrier signal transmission. Therefore,
SNN prediction model is implemented in LabVIEW to val-
idate the prediction accuracy of the devised human motion
direction recognition model, in addition to training various
other machine learning models for comparison. The study

results show that SNNs show higher prediction accuracies
than other machine learning models, whilst presenting a light
network model compared to the deep learning frameworks
with multiple hidden layers, typically implemented in human
motion recognition systems using WiFi.

A. CONTRIBUTION
This study proposes a systemmodel for human motion detec-
tion through the walls, and employs just a single carrier
frequency of 2.4GHz, enabling detection human motion and
to trace the direction of human motion using a SISO based
channel model. The main contributions of this study are listed
here under:

• The study proposes a testbed to validate the proof-
of-concept i.e., to identify the direction of human
motion in indoor environments using SNN. The pro-
posed testbed implements a Single Input Single Out-
put (SISO) topology.

• The study provides a system model that enables human
motion direction recognition using a single communi-
cation channel. SNN is used to predict the six different
directional motion patterns of four participants.

• The study provides a novel method to identify the direc-
tion of humanmotion based on Software Defined Radios
(SDRs). A case study of human motion surveillance
is described to highlight the applications of SDRs in
Through the walls human motion sensing and detection.

• The study evaluates accuracy of various machine learn-
ing models on the collected human motion dataset.
A comparative analysis of SNN with other machine
learning models is also given to determine the best pre-
diction model.

• The study provides statistical validation of the two pro-
posed models to determine the efficient model for pre-
dicting human motion direction.

B. PROBLEM STATEMENT
From the literature review, we conclude that most of the stud-
ies have addressed challenges pertaining to human motion
recognition.WiFi and radar sensing technology in association
with machine learning and Deep Neural Networks (DNNs)
have been widely investigated and applied in numerous appli-
cations. The systematic literature review reveals that prolific
attempts have been made to address challenges pertaining
to human motion recognition. However, there is no research
study till date that addresses the challenge of detecting the
direction of human motion from the RSS of a pilot signal,
more specifically with Universal Software Radio Peripherals
(USRPs) [21] using omni-directional antennas. Using our
proposed method, we the authors of this study claim to
be the first to address this challenge, and present a novel
method that employs a single Continuous Wave (CW) - a
pilot radio subcarrier, and the Shallow neural network for
predicting the direction of human motion in a controlled
environment.
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C. STUDY OUTLINE
The study is organized according to the following sections.
Section-II provide a detailed literature review of related
studies. Section III discusses a theoretical perspective of
the study, while the Section-IV provides the experimen-
tal design method. Section-V, method of data collection
acquisition using SDRs. Section-VI provides the SNN based
machine learning solution to motion pattern analysis and
classification, whereas Section-VII discusses study results
and compares resulting MLmodels. Finally in the Section-X,
conclusions are presented and suggestions aremade for future
research in Section

II. RELATED WORK
With the current advancements in wireless communication
and sensing technologies, their applications to HAR systems
are gaining wider acceptance at global level. In recent years,
wireless technologies have played a vital role in the develop-
ment of HAR systems. HAR is intuitively the main driving
technology in human-computer interaction and activity anal-
ysis, and is nowadays the promising area of research in the
field of artificial intelligence. A number of research studies
have focused on issues concerning HAR [16]. HAR methods
used in the current ongoing research are broadly divided into
three main categories – image processing, wearable sensing
devices, and wireless radio signal processing.

In computer vision, using image processing techniques on
modelled human motion and analyzing effects in real life set-
tings, are currently driving the development of many indus-
trial and commercial applications [17], [22]. For example,
real-time Human Motion Recognition (HMR) [18], systems
using radar images responsible for distinguishing human
motions [19], intelligent surveillance platforms [23] and
many others. In addition to the applied image processing tech-
niques, HMR systems base on various types of sensors such
as Micro-electromechanical System (MEMS) Sensors [19],
motion sensor using U-Net [24], smartphone-based inertial
sensors [25], magnetic field sensors [26], Continuous-Wave
Radar Sensors [27] and velocity sensor array [28]. Currently,
prolific sensor based HMR systems are widely available,
however, research has shown that signals acquired fromWiFi
devices can help in recognizing human motions and posi-
tions [29]. Several WiFi based solutions such as WiAct [30],
WiRoI [31], WiDrive [32], WiFi Motion Detection [33],
WiTT [23] and many others have be already proposed and
implemented.

These WiFi based studies devise solutions based on CSI,
which the SDR devices acquire by analyzing the multiple
radio sub-carriers. However, preprocessing the CSI is a diffi-
cult task on hand and poses several critical challenges whilst
deriving human activity information from it. Typically, the
quantitative measure of CSI phase reveals that the sampling
time mismatch leads to random phase shifts in the sig-
nals [34]. Consequently, the devices having same hardware
and software architectures, including physical properties may

show varying results, even if the devices receive the same
type of activity data, as input. The lower sampling rate of
processing units within the SDRs results in processing delays,
eventually limiting their application in real time systems.
While CSI subcarriers are influenced by the dynamic nature
of a communication channel and intensity level of noise,
extracted CSI data are input to the signal processing units for
eliminating the unwanted noise, applying signal transforms,
and/or extracting actual motion signals. Next, pre-processed
CSI data are input to algorithms that employmodelling, learn-
ing, or hybrid algorithmic techniques to deliver the output,
targeted at different WiFi based sensing applications. This
requires cleansing, processing and analysis of each CSI sub-
carrier, which in turn demand efficient hardware resources.
Moreover, the sensing environments may elevate additional
processing demands due to dynamic background of the mon-
itoring environments. The background object elimination
algorithms, for instance by [34], may eliminate such effects
and estimate likelihood criteria to isolate actual targets from
the other environmental entities, however the present estima-
tion criteria demand precise estimations of the noisy descrip-
tor variables that mostly rely on ambient parameters [35].

As far as Hardware devices are concerned, WiFi network
cards, for instance Intel 5300 network card, are installed
and fixed inside notebooks or desktop computers. The fixed
orientation limits their application in testbeds, where user
defined orientation is desired to acquire CSI statistics. Simi-
larly, Multiple-Input-Multiple-Output (MIMO) systems [17],
[18] employ multiple transmitters and receivers, include
multiple antennas for reception and transmission [2], [36].
Increase in hardware and advanced software requirements,
extends the level of costs ofMIMOdevices compared to SISO
devices that rely on simple hardware, software and antenna
types. MIMO systems adumbrate higher resource require-
ments including hardware complexity when compared to
SISO systems. Individual RF units are prerequisite to process
radio signals of each antenna, and MIMO topology employs
advanced mathematical or signal processing algorithms that
necessitate powerful Digital Signal Processors (DSPs) to
execute the developed algorithms. Apparently, increase in
the requirement of hardware resources leads to increase in
the power requirements. Eventually, complex and computa-
tionally intensive signal processing algorithms lead to high
battery consumption, thereby draining out batteries faster and
decreasing life time of batteries used to drive MIMO devices.

The proliferation of hardware elements as such increases
infrastructure and deployment costs, and also limits their
applicability in the processes leading to the development
of low cost solutions that enable HAR. Some studies also
affirm that adding additional subcarrier frequencies in the
WiFi recognition process does not help in improving the
human recognition accuracy. The study by [10] and [17]
reports that CSI acquired with WiFi operating at 5GHz of
frequency with 114 and 132 subcarriers, shows 94.0% and
94.1% of True Positive Rate (TPR) only in detection accu-
racies, respectively. This implies that recognition accuracy
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or in other words the TPR is independent of the number
of CSI subcarriers, and also proves that employing addi-
tional radio subcarriers unlikely shows an increase in the
level of human motion recognition accuracy. Hence, HAR
systems that implement a number of subcarrier frequencies,
demonstrate a limit in the level of accuracy of human motion
detection with multi subcarrier channel based systems.

On the other hand, HMR systems grounded on radar sens-
ing technology, immensely eliminate the need of deploying
numerous sensors, and are mostly preferred over other sensor
based systems. HMR systems based on radar sensor systems
have been extensively used in various applications, including
surveillance [37], [38], activities concerning search [39], [40]
and rescue [41], smart environments [42], [43], and in ambi-
ent assisted living [44]–[46]. Research studies, for instance
motion capturing system [47], contact-less UWB Radar [48],
Magnetic Induction [49] exclusively demonstrate the featured
capabilities of non-intrusive motion recognition systems.
Among many wireless sensing technologies, radar sensing
has emerged as an efficient solution that relatively focuses
on areas such as commerce, defense, and security. Although
widely used in military and defense services, radar sensing
systems are also implemented in Human–Computer Inter-
action (HCI) in medical applications, in automotive fields
and smart sensing systems [50]. Radar technology employ-
ing frequencies that range from few GHz to hundreds of
GHz (mmWave) is used for medium or very close range sens-
ing, and presents an environmentally robust sensing systems.
Recent applications of radar include gesture recognition [51],
[52], monitoring patients [53], monitoring movement of
Ataxia Patients [54], detection and tracking of the human
body [55] and various other applications. Amalgamation of
radar sensing devices andMachine learning, particularly ones
that work in association with Deep Neural Networks (DNNs),
have shown promising results in applications, such as count-
ing number people in a room [56], human identification [57],
and even in unknown human classifications [58].

Typical experimentation with radar sensing systems, pre-
requisite distinguishing factors to be taken into account.
The characteristics, such as technology, modulation tech-
nique, frequency, communication bandwidth, antenna type,
including the processing capability of algorithms, serve as
major factors that influence the overall application area of
radar based sensing and tracking systems. From our literature
review of recent studies, we divide radar sensing technology
into four dimensions, a) technology b) frequency c) antenna
types d) implemented modulation techniques and e) Data
representation.We consider that these five dimensions are the
key factors that affect the overall performance of a human
radar based sensing and tracking system, as numerous stud-
ies have relied on these parameters so as to achieve higher
performance and level of sensing accuracy. The Table-1 lists
these five main parameters with corresponding definitions.

Most of the human motion recognition applications imple-
ment artificial intelligence based solutions to unveil the hid-
den characteristics in the data, whereby the data acquired

TABLE 1. Current radar sensing technologies.

from radar sensors is typically processed off-line than in
actual real time [30]–[34]. Real time human motion recogni-
tion applications, in general, exclusively demand lower com-
plexity of signal processing hardware, so as to enable fast and
efficient human motion data processing, also require hard-
ware circuitry to ensure active real time response. Nonethe-
less, to implement the DNN algorithms on a low level
hardware architectures is a challenge in itself because DNNs
exhibit highly complex architectures that demand high end
processing elements employing complex signal processing
techniques.

A. RESEARCH MOTIVATION
In recent years, Object Detection Through-The-Walls
(ODTTW), has been a major source of attraction to
researchers. Due to its wide range of capabilities, ODTTW
enables support for security and military defence applica-
tions. In a typical ODTTW application, a radar transmitter
sends out electromagnetic pulses through the wall to sense the
presence of an object, located on the other side of the wall.
And the returned signal reflections from a wall and target,
are processed to detect the presence of an object. ODTTW
does not need to establish any physical contact with objects
that lie behind walls, so it allows passive detection of hidden
objects. Sensing systems, as such, are categorized as passive
sensing systems, exhibit features such as context awareness
in close proximity, or monitoring an object that is located on
either side of a wall. The method of transmission of radar
signals, to detect objects that are located behind walls, finds
application in tasks such as surveillance, search and rescue
operation, enforcement of law, and other operations that save
people’s lives [59], [60]. There are other methods as well
that help in sensing and localization of objects covered by
walls. Sensing methods, as such, employ 60-70 GHz band
of spectrum [61]–[64], to passively sense the presence of
objects hidden behind the walls. On the other hand, Through
Wall Radar Imaging (TWRI) methods are used to reconstruct
static targets, as well as to present the information on the
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FIGURE 1. Proposed system model human motion direction recognition through walls.

monitored scene of a hidden object. Nevertheless, the param-
eters defining the characteristics of a wall, and others that
define the position there, are necessary, prior conditions to
the process rebuilding a scene, although wall parameters are
usually unknown in real scenarios [65].

One of the major problems, underlying in environments as
such, is the unknown width of a wall or barrier; an essential
parameter, which is often neglected in the process of imaging
or modelling the background space of a wall. These types
of barriers can completely block the transmission of radar
signals, if walls are highly dense in their physical structure.
However, if the frequencies used for transmission are low,
then walls can allow penetration of signals with low fre-
quencies. TWRI studies have mostly focused on stationary
objects, but some studies have attempted to model, and inves-
tigate scenarios, wherein attempts have been made to localize
moving objects [66]. To sense non-moving objects that are
covered by walls, two preconditions need to be satisfied. The
first condition is to remove clutter from walls, which result
in multiple reflections of a radar signal due to the irregular

nature of objects on the wall, and the second is to build an
image which models the reconstructed scene of the back-
ground [62], [67]. Nonetheless, if the strengths of reflected
radar signals, are stronger, due to high density of walls, than
the reflected radar signals that emerge, due to a stationary
object, lying behind a wall, then the process of detecting
an object, becomes very difficult because of clutters that
lie in between radar, and a target object [68]. On the other
hand, the frequencies that range below the radar frequency
band can easily penetrate through walls, and thus enable the
detection of objects located behindwalls, possibly. Therefore,
the frequencies that lie in the range of 2GHz to 5GHz aremost
suitable for human motion detection.

III. SYSTEM MODEL
Our study design bases on the system model that makes use
of SDRs that allow customization at both the hardware and
software level. The proposed system model comprises of two
SDRs, with one acting as a transmitter and other as receiver.
SDRs allow instant software update to be made to the radio
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hardware, and this level of customization is achieved through
an application programming interface, such as LabVIEW.
The LabVIEW application runs on a computer, which sends
out control and data commands to the SDR via a USB cable.
The software updates made to reconfigure the SDR hardware,
make it more easier readjust the system design of SDRs,
and SDRs can be programmed, or reprogrammed instantly to
meet the local and international commercial guidelines of RF
transmission. SDRs are portable devices, allow reconfigura-
tion of hardware parameters such as controlling the IQ rate,
bandwidth, data sampling, filtering, and radio internal block
circuitry, which include implementation of coding and decod-
ing techniques. The two programmable radio devices are
placed 6 meters apart in two lab rooms. SDRs are connected
to two desktop computers, with one computer connected to
the projector that displays the application interface on the
sidewall to indicate to the participant, when to start and stop
human walking activity.

To determine the necessary settings of proposed testbed
system and their control configurations, this study employed
an experimental setup that determines these necessary param-
eters using the Randomized Control Trial (RCT) method.
A topology based on NI-USRPs was designed to collect data
of human movements in various directions. The sections next
provide the theoretical background of the proposed model,
procedure of the experiment design and setup, data collection
method, and application of proposed machine learning model
to the collected data.

A. BACKGROUND OF SIGNAL PROPAGATION
A transmitted signal propagates from the transmitter to the
receiver at a particular frequency of interest. Wireless signals
travelling the through space may arrive at the receiver via
various paths, and each path typically delays and attenuates
the signal. The signal transmission by wireless devices, may
encountermany obstacles in communicationmedium, and the
CSI acquired from a radio subsystem provides the Channel
Frequency Response (CFR) that describes the propagation
behavior of signal through the communication medium. The
CFR outsourced by CSI, characterizes the signal transmission
from transmitter to the receiver and is expressed by eq(1):

H (k; t) =
N∑
q

bq(t)e−j2πkφq (1)

where bq(t) and φq represents the amplitude attenuation and
the propagation delay parameter, respectively. The parame-
ter k represents the frequency of the transmitted carrier or
continuous wave. It should be observed that the relocation
and movement of the transmitter, receiver, and the ambi-
ent entities and humans influence the amplitude ‖H‖ and
phase 6 H of the CSI. This implies that the CSI embeds the
effects of objects in the nearby vicinity of the transmitter and
receiver, and the observed CSI basically reveals or character-
izes the sensed environment, using mathematical modelling.
The same rationale governs the implementation of CSI based
WiFi sensing systems.

Signal propagation in indoor environments usually follows
a similar behaviour showed in the external environments,
and the transmitted signal may travel through various path
to arrive at the receiver. While the receiver receives the actual
transmitted signal, some alias forms arising out of multi path
propagation of the actual transmitted signal may also arrive at
the receiver [10]. The voltage level (S) of pilot carrier signal
available at the receiver is expressed by eq(2):

S =
N∑
p=1

∥∥Sp∥∥ e−jθp (2)

where Sp represents the amplitude of the pth multipath com-
ponent, θp denotes the phase of the pth multipath component
and N is the total number of multipath components. S repre-
sents the overall signal strength received at the receiver. The
Radio Signal Strength (RSS) [10] of pilot measured in terms
of decibels scale (dB) is expressed by eq(3):

RSSI(dB) = 10log10
(
‖S‖2

)
(3)

The level of received signal strength depends on the signal
propagation distance, wavelength, and time. Due to dynam-
ics of the environment, the strength of pilot signal varies
considerably,in fact even with minor multipath components
dynamics. A study by [23] reports that 5 dB of change in
the RSSI has been observed over a minute, on an immobile
receiver, placed in a controlled lab environment. This implies
that the having fixed location for transmitter and receiver is
more stable compared to having a mobile setup. Hence, this
study makes use of an immobile setup for both the transmitter
and receiver, so as to ensure RSSI variations are reduced to
minimum possible values.

1) SISO CHANNEL MODEL AND FEATURE EXTRACTION
Using a conventional channel estimation method based
on standard-defined pilot sub-carrier arrangement [69], the
MIMO channel response is monitored in the frequency
domain over k pilot sub-carriers λ ∈ F = (λ1, λ2, · · · , λk).
This study develops features based on SISO channel data to
identify directional motion patterns. A moving persons’ body
movements modify the statistical properties of the RSS in the
frequency domain, such as the strength moments can evaluate
as an average over the time in a given frequency sample.
For example, attenuation and fading of RSS due to the body
of a person are referenced by the statistical properties, like
mean and variance. In the following, the study considers
statistics of the overall SISO power frequency profile. The
frequency-domain CSI strength vector for link u at time t is
defined by eq(27):

Su,t =
[
Sλ1,u,t · · · Sλk ,u,t

]T (4)

where CSI Su,t is the strength observed at time t ∈ T on sub-
carrier λ ∈ F and link u ∈ U.
The complex baseband channel response observed on fre-

quency λ ∈ F, over the link λ = λ (βt , βr ) between the
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transmitting antenna βt = (1, · · · ,Zt) and receiving antenna
βr = (1, · · · ,Zr ) at time t ∈ T is denoted as Hλ,u,t .
Where the index λ ∈ F = (λ1, λ2, · · · ,U) ranges over the

U = ZtZr radio links.
While employing SISO channel model, this study employs

and extracts a single channel strength sample only Sλ1,1,t
from the frequency vector Su,t =

[
Sλ1,u,t · · · Sλk ,u,t

]T .
Where λ1 represents a single channel pilot radio carrier,

and u = 1 represents a single communication link.
Six distinctive statistical indicators model the features of

corresponding probability function S(λ,1,t) ∼ Pr[Sf ,1,t ], and
are defined in the Section–(VI-C).

IV. EXPERIMENTAL SETUP
The experimental method applied to the devised system
model (see Fig.1) employs a SISO channel that comprises
of one Transmitter (TX) and Receiver (RX) as a pair for the
initial testing and setup. The transceiver pair, both have small
antennas with omnidirectional radiation pattern and operate
in commercial ISM 2.4 GHz band. Antenna specifications
are - VERT2450 Dual Band 2.4 to 2.48 GHz and 4.9 to
5.9 GHz omni-directional vertical antenna, at 3dBi Gain.
To acquire data, the study sets up six directions for observing
six directional humanmotion patterns and selects four partici-
pants for data collection. The environment for the experiment
included two adjacent rooms, separated by a common path
of a corridor between the two. A desktop computer along
with the SDR was setup in each room to devise the proposed
testbed for the experiment. The corridor environment was set
out to have no obstacles in it’s path and provided participants
a free space to walk through. The motion patterns of each
participant were monitored inside the receiver room, however
participants were apprised when to start and stop the motion,
i.e. walking, using two indicators mounted on the left wall of
the corridor.

A. INSTRUMENT SETUP
Two NI-USRP 2921 [25] SDRs were employed with TX and
RX applications, which were developed in LabVIEW [24].
The TX application allowed controlled pilot signal trans-
mission at a frequency of 50KHz, and the RX application
was used to estimate the Power Spectral Density (PSD) of
pilot signal. TX and RX devices were placed at a distance
of 6 meters apart from each other, and the gain of both the
devices was set to default i.e. to zero, for the purpose of initial
testbed setup.

• Corridor:we performed experiments in a corridor envi-
ronment of our academic building. The corridor dimen-
sions are 2m × 15m, and it has two adjacent rooms in
the pathway. In this scenario, there are two NI-USRP
devices placed in each one of the rooms, whereby one
transmits the 50KHz RF pilot signal and the other device
acts as a receiver of transmitted pilot signal. We col-
lected motion fingerprints at six different reference posi-
tions in this scenario, while placing the NI-USRPs 6m

FIGURE 2. The mean variation of 50KHz Pilot signal under no human
presence in the corridor. The letter L denotes the six different levels
observed signal strengths.

TABLE 2. Optimal gain setting for TX and RX.

apart from the corridor path (see Fig.1). In each refer-
ence direction, we collected three datasets consisting of
RSS values, for each move of each participant.

• Initial Testbed Setup and RSS Stabilization: To test
the validity of proposed testbed, first orientation tests
were performed to ensure there is minimum level of
variation in RSS. Table 2 provides measured values of
the power level of RSS on a dB scale, while selection
is made to the change the orientation of the NI-USRP
TX and RX. To ensure both devices were placed in
a optimal orientation, the PSD of RSS enabled pilot
signal power measurement, whilst having no objects
in between the Line Of Sight (LOS) path. Apparently,
a controlled environment was desired and consequently
for the RCT an empty corridor space with the presence
of any human, was chosen for the study. After the selec-
tion of a place with minimal environmental variations,
the nominal variation of the pilot signal stabilized. The
(see Fig.2) depicts the variations in RSS, which were
observed in the empty space at a room temperature of
24oc, and the Fig. 3 and Fig. 4 present the observations
made to TX and RX alignment patterns, and individ-
ual gain of TX and RX used during the initial testbed
setup.

The optimal configuration setup ended in the setup with
TX and RX gain set to 50, whilst placing both the devices at
0o with LOS as reference axis. The TX and RX are placed
2.2 meters above the ground level so that the chosen average
height matches with the average height of the participants.
Whereas placing the NI-USRPs at 0o with reference to the
LOS showedmaximum strength of pilot signal at the receiver,
RSS of the pilot decreased significantly to low levels at
other orientation values. For the proposed system model,
a direct LOS communication link is established between the
TX and RX, ensuring high RSS power level at the receiver
(see Fig. 3).
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FIGURE 3. Received Signal Strength (RSS) at RX on a constant transmitter
output gain of 50 db, placed at 6 meters away from RX. The RX antenna
placed at an orientation of 0o with respect to the TX antenna shows the
high signal strength at RX, while minimum signal strength is observed at
angle of 270o of RX with respect to TX.

B. RF PILOT SIGNAL PROCESSOR APPLICATION
We build an automated RF Pilot Signal Processor (RFPSP)
application in LabVIEW to record and collect RSS data. The
RFPSP application output data files containing RSSI samples
for each participant, who started and stopped the activity of
walking in the corridor in the prescribed directions. As a
result, the data of our experiment group comprised ofmultiple
directional motion patterns pertaining to the each participant,
i.e., motion from North to South (from corridor entrance to
exit) and vice-versa, from East to West i.e. from RX towards
TX and vice-versa, motion at an angle of 45o with right-wall
as the reference axis and motion at an angle of 45o with
left-wall as the reference axis.

V. DATA COLLECTION AND SYNTHESIS
Human motion data was collected in phased manner, and
we employed an automated approach to our data collection
process. Firstly, the NI-USRPs were setup to provide the
motion data in the form of files, which were next subject
to processing via the developed LabVIEW application. After
processing, the LabVIEW generated prediction results, and
for comparative analysis we employed similar datasets to test
various other machine learning models in MATLAB. The
different phases employed in the data collection process are:

A. DATA COLLECTION AND DISTRIBUTION
To enabled automated human motion data collection,
we employed our RFPSP application that enabled us to col-
lect three individual datasets for each participant. A total of
1780 samples, collected within 15 seconds duration, defined
each move and for 6 directional motion patterns each dataset
contained 6× 1780 = 10680 RSS samples. Thus, three sim-
ilar signatures (moves) of each move were prepared. Among
the three, two of the datasets were used for training and third

was reserved for testing the used SNNmodel. Each dataset in
the set of three was further partitioned into two datasets, with
one designed as Training and the other as Test dataset. For
the Training dataset contained 21360 data samples, including
manually assigned labels to each class of motion pattern.
The Test dataset containing 10680 samples only, enabled
evaluation of the trained SNN model and to figure out the
prediction accuracy. Since two of the three datasets were used
to train the model, and only one dataset was reserved used to
test, the test set contained 25% of the overall data, whereas
train dataset contained 75% of the overall data.

B. DATA PRE-PROCESSING AND INCONSISTENCY CHECK
The observed Raw RSSI measurements contained noises and
outliers that could significantly reduced the quality of sig-
nal describing motion signatures. Among many methods for
filtering out unwanted noise, Moving Average and Median
Filters offer simple solutions and are commonly adopted
methods for eliminating high frequency noise components.
Moving Average filter (window size of 60) is applied on
the collected raw datasets of RSS, filtered out the unwanted
noises and random variations. In the Moving Average and
Median filters, an average or median data sample replaces
a range of data points. A sliding window and multiplying
factors, used provide individual weights to the averaged
data samples. All datasets containing RSS samples contained
random noise components. As an example, the Fig.5 and
shows the raw plot signal before Moving Average filter [70]
is applied and Fig.6 shows the averaged and cleansed sig-
nal after applying the filter. The collected human motion
data showed data unusual variations as a result of move-
ments, such movement of head, leaning backwards on the
wall, raising hand, raising arm. These unusual movements
were observed just before the data collection ended. Abreast
to unwanted motion signatures,wherein redundant data as
such was removed manually by padding normal RSS values
in the dataset, some datasets showed missing RSS samples.
As the USB type communication was used between RX and
the Desktop computer, the RX setup incurred communication
delays that resulted in the loss of data samples over the
USB communication interface. The missing data samples
were manually added using interpolation method to ensure
consistency in the collected data.
• Moving Average Filter: The acquired human motion
patterns represent both the linear and non-linear data
components. We decompose the acquired time series
data sequence using the Moving Average Filter (MAF),
a classical method of time series decomposition [70].
An typical MAF of order D is expressed by the math-
ematical expression, eq(5):

y[i] =
1
D

D−1∑
s=0

x[i+ s] (5)

where x[i] and y[i] represent the input and output set
of samples, respectively. D represents the number of
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FIGURE 4. Alignment of RX with respect to TX to ensure maximum received signal strength at RX. Tx antenna orientation is static, while RX antenna
orientation is tested at four angles to receive max signal strength.

samples selected for averaging. Also called as recursive
form of MAF, the eq(5) can be described as a difference
equation represented by eq(6):

y[i] = y[i− 1]+ x[i+ p]− x[i− q] (6)

p =
D− 1
2

(7)

q = p+ 1 (8)

• Trend Elimination: After applying MAF on the dataset
of raw RSS samples, we observed the effect of trend
in the filtered data. In order to remove the trends from
human motion dataset, we applied the model expressed
by eq(9) to detrend the time sequence data [71].

T [i] = Tn[i]−
1
M

k∑
p=−k

Tn[i+ j] (9)

where M = 2p+ 1. The trend cycle is estimated by
averaging the time series with k periods of time t. The
filtered data contains data samples, have data value close
to each other since the averaging removes randomness
in the given data. In the expression given in eq(10), the
detrend sequence T2 is the difference between the trend
part of time series T1 and the original time series T .

T2 = T − T1 (10)

where T is the sequence of original human motion sam-
ples; T1 the sequence of samples representing a trend;

T2 is the sequence of sample representing detrend in the
sequence.

C. DATA PREPROCESSING
All the cleansed datasets were then prepared for ML input.
With each move represented by only 1500 samples, we dis-
carded the remaining samples for each move since fewmoves
were missing samples. Consequently, all datasets were con-
strained to 1500 samples representing each move precisely
for each participant. The new six moves dataset then con-
tained 9000 samples for each dataset in a collection of three
datasets for each participant. Thus, training datasets included
the two datasets, with a total of 18000 samples, while the third
dataset containing 9000 samples, was used to find prediction
accuracy of the SNN model. All the datasets were prepared
in a Comma-Separated Value (CSV) format. The training and
test datasets, prepared in two CSV files, were input to the
SNN based classifier that enabled prediction of direction of
human motion.

VI. PATTERN DETECTION AND CLASSIFICATION
To identify human motion direction, patterns of which are
hidden in the collected raw RSS data, a machine learning
based solution is implemented to trace the motion signa-
tures out of the relative datasets of each participant. Learn-
ing based algorithms are implemented as predictors in most
of the recognition based applications, and typically imple-
ment Support Vector Machine (SVM) [72] for categorization.
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FIGURE 5. Motion signature with high frequency noise components.

SVMs have been mostly implemented as predictors in many
studies, and these uncover embedded patterns in linear and
non-linear datasets, including classification of data points
that are left over from the training dataset [73]. In addition
to SVM, there also exist other types of classifiers, such
as K-Nearest Neighbour (KNN), Dynamic Time Wrapping
(DTW), Hidden Markov Model (HMM) or Convolutional
Neural Networks (CNN). While SVMs prerequisite large
dataset containing support vectors that apparently determine
the function of the output, SVMs are observed to be compu-
tationally expensive; hence are not reliable and may not be
applicable in real-time based solutions. Furthermore, despite
knowing the fact that deep learning algorithms offer high
prediction accuracy, this study leaves deep structures since
structures as such require additional parameters definitions,
for instance kernel size, quantity of neurons etc, whilst having
many layers of hidden neuron that complicate the overall
architecture of the algorithm. However, SNNs can be used on
mobile devices and offer more light weight architecture than
other types of classifiers. Therefore, this study implements
Shallow Artificial Neural Networks as a machine learning
based solution since ANNs outperform SVMs in terms of
computational efficiency [58], [74], [75].

A. SHALLOW NEURAL NETWORK (SNN)
ANN algorithms mimic the neural system functions of living
organisms, and typically implement fully connected compu-
tational units called neurons. ANN organizes these neurons
in different layers, wherein the first layer is called as the
input layer, the second containing few hidden layers, and the
third layer called as is the output layer. Among the three
layers, output of each hidden layer feeds the input of the
next layer. This study employs a single hidden layer SNN
as the machine learning solution to recognize the directional
patterns in human motion data. Fig.7 shows a SNN that
includes n inputs, d hidden neurons placed in a single hidden
layer, and a only one output layer y. SNN model defines
the input-to-output relation as a function, f : Rn

→ R that
associates the input vector x ∈ Rn to a scalar based on the
following relationship, eq(11):

x → fv,W (x) :=
d∑
n=1

vlξ (〈wl, x〉) (11)

FIGURE 6. Motion signature acquired after applying moving average
filters.

where wl ∈ R represent vector with edge weights that asso-
ciate input to hidden node lth and vl ∈ R represents edge
weight connecting the hidden node lth to the output layer. The
expression ξ : R→ R is the activation function used for the
each hidden node in the hidden layer. The matricesw ∈ Rd×x

and v ∈ Rd represent a compact notation of theweightswl/vl ,
eq(12):

W =


wT1
wT2
...

wTk

 v =


v1
v2
...

vm

 (12)

The cost function of a given Fully Connected Neural Net-
work (FCNN) [76]. The network has d units organized in a
single hidden layer, and includes the linear output unit that
computes sum-of-squares error for the given set of input data
expressed by eq(13):.

l∑
m=1

1
2
(fFCNN (xi)− yi)2 (13)

where

f(FCNN )(x) = c0 +
Q∑
p=1

γkψ(ωk , x) (14)

In the eq(14):, {ωk}
Q
p=1 denotes the weights of the hidden

layer and {γk}
Q
p=1, the weights of output layer. The expression

ψ(c, ω, x) represents the sigmoidal for Multilayer Percep-
trons (MLPs) as the activation function for the hidden units.

B. FEATURE EXTRACTION
With current testbed, only a single vector containing a stream
of RSS samples corresponding to each move is collected.
SNN algorithm requires more features vectors for effectively
classifying the direction of moves. Thus, additional feature
vectors based on the dynamic non-periodic signal properties
were formulated. The extracted feature vector space con-
sisted of RSS variations and associated radio signal prop-
erties for each participant observed in six directions. The
properties included various signal properties such as mean
x̄, standard deviation (sd), difference d , variance σ , and
signal energy over the sampling interval. The directional
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FIGURE 7. A Shallow Neural Network (SNN) with a single hidden layer.

motion datasets (see eq(15)) for each of the four partici-
pants were collected and class labelled each move of the six
associated moves as 1,2,3,4,5 and 6 respectively. Here the
superscripts are indexes representing each participant, and
subscripts are indexes that denote the collected data points.
The input to the SNN algorithm is a matrix of the form shown
expression eq(16):

(s1u, q
1
r ), (s

2
u, q

2
r ), (s

3
u, q

3
r ), and(s

4
u, q

4
r ) (15)

(s11,1) (s11,2) (s11,3) · · · (s11,n) → (q11)
...

...
...

...
...

...

(s1u,1) (s1u,2) (s1u,3) · · · (s1u,n) → (q16)
(s21,1) (s21,2) (s21,3) · · · (s21,n) → (q21)
...

...
...

...
...

...

(s2u,1) (s2u,2) (s2u,3) · · · (s2u,n) → (q26)
(s31,1) (s31,2) (s31,3) · · · (s31,n) → (q31)
...

...
...

...
...

...

(s3u,1) (s3u,2) (s3u,3) · · · (s3u,n) → (q36)
(s41,1) (s41,2) (s41,3) · · · (s41,n) → (q41)
...

...
...

...
...

...

(s4u,1) (s4u,2) (s4u,3) · · · (s4u,n) → (q46)


(16)

The subset sz1,1 × szu,n is a partial-matrix representing
manually extracted radio signal properties from RSS for the
participant s1 with assigned label vector q11 to q

1
6, categorize

every move of comprising 1500 RSS samples. With each
move of s11,1→n to s11500,1→n is associated a move label q1r .
The other three participants’ feature vectors s21,1 to s

2
u,n, s

3
1,1

to s3u,n and s41,1 to s4u,n are assigned class labels q2r , q
3
r and

q4r respectively. The superscript z : 1 → 4 denotes the
participant index. The subscript u is an index of the samples
that range from u : 1→ 9000 for each of the subset matrix
for each participant, while r : 1→ 6 represents index of the
six directional movements undertaken by the subjects.

C. DEFINING FEATURE VECTORS
The number of features to be defined for the motion clas-
sification is determined by signal itself. Since this study
employs a single carrier component, the directional motion
signature pattern is determined by signal amplitude, embed-
ding motion characteristics in the form of signal variations
over time. With the inspiration from [77] to uniquely iden-
tify each motion pattern, we construct a set of manually
crafted features from the RSS of pilot signal. The manually
crafted feature vector set considers six different features of
the received signal pattern, so as to address signal charac-
terization properties that include mean, standard deviation,
skewness, Real-Signal Kurtosis (RSK), average power, and
energy of motion signalling period, wherein each received
signal, with a signal sample z of the RSS signal, consists
of 1 by η data samples. Following are the expressions,
eq(17,18,19,20,21,22,23), used in this study to manually craft
the six possible feature vectors that distinguish each motion
pattern uniquely.
• Mean (µ) – Mean [78] is an average value of time
varying signal, and it is computed over a period of time.
µ is expressed by the eq(17), is an ‘‘equivalent’’ constant
level, represents the same area as the signal over the
same time:

µ(z) =
1
η

η−1∑
p=0

z(p) (17)

• Standard deviation (σ ) – Standard deviation [78] pro-
vides a measure of spread of the amplitude values and
indicates the width of the bell curve for a Gaussian noise
signal or a given signal and is expressed by eq(18):

σ =

√√√√ 1
η − 1

η∑
p=1

{z(p)− µ(z)}2 (18)

• Skewness (γ ) – skewness (I/Q) [79] is a higher-order
statistical attributes of a time series. Skewness reveals
the symmetry in the estimated probability density func-
tion (PDF) of the signal amplitude. γ is expressed by
eq(19):

γ =
E{z(p)− µ(z)}3

σ 3 (19)

• Real-Signal Kurtosis (RSK ) – is proposed by [78] and
provides estimate of kurtosis of In phase and Quadratic
(I/Q), components of the signal. Kurtosis is given by
eq(20).

κ =
E{z(p)− µ(z)}4

σ 4 (20)

Averaging the estimated kurtosis components (I/Q),
determines the RSK feature, which is
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FIGURE 8. Six directional motion patterns of P1 as input to the SNN
model.

FIGURE 9. Six directional motion patterns of P2 as input to the SNN
model.

FIGURE 10. Six directional motion patterns of P3 as input to the SNN
model.

expressed by eq(21):

RSK =

∣∣Kurtosis(I )∣∣+ ∣∣Kurtosis(Q)∣∣
2

(21)

• Average Power – average power [80] of a discrete time
periodic signal over its length is given by the relation.
Average Power is expressed by eq(22):

AveragePower = lim
K→∞

1
2K + 1

K∑
η=−K

|z(η)|2 (22)

• Energy – energy [80] of each signal over its length is
given by the relation:

Energy =
∞∑

η=−∞

|z(η)|2 (23)

D. TRAINING SNN MODEL
SNN model performance measurements were carried out
with the datasets, split into training and test dataset. The SNN
model was tuned with the random optimization program,

FIGURE 11. Six directional motion patterns of P4 as input to the SNN
model.

FIGURE 12. All 24 directional motion patterns as input to the SNN model.

which is available in LabVIEW application suite, to precisely
estimate the accuracy levels of available SNN models, whilst
aiming to achieve high performance. Multiple iterations on
12 different neuron counts concluded in the selection of
the optimized SNN model (see Fig.19). The SNN model
was created for each participant to individually check model
accuracy for each of the six movies, and also created was an
overall model that trained on all 24moves of the four different
subjects, so as validate the overall accuracy of the SNNmodel
on a aggregated dataset. Figures 8 to 11 show the individual
unique motion patterns of each participant, whereas Fig. 12
shows an outcome of the combined move set.

An SNN type classifier was configured and implemented
using evaluated optimized settings for each of the partici-
pants. The SNN type classifier was input a dataset in the
CSV file format that contained identified feature vectors and
the associated class labels. After the SNN tuning parameters
were set to the optimal settings, the classification accuracies
observed during the tuning parameter optimization and actual
training, remained almost the same. For the actual training
With optimized tuning parameter selections, the model pre-
diction accuracies remained exactly the same as observed
during the search for optimized model parameters. The aver-
age model training accuracy for each participant depicted
a near classification accuracy of 93%, whereas the training
accuracy of the overall SNN model just resulted in an accu-
racy of 74.5%.

E. TESTING SNN MODEL
The preprocessed test data set was split up into individ-
ual datasets corresponding to each of the four participants,
including a combined dataset of all four, for the purpose
of testing the developed SNN model. Each individual data
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FIGURE 13. Confusion matrix: SNN model on combined test dataset of all four participants with Predicted labels. True class presents actual
directional moves, and the Predicted Classes represent detected moves.

TABLE 3. Labels and semantic.

set consists of proposed feature vectors of six directional
motion patterns of the each participant. In light of an overall
data set and individual datasets, we developed individual
SNN models that were trained on each participant individual
data set, and an overall SNN model that was trained on the
combined dataset of all the four participants. Next, the each
individual test data set, having sequentially arranged data of
six different moves of each participant, was input to the SNN
classifier to evaluate themodels’ accuracy. The individual test
set contained 9000 samples, including associated class labels
for each directional move. Furthermore, we input the overall
test dataset that contains all 24 directional move patterns of
four participants to the SNN classifier, which we name as an
‘‘overall SNN model’’. Figures 14 to 17 show the actual and
predicted outcomes of individual models, whereas Fig. 13
shows an outcome of the overall SNN model, used to find
direction of motion of all the four participants.

VII. RESULTS AND ANALYSIS
The two NI-USRP 2921 TX/RX devices,which were
installed in two adjacent rooms, separated by a distance of
6 meter, established a communication transmitter-receiver

FIGURE 14. Confusion matrix for test dataset of P1.

pair. During the experiment, our proposed testbed setup
showed instability in the received signal strength because
of unwanted activities by human in the corridor. The pilot
signal’s dynamic nature showed little instability due tomobile
devices that were carried by the humans in the room with
RX. The NI-USRP RX device enabled us to observe the
normal transmission of pilot in the corridor area, and as
the RF pilot signal presents a highly dynamic and sensitive
nature, we observed considerable variations in the received
signal strength with little human body movements, which
include turning around, leaning on the wall, making gestures
with hand, etc. To ensure that our data collection excluded
such variations, the testbed environment was limited to the
participant only, and with absence of other human move-
ments, except the motion executed by the subject(s) under
investigation, enabled least variations in RSS of pilot signal.
Fig. 2 shows the six recorded pilot signal strength variations
under no humanmovement. Fig. 2 depicts dynamic variations
in pilot RSSI at room temperature. The random variations
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FIGURE 15. Confusion matrix for test dataset of P2.

FIGURE 16. Confusion matrix for test dataset of P3.

FIGURE 17. Confusion matrix for test dataset of P4.

of pilot having -35 dBm to -38.5 dBm approximate strength
was observed even in absence of human movements, and this
clearly shows the variability of the RSS. However, when each
of the participant performed the activity of walking though
the corridor path, the dynamics of RSS showed huge varia-
tions that eventually resulted in a pilot signal with embedded
unique motion patterns. The patterns embedded in the RSSI
of the pilot hold the unique motion patternstyle of the partic-
ipant(s). Thus, the unique sensitive pattern detection system
can be categorized as a highly sensitive motion recognition
system since even amicromoment gets embedded in the pilot.
When the motion patterns are subject to analysis, the study
results reveal the sensitive critical information contained in
RSSI dataset, could be systematically explore to identify
unique direction motion patternssignatures of any person.

A. PERFORMANCE METRICS
We use measurement parameters - precision, recall, and
F-measure metrics to evaluate the proposed models of human
motion direction prediction [81]–[83]. The precision param-
eter is a positive value that quantifies the prediction results
of a classification process. It is computed by the following

FIGURE 18. SNN performance evaluation on individual test sets.

expression given in eq(24):

precision =
TP

TP + FP
(24)

where TP and FP denote the true positive and false positive
values, respectively.

The Recall evaluation parameter quantifies sensitivity, and
is given by the eq(25):

recall =
TP

TP + FN
(25)

where FN denotes the false negative value.
The weighted average of recall and precision is known as

F-measure, and it is quantifies the weighted average using
following expression given in eq(26):

F1 =
precisionrecall

precision+ recall
(26)

where F1 denotes the false negative value.

VIII. PERFORMANCE EVALUATION – SINGLE VERSUS
MULTIPLE SNN MODELS
We evaluated the training and test datasets using SNN algo-
rithm, the accuracies observed during SNN training and test-
ing varied drastically. Testing SNN on individual datasets
resulted in prediction accuracies ranging between 80% to
83%, whereas testing SNN on the overall data set results in
just 75%-78%.

A. TRAINING AND TESTING INDIVIDUAL SNN MODELS
LabVIEW application was used to build, train and test the
SNNmodels.With individual models, trained to predict accu-
racies of more than 85% resulted in overfitting, and as a result
of computing the prediction accuracy on the test datasets,
reduced nearly to about 30% to 40%. After several attempts,
we trained our individual SNN models to predict training
accuracies ranging between 80%-85% that finally resulted in
best fit. These best fit models actually showed an increase in
the actual prediction accuracy of each model, with accuracy
of nearly 83%. Moreover, to ensure that the four models
could identify each participant uniquely, we conducted as
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FIGURE 19. SNN training and testing performance evaluation.

cross validation test. Figure 18 shows the cross validation of
models along with the observed motion direction prediction
accuracies. Eachmodel is tested against all the four individual
datasets. In each individual test that resulted in a motion
direction predicted outcome, each SNNmodel showed wrong
predictions of moves 3 and 4 that correspond to the moves –
fromWest to East, and vice-versa, while rest of the directional
motion patterns were detected with almost 100% accuracy.

B. TRAINING AND TESTING AN OVERALL SNN
For the training of SNN on an overall dataset resulted in
higher prediction accuracies reaching almost 82%. With the
accuracies observed during training sequence, the test set
accuracies varied for neurons less than x− inputs and greater
than 96. However, when the overall model was trained to
an accuracy level ranging between 75%-78% using neu-
ron count greater than x − inputs and less or equal to
96, the test accuracies remained almost constant at 70%
(See Figure 19).

IX. COMPARATIVE ANALYSIS
To compare and trace out the best prediction model that
detects the direction of human motion precisely, we trained
and tested various other ML models available in MATLAB.
We employed Decision tree algorithms, Linear Discriminant
Analysis (LDA), Naïve Bayes, SVMs, and KNN algorithms
to test our proposed model, which resulted in contrasting
prediction accuracies. Tables – 5, 6 and 7 show the observed
results of these various machine learning models. Our obser-
vation of the collected results reveal that KNN outperformed
the rest of the models. However, the Shallow Neural Net-
work (SNN) based prediction model showed the highest pre-
diction results compared to the rest of the models.

The KNN seems to compete equally well with the SNN,
whilst showing a consistent motion direction prediction accu-
racy of approximately 83% on the individual test set, and 71%
accuracy on the overall data set of the three male participants.
However, it should be noted that the KNN just showed a
motion direction prediction accuracy of 67% only on the
individual test data set of the female participant (P3).
Although this fact is not investigated yet, in the future studies
this unusual behaviour needs further research. Therefore,
a study on the gender based motion detection system is
imperative.

FIGURE 20. Narrow Neural Network (NNN) configuration settings in
MATLAB [84].

For the rest of models, showed varying results and no
consistency in human motion direction classification. The
Decision Tree based models revealed the varying prediction
accuracies on the individual datasets and 50%-60% predic-
tion accuracies on overall datasets. Similar to Decision tree
type models, Naive Bayes type models showed a consistent
accuracy of 50-60% on overall data set, whilst failing to
maintain the consistency on individual datasets. On the other
hand, LDA showed a minimal improvement in the accuracy
that ranged between 60% to 70%on average. Although SVMs
are best suited for the classification of non linear data entities,
SVM models employed in the study revealed 67% average
accuracy on individual datasets and 71% on overall datasets
only.

Overall, the models based on KNN show better prediction
accuracies than others, however fails to compete with a single
hidden layer neural network.

A. CROSS-VALIDATION OF SHALL NEURAL NETWORK
MODELS
Cross-validation technique assesses and evaluates machine
learning algorithm’s performance. Generated datasets are
input to machine learning algorithm to assess the model’s
performance, and with unknown datasets as input to an algo-
rithm, allows assessment of prediction outcomes. Assessment
techniques require random partitioning of a given dataset
into a number of training and testing datasets. During several
iterations, training sets train a supervised learning algorithm,
while a single testing dataset is reserved during each iteration
to test accuracy of model.

A commonly used Common Cross-Validation Technique
called k-fold method, partitions a given dataset into k folds
(random subsets) of nearly equal sizes. k-folds consist of k-1
subsets reserved to train a machine learning algorithm and
one test subset that evaluates the trained machine learning
model’s performance. To assess the model’s performance,
the process iterates ω times to generate a new single subset
(test set) for validation. Average estimation error across all k
partitions is typically expressed by ε.
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FIGURE 21. Ensemble model of combined four Narrow Neural
Network (NNN) models.

This study employs 5-fold Cross-Validation method to
partition dataset into 5 equal folds of nearly equal sizes.
The Cross-validation is configured at an iteration count of
ω = 1000. To perform comparative analysis and cross
validate the developed models, comparative analysis of two
model is carried out using MATLAB [84]. Narrow Neural
Network (NNN) is a form of SNN available inMATLAB, and
the NNN model can be trained and tested using customized
parameters. Since the input layer of the individual training
models see 6 features, each NNN model’s first layer is set
with 6 neurons, and four such individual models are trained
and tested for four different participants.

Although each model is trained and tested individually,
the ensemble model containing four models with a common
input, results in class probability as a common output of all
the four. Each individual classifier has Tanh as activation
function at its output, and the probabilities of each model are
fed to objective function max(P1,P2,P3,P4). The objective
function outputs the class of identified direction having max-
imum estimated probability by the objective function (see
Fig. 21).

Compared to ensemble model, the overall model also sees
the same directional moves of four different participants at
input. Thus, the input needs to have 24 neurons to classify
6× 4 = 24 moves. NNN is configured with an input layer of
24 neurons and an iteration count of ω = 1000. 5-fold Cross-
Validation again evaluates the performance of the overall
model for comparison to the Ensemble model. Fig. 22) shows
the block diagram of overall model with 6 input feature vector
X , and 24 directional classifications at output Y .

B. HYPOTHESIS TEST
To test the statistical significance of our proposed mod-
els, the study proposes the following two hypothesis, and
applies Paired t test to compute statistical parameter t and
probability P.
H0 : the population mean of differences between observed

ML model accuracies of Ensemble (NNNmodel) and overall
model is zero, H0 : µd = 0.
H1 : the population mean of differences between observed

ML model accuracies of Ensemble (NNNmodel) and overall
model is not equal to zero.H1 : µd 6= 0. α = 0.05 is the level
of significance:

FIGURE 22. Overall model based on Narrow Neural Network (NNN).

TABLE 4. Results of paired-sample t-Test at significance level of 5%.
Model-1 and Model-2 represent the overall SNN and Ensemble SNN
model, respectively.

1) PAIRED T TEST
t test [85], a statistical analysis technique, is also known as
Student’s t test. t test is applicable to one sample only or two
samples with the difference in between their two independent
means. t test reveals the statistical difference that may exist
between two independent sample means or within a sample
mean. However, difference between two samples is close to
zero if the sample means are same, and additional statistical
tests may be applied on data to find out the statistical signifi-
cance between the variables.

Paired t test statistically tests the difference between two
paired results of a sample. The resulting difference between
two paired samples is close to zero, if applied treatments on
the two samples are same, and computed differences between
the sample means used during the test result in a difference
of 0.

The variance of the difference of two variables, for exam-
ple, A and B, Var(A − B), is expressed by the equation
eq(27) [85],

Var(A− B) = σ 2
1 + σ

2
2 − 2ρσ1σ2 (27)

where σ 2
1 and σ 2

2 represent the variance of variables A and B,
respectively. ρ represents the correlation coefficient for the
two variables. Correlation coefficient ρ equals to 0 for two
independent groups used in an independent t test, and the sum
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TABLE 5. k-nearest neighbors algorithms.

TABLE 6. Decision tree, linear discriminant analysis, and naive bayes algorithms.

TABLE 7. Support vector machine algorithms.

of the two variances represents the variance of the difference
between the two variables.

However, ρ may or may not be equal to 0 for paired vari-
ables. Apparently, t statistic is different for the two dependent
samples and the expression equation eq(28) is represents a
modified form of equation eq(27) for the paired number of
samples.

t =
χ̄1 − χ̄2

s(1+2)
√

1
n1
+

1
n2

(28)

where χ̄1 and χ̄2 represent the sample means of two variables
A and B. Variable s represents sample variance, expressed
by equation eq(29). To determine the sampling distribu-
tion of the mean, sample variance is used instead of the

population variance [85]:

s2 =

∑
(xi − x̄)2

n− 1
(29)

Here xi represents data sample at index i; x̄ represents sam-
ple mean, and n1 = n2 = n.. The expression s21+s

2
1−2ρs1s2,

computes statical variance between the two variables and
takes into account the correlation coefficient ρ. As a result,
t statistic in a paired t test is given by the equation eq(30):

t =
X̄1 − X̄2

s(1+2)

√
s21+s

2
1−2ρs1s2
n

(30)

In equation eq(30), for the correlation coefficient ρ > 0,
t statistic increases as the denominator becomes smaller.
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Subsequently, statistical power of paired t test increases com-
pared to an independent t test. On the other hand, for the
correlation coefficient ρ < 0, statistical power decreases and
lowers compared to the independent t test.

This study applies t test, and the observations of Ensemble
NNN and overall model substitute the samples A and B
introduced in the prior section.

The test statistic is t = 112.987, with 999 degrees of
freedom, and P < 0.0000 (reported up to four decimals
only). Since observed p-value is less than α = 0.05, the
study rejects the null hypothesis and concludes that there is
a significant difference between the proposed ML models
having mean validation accuracies of 74.02% (for overall
model) and 89.13% (for Ensemble NNN model) approx. for
prediction of human motion direction, respectively. The test
clearly shows that Ensemble model can offer high prediction
accuracy to determine direction of human motion using RSS.

C. OVERALL ANALYSIS AND RESEARCH DIRECTIONS
Our analysis on observed results shows that individually
trained models for recognizing unique signatures (directional
moves) of each participant provides higher prediction accu-
racies than the overall trained model for all four partici-
pants. This leads us to conclude that in a scenario with
n-participants, n-models can be built to ensure that the pro-
posed system delivers higher accuracy in predicting the indi-
vidual signatures (directional moves). However, this demands
distributed processing platforms, wherein at n-node located
at m locations can each hold a pre-trained model. Upon
receiving a common input (a sample set of moves of a person)
over a communication network, these individual nodes can
output predictions. The node with the highest predicted score
will enable the identification of the move along with the
identity of the person. Distributed processing systems as such
would require nodes having embedded devices, like FPGA
based platforms, supporting and running machine learning
algorithms for higher efficiency. In continuation of this study,
implementation of a newly proposed distributed processing
system model is aimed in the next study, wherein deliv-
ery of results showing real time performance of distributed
embedded systems employing machine learning algorithms
is expected, including network performance measurements.

D. ADDITIONAL TESTBED REQUIREMENTS
While the human motion patterns were observed via an
automated system application, USRPs posed problems that
related to clock synchronization. The USRP radio device
configured as RX, encountered latency, including drift in
the received pilot signal. The system attempted to detect
directional locomotion patterns within a microsecond time
duration that required very high speed communication inter-
face between the USRP and theDesktop Computer. Similarly,
due to local oscillator frequency mismatch between the TX
and RX, the pilot signal appearing on the RX, was offset by a
frequency of 4KHz. The USRP sampling rate of RX device to
manually calibrated during the testbed optimization process.
The frequency offsets have been often reported in the USRP

devices [86], and to calibrate the TX and RX device properly,
an external reference clocks signal generator is prerequisite
to further studies. Hence frequency offsets in received pilot
signal can be stabilized by using same reference clock signal
for both the RX and TX. The process of finding optimized
tuning parameters during the initial testing and calibration
phase helped to establish an accurate and efficient testbed.
The calibration parameters that results in the correct tuning of
the testbed included power, sampling frequency, pilot signal
frequency, distance and receiver orientation.

X. CONCLUSION
This study focused on the identification of direction of human
motion prevailing behind the walls, using RSS of a pilot
radio carrier and Shallow Neural Network. The study imple-
mented proposed a system model and a testbed, employing
state-of-the-art SDRs, to collect and analyze human motion
patterns in indoor environments. The results of this study
show that the use of RSS, embedding human motion patterns
and application of SNN to classify such embedded motion
patterns in RSS data, recognizes and predicts the direction of
human motion with 89% approx. at 1000 iterations detection
accuracy, however, using individual data models trained on
each subjects motion datasets. The study also provides a
comparative analysis of various machine learningmodels that
were trained on the collected data, with prediction results
showing that KNN can also help in prediction of human
motion, however, the accuracy is lower than the SNN based
prediction models. The proposed system model can be repro-
duced and validated on any commercially available SDRs for
further research. A feature vector set has been proposed as
input to the SNN model. The NI-USRP 2921 SDR model
implemented was implemented, which enabled fine tuning of
both the transmitter and receiver designs, so as to collect the
directional human motion data.

In the future studies, RSS would be employed to precisely
localize and detect human identity, as well as gender, walking
behind the walls in given indoor or outdoor environment.
A real timemotion recognition system is anticipated based on
a distributed processing model. This would enable processing
of each subjects data on an individual processing unit con-
nect to the distributed processing system. To design the new
distributed processing testbed, it is envisioned to interface
multiple SDRs, as individual radio units, interfacing high
speed desktop computers. Each desktop computer would be
running an application to implement SNN model trained on
a specific subject. This would allow real time comparison of
inputs received from multiple SDR units in real time. Further
research in current study would guide researchers in devel-
oping real-time monitoring gadgets or apparatus and also to
test and evaluate system performances in other available ISM
bands. Moreover, it will lead researchers to develop more
efficient, robust, and highly accurate HMRs if FPGA based
processing units or cloud services are employed for high
speed designs, since these offer more flexibility for modular
design and prototyping.
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