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Abstract
We consider a random dynamical system, where the deterministic dynamics are 
driven by a finite-state space Markov chain. We provide a  comprehensive intro-
duction to the required mathematical apparatus and then turn to a special focus on 
the susceptible-infected-recovered epidemiological model with random steering. 
Through simulations we visualize the behaviour of the system and the effect of the 
high-frequency limit of the driving Markov chain. We formulate some questions and 
conjectures of a purely theoretical nature.
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1 Introduction

The spread of an epidemic and its related characteristics in a large population may 
be efficiently described by deterministic models. In particular, differential (or differ-
ence) equations are a popular first choice. However, if the population (or a particular 
subpopulation which plays a specific role in the epidemic) is small, then a stochastic 
approach is more appropriate. For example, at the initial stage of an epidemic when 
the disease is brought in from outside the considered population, only single indi-
viduals may be infected or we may even have the extreme case of a single individual 
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(the so-called patient zero). Moreover, these infected individuals can be hidden from 
the health authorities. Our approach and results are general and can be also consid-
ered in epidemics amongst livestock (e.g. the recent spread of the African swine 
fever virus in Eastern Europe). We also do not focus on any particular mechanism 
of infection by the driving process. It can be due to transmission from natural inter-
actions or even intentional contamination (from e.g. market competition). Alterna-
tively, we may be in a situation, where the disease spread is impossible to observe. 
This is, in particular, true with the current dynamics of the SARS-CoV-2 virus. 
What is observed is the number of confirmed cases (based on tests) and confirmed 
case fatalities. However, there is a very large number of asymptomatic cases that are 
not discovered (Bai et al. 2020). These people are contagious and this is where the 
dynamics of the virus are taking place. However, we can only model, e.g. via SIR 
(susceptible-infected-recovered) systems, those parts of the population for which 
we have data. Therefore, it might be more appropriate to consider an IR, random 
dynamical system (RDS) model (for an overview of RDS with multiple examples 
see e.g. Smith and Thieme 2011; Ye et al. 2016; Ye and Qian 2019). The Infected 
dynamics are controlled by a random Markov process—i.e. from a randomly behav-
ing population, we obtain observed infected individuals. There are two arguments 
for considering the unobserved dynamics to be random. Firstly, despite the popula-
tion being large, various official or unofficial (e.g. self-isolation) mitigation strate-
gies could result in random effects. This can be due to the randomness (from the 
perspective of the observer) in the moment of implementation, their scale, and also 
to what extent they are carried out by the population. Secondly, as one only tests a 
certain (small) part of the population and not completely at random but according 
to some protocol (e.g. only symptomatic, people who had contact with confirmed 
cases, risk groups, medical personnel, etc.), then one can expect randomness in the 
response—infected people randomly entered the particularly tested group. This is 
even true for the testing of symptomatic individuals—the symptoms of COVID-19 
are consistent with many other illnesses, like the common cold or the flu. In all these 
situations the ignition points of the infection are limited in numbers. Therefore, one 
should not ignore all mathematical conditions of differential (smooth) models, like 
SI, SIR, etc. In this work we try to merge deterministic and stochastic methods in 
order to obtain a combined, hybrid model. We follow the approach of dividing the 
whole population into subgroups, arriving at a typical compartmental model. We 
assume that the total size of considered population is fixed and does not change 
through time. After normalization, we assume it to be simply 1. We follow standard 
nomenclature and call the healthy members who are exposed to the disease as sus-
ceptible (the total amount of the exposed is S), those who are infected are denoted 
by I, and finally, the “absorbing” group, the recovered (or removed from the popula-
tion) is denoted by R. We have that S + I + R = N , where (in general) N ≡ const , 
does not depend on time, and as already mentioned we take N = 1.

The main aim of our paper is to illustrate the dependence of the quantitative anal-
ysis of an epidemic on a random steering process (which could represent the inten-
sity of social relations). First in Sect.  2 we introduce the necessary mathematical 
background and our main results. Then in Sect. 3 we present two types of simula-
tions. One, a toy model of a linear random dynamical system, and then a simple 
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application, based on the SIR model to epidemiological data. In Sects. 4 and 5 we 
give a careful treatment of SIS and SIR models with our introduced random con-
trol mechanism We end our work with some some historical and outlook remarks, 
Sect. 6.

2  Mathematical preliminaries, notation and results

The SIR model is in fact a flow (S(t), I(t),R(t)) ∈ [0,N] × [0,N] × [0,N] , governed 
by the system of differential equations. We wish to consider a wider setting by intro-
ducing general dynamical systems (cf. Smith and Thieme (2011)).

Definition 1 Let (X, �) be a separable metric space. A map � ∶ [0,∞) × X ↦ X is 
called a semiflow  if

We shall write �t(x) instead of �(t, x) , so we obtain

{�t ∶ t ≥ 0} is a semigroup, i.e. a representation of the semigroup ℝ+ as transforma-
tions of X.

Definition 2 A semiflow � is called state continuous if for every t ∈ [0,∞) the map-
ping �t ∶ X ↦ X is continuous. � is called uniformly continuous if for every 𝜀 > 0 
there exists 𝛿 > 0 , such that if 𝜚(x, y) < 𝛿 , then

� is called uniformly continuous in finite horizon time  if for every T > 0 and all 
𝜀 > 0 there exists a 𝛿T > 0 , such that if 𝜚(x, y) < 𝛿T , then

If for every fixed x ∈ X , the mapping

then � is called time continuous. Time continuous semiflows are called 1-Lipschitz 
in finite horizon time if for every T > 0 , there exists a constant L = LT ≥ 0 such that 
for all x ∈ X , all t ∈ [0, T] , and all h ≥ 0 we have

Next we will need bounds on the expansiveness of �t . For this we introduce a 
modulus function.

(1) �(0, x) = x for all x ∈ X,

(2) �(t + s, x) = �(t,�(s, x)) = �(s,�(t, x)) for all s, t ≥ 0 and all x ∈ X.

�t+s = �t◦�s = �s◦�t.

sup
t≥0

𝜚(𝛷t(x),𝛷t(y)) < 𝜀 .

sup
t∈[0,T]

𝜚(𝛷t(x),𝛷t(y)) < 𝜀 .

[0,∞) ∋ t ↦ �t(x) ∈ X is continuous ,

�(�t+h(x),�t(x)) ≤ Lh . �
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Definition 3 Let � ∶ ℝ+ ↦ ℝ+ be a nondecreasing (growth) function satisfy-
ing �(0) = 1 . We say that a semiflow � is �−equicontinuous on X if for every pair 
x, y ∈ X and all t ∈ ℝ+ we have

In particular, �-equicontinuous semiflows are uniformly continuous in a finite hori-
zon time. The function � is said to be sub-multiplicative if for all u1, u2,… , uk ≥ 0 
we have

Clearly, if �(t) = e�t for some 𝛼 > 0 , then it satisfies (★M). It can be easily proved 
that condition (★M), with the extra assumption that � is differentiable, reduces � to 
the set of functions of the form Ce�t.

Notice that �-equicontinuity and the Lipschitz condition are 
related in the sense that as long as supx∈X �(�h(x), x) ≤ L̃h , then 
�(�t+h(x),�t(x)) = �(�t(�h(x)),�t(x)) ≤ �(t)�(�h(x), x) ≤ �(t)L̃h.

Example 1 The classical example of a semiflow is an ordinary differential equation 
(ODE) system on ℝd . If the function f (t, �) ∶ [0, T] × X → ℝ

d , where X ⊂ ℝ
d , is the 

solution of an ODE, then the associated semiflow is just �t(�) = f (t, �).

Example 2 Let us consider a simple ordinary differential equation f �(t) = �(f (t))f (t) , 
where f ∶ [0,∞) ↦ ℝ+ and � ∶ [0,∞) ↦ ℝ+ is an arbitrary positive, nonincreasing 
and continuous function. Its solutions (depending on the initial conditions x ∈ ℝ+ ) 
constitute a semiflow �t(x) = f (t, x) on ℝ+ . Clearly the solutions satisfy

We can notice that �t(y) ≥ �t(x) if 0 ≤ x ≤ y . It follows that 
0 ≤ �(f (u, y)) ≤ �(f (u, x)) if 0 ≤ x ≤ y . Given that 0 ≤ x ≤ y ∈ ℝ+ we have

Our semiflow on the phase space satisfies condition ( ★M).

Example 3 The SIR model and its variations (SIS, SIRS, SEIR, SEIS Capasso 
2008, but see also Sects. 4 and 5 for details) is described by a system of ODEs. 
For example the SIS model has a general form S�(t) = f (t, S, I) , I�(t) = g(t, S, I) , 
assuming that for all t, S(t) + I(t) = 1 ≡ const. Thus, the SIS model can be con-
sidered as a semiflow �t corresponding to those ODEs, where X = [0, 1] × [0, 1] , 
�t((x, 1 − x)) = (S(t, x), I(t, x)).

Similarly, the SIR model ODE system defines a semiflow on the space 
X = [0, 1]3 , �t((x, y, 1 − x − y)) = (S(t, x), I(t, y),R(t, 1 − x − y)) , where for all t ≥ 0 , 
S(t, x) + I(t, y) + R(t, 1 − x − y) = 1.

�(�t(x),�t(y)) ≤ �(t)�(x, y) . ★

�(u1)�(u2)⋯�(uk) ≤ C�(u1 + u2 +⋯ + uk). ★M

f (t, x) = xe∫ t

0
�(f (u,x))du .

|�t(y) −�t(x)| = |ye∫ t

0
�(f (u,y))du − xe∫ t

0
�(f (u,x))du|

≤ |y − x|e∫ t

0
�(f (u,x))du ≤ |y − x|e�(0)t .
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Example 4 

• Take X = ℝ with the standard distance function | ⋅ | and define 
�(t, x, v) = �v

t
(x) = x + vt . Clearly, they form the classical affine flow.

• Take X = ℝ
2 with the standard Euclidean distance and 

�(t, (x, v), a) = �a(t, (x, v)) = (a
t2

2
+ vt + x, at + v) . This is another simple flow 

example.

We can see in all of the presented above examples that the transformations 
�t depend on some parameters. Our extensions concern these parameters. 
Given a nonempty set of parameters, � , we shall consider families of semi-
flows ℜ(�) = {�� ∶ � ∈ �} . In general, the space of parameters � is endowed 
with a fixed �-algebra G . It is assumed that all singletons are in the �-algebra, 
{�} ∈ G . Let us call ℝ+ = [0,∞) the time set, (X, �) the phase space, and (�,G) 
the control set. In this paper we shall operate mainly with finite subsets of a con-
trol set i.e. 𝛩∗ = {0, 1,… ,M} ⊆ 𝛩 (where for instance � = [0,M] ). We have 
G
∗ = G ∩ �∗ = 2�∗ if �∗ finite.

Definition 4 Take, as mentioned above, �∗ = {0, 1,… ,M} to be a finite subset of � . 
A function � ∶ [0,∞) ↦ �∗ is said to be piecewise constant if there exists a sequence 
0 = t−1 < t0 < t1 < t2 < ⋯ < tn → ∞ such that �(s) = �n ∈ �∗ for all s ∈ [tn, tn+1) 
with the additional restriction that �n ≠ �n+1 for all n. The family of all piecewise 
constant functions (the sequences of break points t0 < t1 < t2 < ⋯ < tn → ∞ may 
vary with � ) will be denoted by ℌ(�∗) . For a fixed function 𝔥 ∈ ℌ(�∗) , the family 
of transformations (where t ≥ 0)

is called a deterministically controlled (by � ) semiflow. This could be considered 
to be a deterministic version of a renewal process. The class of all deterministically 
controlled by � semiflows (i.e. transformations ��

t (⋅), t ≥ 0 ) is denoted by ℜ𝔥(�∗) . 
We also define ℜ(ℌ(�∗)) =

⋃
𝔥∈ℌ(�∗) ℜ

𝔥(�∗).

We now turn to discussing notations and other theoretical aspects. The proofs 
of the presented here lemmata and theorems can be found in the “Appendix”.

Lemma 1 Endowed with the distance function

the space ℌr(�
∗) = {𝔥 ↾[0,r]∶ 𝔥 ∈ ℌ(�∗)} (where ��(t),�(t) =

{
1, if �(t) ≠ �(t),

0, if �(t) = �(t)
 is 

the Dirac delta operation) becomes a metric space.

�
�
t (x) = �

�n
t−tn−1

◦�
�n−1
tn−1−tn−2

◦⋯◦�
�1
t1−t0

◦�
�0
t0
(x), for t ∈ [tn−1, tn),

dr(�, �) = ∫
r

0

��(t),�(t)dt ,
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Remark 1 We skip the proof as it is obvious. Notice that the metric dr is equiva-
lent to the L1-norm distance ∫ r

0
|�(t) − �(t)|dt . As the ranges of the functions from 

ℌr(�
∗) are confined to {0, 1,… ,M} thus (on L1([0, r]))

In particular, (ℌr(�
∗), dr) is a separable metric space (not complete in general). We 

also notice that dr(�, �) = �({t ∈ [0, r] ∶ �(t) ≠ �(t)}).

Lemma 2 Let {��
t
}t≥0,�∈� be the family of semiflows on (X, �) such that for 

finite 𝛩∗ ⊆ 𝛩 the conditions (★) and (�) hold, with a  constant L and the 
growth function � which is independent of � ∈ �∗ . Given 𝔥, 𝔤 ∈ ℌ(�∗) such 
that �(0) = �(0) , let w−1 = 0 < w0 < w1 < ⋯ be the sequence of real num-
bers, where the functions �, � stop being equal or alternatively start being 
equal (i.e. w0 = min{t > 0 ∶ �(t) ≠ �(t)},w1 = min{t > w0 ∶ �(t) = �(t)},

w2 = min{t > w1 ∶ �(t) ≠ �(t)},… ). For a fixed time parameter r > 0 let n∗ ∈ ℕ be 
such that wn∗

≤ r < wn∗+1
 . Then for all x, y ∈ X we can bound

if n∗ = 2j (the trivial case r ≤ w0 will be discussed separately) and

if n∗ = 2j − 1.

Before the reader turns to the proof in the “Appendix” we notice that if w0 ≥ r , 
then evaluating �(��

r (x),�
�
r (y)) and using the bounds from Lemma 2 we will sim-

ply obtain �(��
r (x),�

�
r (y)) ≤ �(r)�(x, y) ; we remember that �(0) = 1.

The next lemma is concerned with the case when �(0) ≠ �(0) and its proof is 
along the same lines as Lemma 2’s. For the completeness of the paper we include 
almost all the details.

1

M
‖� − �‖1 ≤ dr(�, �) ≤ ‖� − �‖1 .

�(��
r
(x),��

r
(y))

≤ 2L((r − w2j) + (w2j−1 − w2j−2)�(w2j − w2j−1)

+ (w2j−3 − w2j−4)�(w2j − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w1 − w0)�(w2j − w2j−1) + (w2j−3 − w2j−4)�(w2j − w2j−1)⋯�(w2 − w1))

+ �(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w2 − w1)�(w0 ∧ r − 0)�(x, y)

�(��
r
(x),��

r
(y))

≤ 2L((w2j−1 − w2j−2)�(r − w2j−1)

+ (w2j−3 − w2j−4)�(r − w2j−1)�(w2j−2 − w2j−3)

+ (w2j−5 − w2j−6)�(r − w2j−1)�(w2j−2 − w2j−3�(w2j−4 − w2j−5)) +⋯

+ (w1 − w0)�(r − w2j−1)�(w2j−2 − w2j−3 ⋯�(w2 − w1)))

+ �(r − w2j−1)�(w2j−2 − w2j−3 ⋯�(w2 − w1)�(w0 ∧ r − 0)�(x, y)
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Lemma 3 Let {��
t
}t≥0,�∈� be the family of semiflows on (X, �) such that, for some 

finite 𝛩∗ ⊆ 𝛩 , the conditions (★) and (�) hold, with a  constant L and the growth 
function � which is independent of � ∈ �∗ . Given 𝔥, 𝔤 ∈ ℌ(�∗) such that �(0) ≠ �(0) , 
let 0 = w0 < w1 < ⋯ be the sequence of real numbers, where the functions �, � stop 
being equal or alternatively start being equal (i.e. w1 = min{t > 0 ∶ �(t) = �(t)},

w2 = min{t > w0 ∶ �(t) ≠ �(t)},w3 = min{t > w1 ∶ �(t) = �(t)},… ). For a fixed 
time parameter r > 0 let n∗ ∈ ℕ be such that wn∗

≤ r < wn∗+1
 . Then for all x, y ∈ X 

we have the bounds

if n∗ = 2j and

if n∗ = 2j − 1.

We mention that �(��
r (x),�

�
r (y)) ≤ 2Lr + �(x, y) if w1 ≥ r.

Replacing the condition (★) by the stronger one (★M), we obtain directly from 
the above lemmata:

Corollary 1 Let {��
t
}t≥0,�∈� be the family of semiflows on (X, �) such that, for some 

finite 𝛩∗ ⊆ 𝛩 , the conditions (★M) and (�) hold, with a constant L and the growth 
function � which is independent of � ∈ �∗ . Given 𝔥, 𝔤 ∈ ℌ(�∗) and a fixed time 
parameter r > 0 we have the bounds

If x = y , then

In particular, the mapping ℌr(�
∗) ∋ 𝔥 ↦ �

𝔥
r (x) ∈ X is (dr, �) continuous.

�(��
r
(x),��

r
(y))

≤ 2L((r − w2j) + (w2j−1 − w2j−2)�(w2j − w2j−1)

+ (w2j−3 − w2j−4)�(w2j − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w3 − w2)�(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)

+ (w1 − 0))�(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)

+ �(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)�(x, y)

�(��
r
(x),��

r
(y))

≤ 2L((w2j−1 − w2j−2)�(r − w2j−1)

+ (w2j−3 − w2j−4)�(r − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w3 − w2)�(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)

+ (w1 − 0)�(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1))

+ �(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)�(x, y)

�(��
r
(x),��

r
(y)) ≤ 2LC�(r)dr(�, �) + C�(r)�(x, y) .

�(��
r
(x),��

r
(x)) ≤ 2LC�(r)dr(�, �) .
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By ℌr;m(�
∗) we denote the set of all 𝔥 ∈ ℌr(�

∗) such that � changes its values 
at most m times on the interval [0, r]. We obtain the next corollary.

Corollary 2 Let {��
t
}t≥0,�∈� be the family of semiflows on (X, �) such that, for some 

finite 𝛩∗ ⊆ 𝛩 , the conditions (★) and (�) hold, with a  constant L and the growth 
function � which is independent of � ∈ �∗ . Given 𝔥, 𝔤 ∈ ℌr;m(�

∗) and arbitrary 
x, y ∈ X we have the bounds

and

The following theorem will be used in what will follow. It is a straightforward 
consequence of the already proved lemmata and corollaries.

Theorem 1 Let {��
t
}t≥0,�∈� be the family of semiflows on (X, �) such that, for some 

finite 𝛩∗ ⊆ 𝛩 , the conditions (★) and (�) hold, with a  constant L and the growth 
function � which is independent of � ∈ �∗ . Then, for every fixed x ∈ X the mapping

is (dr, �) continuous.

Now let us relax � and allow it to be the trajectories of a fixed continuous time 
homogeneous Markov chain (CTHMC) on �∗ . It is well known (cf. Allen 2011, p. 
200; Norris 2007 p. 73, 94), that in this case we have �

◦
(�) ∈ ℌ(�∗) for almost 

all � ∈ � . Of course, the sequences of switching times t0(𝜔) < t1(𝜔) < t2(𝜔) < … 
are not fixed anymore (they do depend on a particular � ∈ � ), and therefore our 
control functions ��(⋅) = �

◦
(�) may vary frequently. We describe this notion in all 

details by introducing first:

Definition 5 Let (�,F,P) be a (complete) probability space. A stochastic process 
{�t}t∈[0,∞) is called a control process if �t ∶ � ↦ �∗.

A Markovian control process is a control process {�t}t∈[0,∞) , which is a continu-
ous time homogeneous Markov process on a measurable space (�∗,G) . We denote

Our definitions and notations concerning Markov processes are standard and 
are borrowed from Allen (2011), Gikhman and Skorokhod (1974), Grimmett 
and Stirzaker (2009), Norris (2007). Abbreviating, we shall denote the process 
{�t}t∈[0,∞) by � . In the case, when the control phase space �∗ is finite, continu-
ous time homogeneous Markov chains (CTHMC) are very simple and intuitive 
stochastic objects. Their dynamics and random evolution is fully governed by the 
so-called Q matrices Norris (2007). A Q matrix is a real square matrix

�(��
r
(x),��

r
(y)) ≤ 2L�(r)2mdr(�, �) + �(r)2m�(x, y)

�(��
r
(x),��

r
(x)) ≤ 2L�(r)2mdr(�, �).

ℌr;m(�
∗) ∋ 𝔥 ↦ �𝔥

r
(x) ∈ X

P�(�t ∈ ⋅) = P(�t ∈ ⋅ | �0 = �) .
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such that all qj,k ≥ 0 , and for every j ∈ �∗ we have 
∑M

l=0,l≠j qj,l = qj,j . It follows that 
in the matrix Q the sum of elements in every row is 0. We will write qj instead of 
qj,j . The matrix Q is called the intensity matrix of the process � as long as for every 
j ∈ �∗ we have

Formally, we may define the matrix Q as

We skip other formalisms and direct the reader to classical monographs (cf. 
Gikhman and Skorokhod 1974), where all the essential results with clear proofs are 
presented. The intensity matrices (generators) are at the core of the analytical theory 
of Markov semigroups.

The trajectory of a process � may be simulated using its Q matrix, by the clas-
sical Gillespie algorithm (Gillespie 1977). Namely, a trajectory starting at t∙ = 0 , 
from an initial point �0 ∈ �∗ , will stay in �0 for a random time ��0 . Then, at the 
moment t1 = ��0 , it jumps with probability 

q�0,k

q�0

 to some k ≠ �0 . The scheme is 

repeated infinitely many times. As the process is Markovian, the distribution of 
�� , where � ∈ �∗ is exponential; i.e. P(𝜏𝜗 > t) = e−q𝜗t , for t ≥ 0 (see Norris 
2007, p. 94). From the point of view of simulations, the full description of the 
trajectory (for a fixed � ∈ � ) is a sequence of pairs

where �n describe consecutive states of the trajectory of � . The sequence 
of times t0 < t1 < t2 < ⋯ represents instances of switching. Then, t0 = ��0 , 
t1 = t0 + ��1 = ��0 + ��1 , t2 = t1 + ��2 and so forth. We must notice that our presen-
tation is a bit informal, as we skip over the technicality that all random variables 
(Markov moments) ��0 , ��1 , ��2 ,… are actually versions from the relevant families 
of independent copies. Obviously, tn(�) is the time instance of the jump �n ⇝ �n+1.

Given a CTHMC � we shall denote by {�n}n≥0 the embedded Markov chain 
and the sequence of the so-called inter-times of � by {�n}n≥0 . Of course �n is a 
discrete time Markov chain on the control phase space �∗ and �n form a sequence 
of independent and nonnegative random variables, which describe the (wait-
ing) time spent in �n(�) before jumping to �n+1(�) . To keep formulæ short 
(this repetition is consistent with the one introduced a while ago), let us denote 
tn(�) = �0(�) +⋯ + �n(�) , it is the time when the process �t(�) (after occupying 

Q =

⎡
⎢⎢⎢⎣

−q0,0 q0,1 q0,2 ⋯ q0,M
q1,0 − q1,1 q1,2 ⋯ q1,M
⋮ ⋮ ⋮ ⋮ ⋮

qM,0 qM,1 qM,2 ⋯ − qM,M

⎤
⎥⎥⎥⎦
(M+1)×(M+1)

.

lim
h→0+

P(�t+h ≠ j|�t = j)

h
= qj and lim

h→0+

P(�t+h = k|�t = j)

h
= qj,k for k ≠ j .

Qk,j = lim
h→0+

pk,j(h) − �k,j

h
.

(
(�0, t0), (�1, t1), (�2, t2),…

)
,
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parameter �n(�) for the period �n(�) ) arrives at the state �n+1(�) (being then 
“stuck” in it for the period �n+1(�)).

Definition 6 Let � be a CTHMC defined on the probability space (�,F,P) 
with values in a finite control phase space (�∗,G) and, as before, let 
ℜ(�∗) = {�(t, ⋅, �) ∶ t ≥ 0, � ∈ �∗ } be a family of semiflows on the phase space 
(X, �) . Then the mapping

defined as �(t, x,�) = �
�◦(�)
t (x) i.e.

is called a randomly controlled semiflow (which is a merged system of the family of 
the semiflows ℜ(�∗) and the control CTHMC process � = {�t}t∈[0,∞) on the con-
trol phase space �∗ ). We denote such a randomly controlled family of semiflows by 
ℜ(�∗) ⋇ �.

Each � ∈ ℜ(�∗) ⋇ � is in fact a random process. For t ∈ ℝ+ we introduce

Of course �⋄+t
◦

(�) ∈ ℌ(�∗) for P-almost all � ∈ � . It follows from our construction 
that �(0, x, ⋅) = x . Moreover, if we denote �t(x,�) = �(t, x,�) then

Theorem 2 Let {��
t
}t≥0,�∈� be the family of semiflows on (X, �) such that, for finite 

𝛩∗ ⊆ 𝛩 , the conditions (★) and (�) hold, with a constant L and the growth function 
� which is independent of � ∈ �∗ . If � = {�t}t∈[0,∞) is the control CTHMC process 
on �∗ , then {�t(x, ⋅) ∶ t ∈ [0,∞)} is a continuous time stochastic process on X with 
continuous trajectories.

3  Simulation example: a simple linear random dynamical system

We consider two simulation examples to illustrate the behaviour of the linear ran-
dom dynamical system �a

t
(x) = x + at . The first one is very simple and plays here 

an illustrative role. The second one is related to recently studied SARS-CoV-2 
dynamics. One of the purposes of the simulation is to illustrate, similarly as will 
later be observed for SIR models, the limiting, as the frequency of change in the 

� ∶ [0,∞) × X ×� ↦ X

�(t, x,�) = �
�◦(�)
t

(x)

= �(t, x, �) for 0 ≤ t ≤ �0(�) = t1(�) and � = �0(�),

= �(t − t1(�), �(t1(�), x, �0(�)), �1(�)) for t1(�) ≤ t ≤ t2(�),

= �(t − t2(�), �(t2(�), x,�)), �2(�)) for t2(�) ≤ t ≤ t3(�),

and then inductively

= �(t − t
n
(�), �(t

n
(�), x,�), �

n
(�)) for t

n
(�) ≤ t ≤ t

n+1(�),

�⋄+t
r

(�) = �r+t(�) for all r ≥ 0.
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driving process increases, behaviour of the considered �a semiflow. Let a be a 
Markov process on a discrete state space {0,… ,M} with transition rate matrix Q. 
Assume that a starts from 0. Let � be the stationary measure of the Markov chain a. 
Define a∗ = lim

k→∞
(�0 +⋯ + �k)∕(k + 1) , where {�0,… , �k} are i.i.d as � . The hypoth-

esis is then, that �a(k)

t
→ �a∗

t
 as k → ∞ , where a(k) is a Markov process with transi-

tion rate matrix kQ, i.e. the matrix Q multiplied by the integer k. We assume that the 
parameter a is the realization of a Markov process on the state space {0, 1, 2} with 
rate matrix

We take this Q matrix for illustrative purposes, not due to some particular applica-
tion. We first simulate the trajectory of a(k) for a large value of n = 100,000 . Then 
conditional on it, we calculate �a

t
 . Simulation of the Markov process is done by the 

Gillespie algorithm. We find a∗ by simulations. First from Q1 we find the stationary 
distribution �∗ as the first row of the matrix �e10,000��−1 , where � is the diagonal 
matrix of eigenvalues of Q and � is the matrix of eigenvectors (Thm. 21, Grimmett 
and Stirzaker 2009). The 10, 000 is the to represent ∞ , i.e. the limit of etQ1 as t → ∞ . 
From �∗ we draw a large (10, 000) sample and take its average as a∗ . We simulate 
both a(k) and a∗ 100 times. We show the resulting collection of trajectories in Fig. 1.

Next we aim at providing an example linked to the dynamics of the SARS-
CoV-2 virus. Let the process �a

t
 represent a short term approximation of the growth 

Q1 =

⎡⎢⎢⎣

−1 1 0

1 − 2 1

0 3 − 3

⎤⎥⎥⎦
.

Fig. 1  Simulated trajectories of �a
(k)

t
 and �a

∗

t
 for Q1 . The curves E

[
�a

(k)

t

]
 , �a

∗

t
 and E

[
�a

∗

t

]
 essentially coin-

cide with each other
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of the number of infected, i.e. at a stage of linear growth. The infected number, as 
described in the Introduction, is driven by a random factor. In the common SIR 
model (as will be described in Sect. 4) the number of infected is given by the dif-
ferential equation

and conditional on S(t) ≡ S we have the (conditional) solution

where we can take �
�
S = R0 . Hence, to compare with our model we would like 

a(t) = �(
�

�
S − 1) , where some part of the right-hand side is time-dependent. Alter-

natively, we would like a∗ = �(
�

�
S − 1) . To connect this with the dynamics of the 

SARS-CoV-2 virus one would need estimates of � , R0 for it and some population 
size S(t). Obtaining � and R0 from official statistics does not seem to be an easy task 
due to the nature of the collected data (Bartoszek et al. 2020). In particular the num-
ber of confirmed cases strongly depends on the number of tests performed and fur-
thermore one can suspect that the count will also depend on the testing strategy and 
type of test performed. However, one alternative is to use data collected from the 
cruise ship, Diamond Princess, which can be treated as a unique, naturally-occur-
ring epidemiological study that could be useful for the prediction of parameters 
related to the behaviour of COVID-19. There were 3711 people onboard, 1045 crew 
(median age 36 years) and 2666 passengers (median age 69 year) (Moriarty et al. 
2020). Of these 712 tested positive for the virus, 145 crew and 567 passengers1. The 
first case was observed at the end of January 2020 and by March 2020 all passengers 
and crew had disembarked (Moriarty et  al. 2020). Fourteen passengers died, with 
the first death on 10th February 2020 and last on 14th April 2020 (see Footnote 1). 
We need to have estimates of � , the death rate, and R0 . For the death rate we take 
(approximating the 64 days as 2 months),

There are various estimates of R0 for the Diamond Princess, 14.8, 1.78 (Rocklöv 
et al. 2020) and 2.28 (Zhang et al. 2020). Here we take the value of 3.7 (the reported 
by Liu et  al. 2020 mean R0 value from Wuhan and it was taken in Rocklöv et  al. 
(2020) for a sensitivity analysis). We hence obtain a∗

DP
= ((14∕567)∕2) ⋅ 3.7 ≈ 0.046 . 

Of course, in order to be able to carry out our simulation we need to have Q, of 
which a∗ is a function of. Let Q ⊂ ℝ

3×3 be the space of matrices that are constrained 
to have non-negative off-diagonals, each row summing to 0 and at least one non-zero 
off-diagonal entry in each row. Each Q ∈ Q will then be the transition rate matrix 
for some Markov process and have the a∗

Q
 parameter associated with. Our aim is to 

find a Q that minimizes

I�(t) = (�S(t) − �)I(t)

I(t) = e(�S−�)t ≈ I(0) + (�S − �)t = I(0) + �(
�

�
S − 1)t,

� =
1

time
⋅
number of deaths

population size
=

1

2months
⋅
14

567
≈ 0.012.

1 https ://en.wikip edia.org/wiki/COVID -19_pande mic_on_Diamo nd_Princ ess.
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One cannot expect to have a unique Q̃ , as multiple Qs can result in the same a∗ and 
hence we want to consider a whole set of viable Q̃ s. We therefore take a Monte Carlo 
approach by running R’s (R Core Team 2020) optim() function from 100 ran-
dom seeds sampled from M . A given Q ∈ M is randomly chosen as follows. First 
for each row the position of the obligatory positive-off-diagonal entry is chosen. 
Then, from the remaining M − 1 (in this application only 1 entry remains, as M = 2 ) 
entries each one is chosen with probability 0.5 (we first draw from the binomial dis-
tribution the number of positive entries, and then using R’s sample() draw the 
appropriate indices). The values of the chosen entries are drawn from the exponen-
tial with rate 1 distribution. Afterwords, the optimization of Eq. (3.1) is done using 
the Nelder–Mead method. We show the resulting collection of trajectories in Fig. 2.

4  Worked example: the SIS model with random coefficients

We finally turn to the investigation of trajectories of SIS (this Section) and SIR 
(Sect. 5) models controlled by a CTHMC with intensity matrix Q (and an initial dis-
tribution p) on finite state space {0, 1,… ,M} (the numbers 0, 1,… ,M here are just 
labels, the actual states of the process will be the values of the transmission rates).

The classical SIS model for a constant population size Allen (2011), Ker-
mack and McKendrick (1927) is described by a  system of ODEs with constant 

(3.1)Q̃ = argmin
Q∈Q

(a∗
Q
− a∗

DP
)2.

Fig. 2  Simulated trajectories of �a
(k)

(t) and �a
∗

(t) for Qs optimized in order to have a∗ agreeing with a∗
DP
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coefficients (we remind the reader that without loss of generality we have assumed 
N = 1 , so in the more general case � should be scaled by N and S(t) + I(t) = N):

S(t) + I(t) = 1 . The parameter � is called the transmission rate—the number of con-
tacts per time that results in an infection of a susceptible individual; � is the recovery 
rate, where 1∕� is the average length of the infectious period.

As we have normalized out variables ( N = 1 ) we may consider solely the num-
ber of infected (and infectious) individuals I(t) at time t (as the number of suscep-
tible individuals is directly given as S(t) = 1 − I(t)):

The above Bernoulli differential equation can be solved directly; the solution I(t) is 
given by

The SIS epidemic model has an endemic equilibrium given by

and it is positive if the basic reproduction number

satisfies R0 > 1 . In that case, the solutions approach the endemic equilibrium. If 
R0 ≤ 1 solutions approach the infected-free state.

The first SIS model is controlled by the CTHMC through the parameter � 
(which, after further modifications, we denote by �1 ) which equals the value of 
the CTHMC.

For our simulation let us assume that the transmission rate � = �(t) is the realiza-
tion of a CTHMC on the state space {0, 0.044, 0.11, 0.22} with intensity matrix

From Q we find the stationary distribution ( �∗◦Q = 0 ): �∗ = (0.2, 0.4, 0.2, 0.2) . We 
note that the particular values of Q are chosen for illustrative purposes only.

Figure  3 shows the trajectories of the piecewise-deterministic Markov process 
I(t)(�) (top panel), as well as the mean of L = 1000 trajectories (bottom panel), 

(4.1)
S�(t) = −� S(t) I(t) + � I(t)

I�(t) = � S(t) I(t) − � I(t),

dI(t)

dt
= �(1 − I(t)) I(t) − � I(t) = −� I2(t) + (� − �) I(t)

I(t) =
� − �

� +
(

�−�

I(0)
− �

)
e−(�−�)t

, t ≥ 0.

S∗ =
�

�
, I∗ =

� − �

�
,

R0 =
�

�

Q =

⎡⎢⎢⎢⎣

−1 1 0 0

0 − 1 1 0

0 1 − 2 1

1 0 0 − 1

⎤⎥⎥⎥⎦
.
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superimposed on the ordinary deterministic solution I(t) with parameter � corre-
sponding to � ≡ E[�] = �∗◦(0, 0.044, 0.11, 0.22).

We postulate the limiting behavior of trajectories as we increase the intensities 
of jumps in CTHMC, i.e. the intensity matrix of the process, kQ changes as k → ∞ . 
Only numerical simulations were considered. However, our framework, consider-
ing limits of kQ as k → ∞ is consistent with known theorems describing conditions 
under which a sequence of Markov processes will converge to the solution of a sys-
tem of first order ODEs (Kurtz 1971).

Figure  4 shows the trajectories of piecewise-deterministic Markov processes 
I(t)(�) with intensity matrices 10Q and 100Q superimposed on ordinary determinis-
tic solution I(t) with parameter � corresponding to �∗◦(0, 0.044, 0.11, 0.22).

We now turn to considering a different stochastic modification of the SIS model. 
The spread of infection in the classical (deterministic) SIS model is associated 
with an incidence rate that is bilinear with respect to the number of susceptible 

Fig. 3  The SIS model with random coefficients. Top: simulated trajectories of I(t)(�) from stochastic 
process �(t) with Q and P(�(0) = 0) compared with deterministic solution of ODE, dI(t)

dt
 , with parameter 

� = � = 0.0836 , other model parameters: � = 0.05, I(0) = 0.01 ; bottom: mean function of L = 1000 tra-
jectories with ± sd intervals
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Fig. 4  Trajectories of the piecewise-deterministic Markov processes I(t)(�) for SIS models with random 
coefficients with intensity matrices 10Q and 100Q, and a comparison of the variance functions for mod-
els with intensity matrix Q, 10Q and 100Q 
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and infected individuals. We propose a modification as we incorporate an “exter-
nal” transmission of disease obtaining a non-multiplicative (affine) incidence rate 
(Korobeinikov and Maini 2005). Motivations for such an external transmission have 
been provided in the Introduction and were also discussed in Sect. 3.

As a consequence we obtain the following ODE system, again for a constant-
sized population ( N = 1 ) SIS model:

where for all t > 0 , S(t) + I(t) = 1 ≡ const.

From the above relation we expand the equation for the number of infected indi-
viduals I(t):

where � = �1 − �0 − �.
We obtain again a first-order ODE, quadratic in the unknown function. However, 

our slight modification results in a significantly different “full-form” Riccati equa-
tion with constant coefficients (assuming 𝛽1, 𝛽0 > 0).

We now turn to solving our ODE. We first notice that a particular solution i(t) is:

𝛾2 + 4𝛽0𝛽1 > 0

The “external” SIS epidemic model has an endemic equilibrium given by

where � = �1 − �0 − � . Assuming 𝛽1, 𝛽0 > 0 the endemic equilibrium is always 
positive, i.e. there is no infected free state. Solving by quadrature, substituting 
I(t) = i(t) + u(t) , where i�(t) = −�1i

2(t) + �i(t) + �0,

dS(t)

dt
= −�1S(t) I(t) − �0S(t) + �I(t)

dI(t)

dt
= �1S(t) I(t) + �0S(t) − �I(t),

dI(t)

dt
= �1S(t) I(t) + �0S(t) − �I(t) =

= �1(1 − I(t)) I(t) + �0(1 − I(t)) − �I(t)

= −�1 I
2(t) +

(
�1 − �0 − �

)
I(t) + �0

= −�1 I
2(t) + � I(t) + �0,

0 = −�1 I
2(t) + � I(t) + �0

i1(t) =
𝛾 +

√
𝛾2 + 4𝛽0𝛽1

2𝛽1

i2(t) =
𝛾 −

√
𝛾2 + 4𝛽0𝛽1

2𝛽1
≤ 0, i(t) ≡ 𝛾 +

√
𝛾2 + 4𝛽0𝛽1

2𝛽1
> 0.

S∗ =
�1 + �0 + � −

√
�2 + 4�0�1

2�1
, I∗ =

� +
√
�2 + 4�0�1

2�1
,
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or

which is a Bernoulli equation, (the coefficient −(� − 2�1i(t)) equals
√
�2 + 4�0�1 ≥ 0 ). 

Thus, substituting I(t) = i(t) +
1

z(t)
 directly into our Riccati equation yields (the linear 

equation):

A set of solutions to the Bernoulli equation is given by

A set of solutions to the Riccati equation is then given by

Assuming I(0) = I0:

Figure  5 shows the solutions of “external” SIS models for various values of the 
parameter �0.

It can be proved that conditions (�) and (★M) hold for the SIS model as the 
phase space is compact and

(t ≥ 0 and x ∈ [0, 1] is an initial condition). Condition (�) holds from the mentioned 
boundedness of derivatives. On the other hand, the condition (★M) can be derived 
from the SIS master equations (Eq. 4.1), and our assumption that S + I ≡ const(= 1) . 
Namely, we have

Hence,

i�(t) + u�(t) = −�1 (i(t) + u(t))2 + � (i(t) + u(t)) + �0,

u�(t) = −�1u
2(t) + � u(t) − 2�1i(t) u(t)

= −�1u
2(t) + (� − 2�1i(t)) u(t),

u�(t) − (� − 2�1i(t)) u(t) = −�1u
2(t)

z�(t) −

√
�2 + 4�0�1 z(t) = −�1.

u(t) =

√
�2 + 4�0�1

C1e
√
�2+4�0�1 t − �1

.

I(t) =
� +

√
�2 + 4�0�1

2�1
+

1

C2 e
√
�2+4�0�1 t −

�1√
�2+4�0�1

.

C2 =

�
I0 −

� +
√
�2 + 4�0�1

2�1

�−1

+
�1√

�2 + 4�0�1

.

sup
t,x

{|S�(t)|, |I�(t)|} < ∞

|It(p) − It(q)| ≤ |p − q|e�t.
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Similarly to the previous stochastic modification we implement the “external” rate 
�0 as a CTHMC with intensity matrix Q on the finite state space {0, 1,… ,M} . 
Assume that the external incidence rate �0 = �0(t) is the realization of a CTHMC 
on the state space {0, 0.044, 0.11, 0.01} with intensity matrix Q (as previ-
ously) and P(�(0) = 0) = 1 . The other parameters for SIS model are as follows: 
I(0) = 0.01, �1 = 0.0836, � = 0.05,K = 1.

Figure  6 shows the trajectories of the process I(t)(�) superimposed on 
the ordinary deterministic solution I(t) with parameter �0 corresponding to 
�∗◦(0, 0.044, 0.11, 0.01) . Again we find that with multiplied intensity matrices kQ 
we can observe the convergence to the deterministic �0 solution as k → ∞ , i.e. for 
high-frequency changes the in the underlying driving process, the observed process 
looks smooth.

From the formulation of the classical SIS model, assuming that at any given time 
t the number of infected individuals I(t) equals 0, we obtain a  stable trivial equi-
librium. However, it is not the case in our new model, as the positive “external” 
incidence rate makes it unstable. Figure 7 shows a sample trajectory presenting the 
origination of epidemics from a population free from infected individuals.

5  Worked example: the SIR model with random coefficients

Similarly to the SIS (Sect. 4) models, we introduce an external stochastic infectious 
mechanism to the classical SIR model. We are unable to find analytical closed form 
solutions. The master equation of the SIR model guarantees that the generated by it 
semiflows allow for stochastic extensions. In order to obtain that the corresponding, 

|St(x) − St(y)| = |(1 − It(1 − x)) − (1 − It(1 − y))| = |It(1 − x) − It(1 − y)|
≤ |(1 − x) − (1 − y)|e�t = |x − y|e�t .

Fig. 5  “External” SIS model solutions for different (deterministic) parameters �0 : �00 = 0 (classical SIS), 
�1
0
= 0.02 , �2

0
= 0.1 , �3

0
= 0.2 , �4

0
= 0.5 ; �1 = 0.8 , � = 0.3 , I(0) = 0.1
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controlled by a CTHMC, semiflows are stochastic processes, we simply explain that 
the crucial moment of the proof of our Thm 2 is the step where we show that the 
mapping

Fig. 6  Trajectories of the piecewise-deterministic Markov processes I(t)(�) for SIS models with random 
coefficients with “external” incidence rate models with intensity matrices Q, 10Q, 100Q, red line denotes 
the deterministic solution of the ODE with parameter �0
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is (dr, �) continuous (hence measurable). Now the continuity will follow from the 
boundedness of derivatives sup{|S�(t)|, |I�(t)|, |R�(t)|} < ∞ . Let us add that the cor-
responding vector fields on [0, 1] × [0, 1] × [0, 1] are furthermore smooth. Therefore, 
if the trajectories �

◦
(�) are close in the metric dr on ℌr;m then the final states (i.e. the 

ends of paths) ��◦(�)
r (x) are also close.

Let us stress that this section is strongly supported by numerics, instead of being a 
purely mathematical solution of the modified SIR model. As long as there is no explicit 
closed form solution it may be difficult to find (or estimate) the expansiveness of a sem-
iflow. We can show that if x > y then |St(x) − St(y)| ≤ |xe−�0t − ye−(�0+�1)t| . The expan-
siveness of It(p) or Rt(r) may be even more complicated.

Similarly to the SIS (Sect. 4) models, we introduce an external stochastic infectious 
mechanism to the classical SIR model. We again remind the reader that we have a nor-
malized population size, N = 1.

where for all t > 0 , S(t) + I(t) + R(t) = 1 ≡ const. If �0 = 0 , then we obtain the clas-
sical SIR model. In the classical case it can be shown that limt→∞ I(t) = 0 , and that 
the limits of S(t) and R(t) (as t → ∞ ) are finite but depend on the initial conditions. 
Assuming �0 = 0 , if the effective reproduction number

ℌr;m ∋ �
◦
(�) ↦ ��◦(�)

r
(x) ∈ X

(5.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)

dt
= −�1S(t) I(t) − �0S(t)

dI(t)

dt
= �1S(t) I(t) + �0S(t) − �I(t),

dR(t)

dt
= �I(t),

Fig. 7  Trajectories of the piecewise-deterministic Markov processes I(t)(�) for for SIS models with ran-
dom coefficients with “external” incidence rate models with intensity matrices Q, �0(0) = 0 , �1 = 0.01 , 
� = 0.05 , I(0) = 0 , K = 1
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satisfies � ≤ 1 , then there is no epidemic, and I(t)’s decrease to zero is monotonic. 
However, if 𝜚 > 1 , then I(t) first increases before decreasing to zero, a  situation 
which we call an epidemic.

Following the procedure used in Harko et al. (2014) we will now turn to analyz-
ing the SIR model with external infection. We will not obtain a closed-form analytical 
solution, but reduce it to an Abel equation of the first kind. It follows from Eq. (5.1) that

Hence

and

Similarly from Eqs. (5.1) and (5.3)

Combining Eqs. (5.4) and (5.6) we obtain

From Eq. (5.1), solving for R(t), we obtain

thus

or (in short)

� = R0S(0) = S(0)
�

�

(5.2)S�

S
= −�0 − �1I.

(5.3)I = −
�0

�1
−

1

�1

S�

S
,

(5.4)−�1I
� =

S��

S
−

(
S�

S

)2

.

(5.5)I� = (�0 + �1I)S − �I = −S� − �I,

(5.6)I� = −S� − �

(
−
�0

�1
−

1

�1

S�

S

)
.

(5.7)S��

S
−

(
S�

S

)2

= �1S
� − �0� − �

S�

S
,

(5.8)S��

S
−

(
S�

S

)2

+ �
S�

S
− �1S

� + �0� = 0.

(5.9)R� = −
�

�1

(
�0 +

S�

S

)
= −

��0

�1
−

�

�1

S�

S
,

(5.10)S(t) = S(0) e−
�1
�
(R(t)−R(0))−�0t
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Differentiating Eq. (5.11)

Hence

and

Substituting Eqs. (5.12)–(5.15) into Eq. (5.8), and after reordering, we obtain

Let

and as

we obtain

and

(5.11)S(t) = D e
−

�1
�
R(t)−�0t, where D = S(0) e

�1
�
R(0)

.

(5.12)S� = D

(
−
�1

�
R� − �0

)
e
−

�1
�
R(t)−�0t = −

(
�1

�
R� + �0

)
S,

(5.13)
S�

S
= −

(
�1

�
R� + �0

)
.

(5.14)R� = −
�

�1

(
�0 +

S�

S

)

(5.15)R�� = −
�

�1

(
S�

S

)�

= −
�

�1

(
S��

S
−

(
S�

S

)2
)
.

(5.16)R�� = −�R� + � D

(
�0 +

�1

�
R�

)
e
−

�1
�
R−�0t.

(5.17)u(t) = e
−

�1
�
R(t)−�0t

(5.18)u� = −

(
�0 +

�1

�
R�

)
u

(5.19)u�

u
= −�0 −

�1

�
R�

(5.20)R� = −
�

�1

(
�0 +

u�

u

)

(5.21)R�� = −
�

�1

(
u�

u

)�

= −
�

�1

(
u��

u
−

(
u�

u

)2
)
.
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Substituting Eqs. (5.20) and (5.21) into Eq. (5.16) we obtain

Let �(u(t)) = t , i.e. � = u−1,

thus

Applying the chain rule, and from Eq. (5.23)

Let �(u) = ��(u) , then ��(u) = ���(u) and

Substituting into Eq. (5.22) we obtain

Multiplying by −�3(u)

u
 we obtain

or in an equivalent form

We can recognize Eq. (5.30) as an Abel equation of the first kind, provided that 
��0u ≠ 0 (§1.4.1 Polyanin and Zaitsev (1995)). If ��0u = 0 the equation reduces to 
a Riccati-type equation, or if � − �1Du = 0 it reduces to a Bernoulli-type equation.

Equation (5.30) has no closed-form analytical solution. Introducing 𝛽0 > 0 to 
the SIR model results in a substantial change in our simulation process. We will 
rely on the R’s (R Core Team 2020) package deSolve to solve the SIR ODE 
system, Eq. (5.1), between the interarrival times of the CTHMC.

(5.22)u u�� − (u�)2 +
(
� − �1 Du

)
u u� + ��0u

2 = 0.

(5.23)
(
u−1(t)

)�
= (�(u))� =

1

u�(t)
=

1

u�(�(u(t)))
,

(5.24)
dt

du
=

1

u�(�(u))
.

(5.25)���(u) = −
u��(�(u)) ��(u)

(u�(�(u)))2
= −

u��(�(u))

(u�(�(u)))3
.

(5.26)u�(�(u(t))) =
1

�(u(t))
,

(5.27)u��(�(u(t))) = −��(u(t)) ⋅
(
u�(�(u))

)−3
= −

��(u(t))

�3(u(t))
.

(5.28)u ⋅

[
−
��(u)

�3(u)

]
−

1

�2(u)
+
(
� − �1Du

)
u

1

�(u)
+ ��0u

2 = 0.

(5.29)−��(u) −
�(u)

u
+
(
� − �1Du

)
�2(u) + ��0u �

3(u) = 0

(5.30)��(u) = ��0u �3(u) +
(
� − �1Du

)
�2(u) −

1

u
�(u).D
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After introducing the “external” transmission rate 𝛽0 > 0 , we obtain only the 
trivial asymptotic equilibrium (S⋆, I⋆,R⋆) = (0, 0, 1) . This is as all susceptible indi-
viduals will become eventually infected either via contact with the infected and 
infectious individuals (assuming I(t) > 0 ) or through the “external” transmission. 
Allowing for �0 to be described as a value of CTHMC provide us with a frame-
work in which short “impulses” may switch the behavior of the solution (I(t), t > 0) 
between consecutive growth stages before decreasing to zero along the solution 
(S(t), t > 0) . Figure  8 shows a sample trajectories of SIR solutions assuming that 
�0 = �0(t) is a Markov process with intensity matrix 0.1Q (for long inter-arrival 
times of the process) on a finite state space {0.001, 0.002, 0, 0.05} . We can clearly 
observe consecutive “waves” of the epidemic.

In line with our previous observations we can see that with the increase 
of the intensity matrix of the CTHMC kQ, as k → ∞ , the trajectories con-
verge to the deterministic solution with parameter �0 corresponding to 
�0 ≡ E

[
�0
]
= �∗◦(0.001, 0.002, 0, 0.05) (see Fig. 9).

6  Discussion and conclusions

We end with a few historical remarks. The topic we presented is not new. The 
long-term behaviour of dynamical systems subjected to random perturbations 
was studied from different points of view (theoretical or practical computer simu-
lations). It is quite impossible to give representative references, but we simply 
mention a few of them (see Benaïm and Strickler 2019; Chen-Charpentier and 
Stanescu 2010; Gray et al. 2012; Rami et al. 2014; Roberts 2017). The common 
features of these models is that the dynamics is randomly interrupted so that the 
internal (very often hidden) state of the systems is changed, according to a law 
that depends on the state just before this intervention. In our work, the duration 

Fig. 8  Trajectories of the piecewise-deterministic Markov model (dashed lines), SIR(t)(�) for the “exter-
nal” incidence rate models with intensity matrices 0.1Q, �0(0) = 0.001 , �1 = 0.08 , � = 0.05 , I(0) = 0.01 , 
R(0) = 0 ; solid lines represent the solution of the classical SIR model (with �0 ≡ 0)
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of the time intervals between interventions are independent and have exponential 
distributions (Markov models).

Describing the asymptotic behaviour of trajectories of randomly controlled 
semiflows seems to be a difficult task. There is no hope for achieving explicit ana-
lytical formulæ, in particular, not even for deterministic SIR models, see Sect. 5. 
On the other hand, these notions provide theoretical models, which are recently 
a subject of interest for many research groups. In our work we employ computer 
techniques and find, by simulations, their statistical properties. The main goal is to 
find the dependence of these statistics for growing frequencies of the control pro-
cesses (e.g. potential social contacts). This is reflected by considering sequences 
kQ of intensity matrices, where k → ∞ . For larger k the intensity matrix kQ will 
exhibit higher frequencies of change in the steering process. For special classes 
(in particular for SIR semiflows) the randomness of ��◦(�)

t (x) = �t(x,�) finally 
( k → ∞ ) will be extinguished, approaching a deterministic semiflow for some 
specific mean �

⋄
∈ � (not necessarily in �∗).

For simplicity we considered control Markov processes � that are irreduc-
ible on finite �∗ . It follows that it has a unique stationary distribution �∗ on �∗ 
(see Allen (2011), Norris (2007),  p. 118). By the ergodic theorem (see Nor-
ris (2007),  p. 126) the trajectories �t(�) with probability 1 visit each fixed 
state � ∈ �∗ with frequency �∗(�) . If the intensity coefficient k → ∞ , then on 
each (even very short) time interval (r, s) ⊂ [0,∞) the control sequence (k)�t(�) 
switches parameters � ∈ �∗ accordingly to the vector �∗ and many times (more 
and more when k is large), producing in some sense an averaged parameter 
�
⋄
=
∑

�∈�∗ ��∗(�) . We notice that for �∗ = {0, 1, 2,… ,M} the expected value �
⋄
 

generally does not belong to �∗ any more. Therefore, the proposed approach is not 
universal, sometimes the parameters � are not even numerical. In the considered 
SIS/SIR models, the parameters �0(= �

◦
(�)) ∈ [0,M] behave in a linear (affine) 

Fig. 9  Trajectories of the piecewise-deterministic Markov processes I(t)(�) for SIR models with ran-
dom coefficients with the “external” incidence rate SIR model with intensity matrix 10Q, �0(0) = 0 , 
�1 = 0.08 , � = 0.05 , I(0) = 0.01 , R(0) = 0 ; red line denotes the deterministic solution of the ODE with 
parameter �0
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fashion. Hence, one may evaluate the average �
⋄
 and ask whether the asymptotic 

behaviour (i.e. when k → ∞ ) of the stochastic dynamics is carried over.
We used computer simulations to look at the high-frequency SIR properties. 

Namely, it looks like with growing frequencies the random trajectories become 
smoother and the total variance of the process decays to 0 and we seem to arrive at 
almost smooth graphs, characteristic for deterministic models. Hence, we can hypoth-
esize that the high frequencies, i.e. short transition times, of the control process result in 
almost sure convergence of the controlled dynamical system.

Let us finally comment that the high-frequency is imitated here by a direct increase 
of the intensity matrix, kQ. Of course, it would be desirable to work with more gen-
eral approaches, e.g. considering kQk , where for every k we only impose �∗◦Qk = 0 . 
This is a direction for further theoretical work but here we dedicated to it a short, con-
nected to the current spread of SARS-CoV-2 virus, Monte Carlo study. Interestingly, 
very recently a SIRD (SIR and Death) with random coefficients model was considered 
for describing the COVID-19 dynamics in Italy (Alòs et al. 2020). There they consid-
ered a fractional Brownian motion process for the infection parameter, � in Eqs. (4.1) 
and (5.1). It is worth pointing out a key difference between modelling via a fractional 
Brownian motion and the random dynamical system approach presented here. A frac-
tional Brownian motion in general will not have piecewise smooth (differentiable) tra-
jectories. On the other hand, a random dynamical system, as described in this work, 
will.

Appendix: Proofs of Lemmata and Theorems from Sect. 2

Proof of Lemma 2 The functions 𝔥, 𝔤 ∈ ℌ(�∗) have finitely many jumps on the con-
sidered interval [0, r]. We recall that the total length of the intervals (wl,wl+1) on 
which the functions �, � differ is dr(�, �) (we are confined to the interval [0, r] only, 
thus the point wl+1 at the end of the final interval should be understood as r).

Case I ( n∗ = 2j ). It follows from the condition (★) that

as �(t) = �(t) for all t ∈ [0,w0] (we remind again that if w0 ≥ r , then 
�(�

�
r (x),�

�
r (y)) ≤ �(r)�(x, y)) ). On the interval [w0,w1) the functions � and � differ, 

so applying condition (�) we obtain (the constant L corresponds to T = r)

Substituting 0 ← w1 , w0 ← w2 , �
�
w1
(x) ← x , and ��

w1
(y) ← y we obtain

�(��
w0
(x),��

w0
(y)) ≤ �(w0)�(x, y)

�(��
w1
(x),��

w1
(y)) ≤ �(��

w1
(x),��

w0
(x)) + �(��

w0
(x),��

w0
(y)) + �(��

w0
(y),��

w1
(y))

≤ 2L(w1 − w0) + �(��
w0
(x),��

w0
(y)) ≤ 2L(w1 − w0) + �(w0)�(x, y).
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Similarly we have

Iterating this procedure we finally obtain

This bound must be obviously confined to [0, r] , so we in fact can obtain

Case II, n∗ = 2j − 1

Taking t = r we obtain

�(��
w2
(x),��

w2
(y)) ≤ �(w2 − w1)�(�

�
w1
(x),��

w1
(y))

≤ �(w2 − w1)(2L(w1 − w0) + �(w0)�(x, y))

= 2L(w1 − w0)�(w2 − w1) + �(w2 − w1)�(w0)�(x, y) .

�(��
w3
(x),��

w3
(y))

= �(��(⋅+w1)
w3−w1

(��
w1
(x)),��(⋅+w1)

w3−w1
(��

w1
(y)))

≤ 2L(w3 − w2) + �(w2 − w1)�(�
�
w1
(x),��

w1
(y))

≤ 2L(w3 − w2) + �(w2 − w1)(2L(w1 − w0) + �(w0)�(x, y))

= 2L
(
(w3 − w2) + (w1 − w0)�(w2 − w1)

)
+ �(w2 − w1)�(w0)�(x, y).

�(��
w2j+1

(x),��
w2j+1

(y))

≤ 2L((w2j+1 − w2j) + (w2j−1 − w2j−2)�(w2j − w2j−1)

+ (w2j−3 − w2j−4)�(w2j − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w1 − w0)�(w2j − w2j−1) + (w2j−3 − w2j−4)�(w2j − w2j−1)⋯�(w2 − w1))

+ �(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w2 − w1)�(w0 − 0)�(x, y) .

�(��
r
(x),��

r
(y))

≤ 2L((r − w2j) + (w2j−1 − w2j−2)�(w2j − w2j−1)

+ (w2j−3 − w2j−4)�(w2j − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w1 − w0)�(w2j − w2j−1) + (w2j−3 − w2j−4)�(w2j − w2j−1)⋯�(w2 − w1))

+ �(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w2 − w1)�(w0 − 0)�(x, y) .

�(��
w2j
(x),��

w2j
(y))

≤ 2L((w2j−1 − w2j−2)�(w2j − w2j−1)

+ (w2j−3 − w2j−4)�(w2j − w2j−1)�(w2j−2 − w2j−3)

+ (w2j−5 − w2j−6)�(w2j − w2j−1)�(w2j−2 − w2j−3)�(w2j−4 − w2j−5) +⋯

+ (w1 − w0)�(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w2 − w1))

+ �(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w2 − w1)�(w0 − 0)�(x, y) .

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1 3

Japanese Journal of Statistics and Data Science 

 ▪

Proof of Lemma 3 If w1 ≥ r (we apply conditions (★) and (�)), then

Case I. Let n∗ = 2j . Reasoning as before we obtain 
�(�

�
w1
(x),�

�
w1
(y)) ≤ 2Lw1 + �(x, y) . Starting from t = w1 we may apply the previous 

lemma as �(w1) = �(w1) . We simply replace r by r − w1 and have

Case II. n∗ = 2j − 1 . We begin as above

�(��
r
(x),��

r
(y))

≤ 2L((w2j−1 − w2j−2)�(r − w2j−1)

+ (w2j−3 − w2j−4)�(r − w2j−1)�(w2j−2 − w2j−3)

+ (w2j−5 − w2j−6)�(r − w2j−1)�(w2j−2 − w2j−3)�(w2j−4 − w2j−5) +⋯

+ (w1 − w0)�(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w2 − w1))

+ �(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w2 − w1)�(w0 − 0)�(x, y) .

�(��
r
(x),��

r
(y)) ≤ �(��

r
(x),�

�

0
(x))

+ �(�
�

0
(x),�

�

0
(y)) + �(�

�

0
(y),��

r
(y)) ≤ 2Lr + �(x, y) .

�(��
r
(x),��

r
(y)) = �(��(⋅+w1)

r−w1
(��

w1
(x)),��(⋅+w1)

r−w1
(��

w1
(y)))

≤ 2L((r − w2j) + (w2j−1 − w2j−2)�(w2j − w2j−1)

+ (w2j−3 − w2j−4)�(w2j − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w3 − w2)�(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3))

+ �(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)(2Lw1 + �(x, y))

= 2L((r − w2j) + (w2j−1 − w2j−2)�(w2j − w2j−1)

+ (w2j−3 − w2j−4)�(w2j − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w3 − w2)�(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)

+ (w1 − 0))�(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)

+ �(w2j − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)�(x, y) .

Fig. 10  Illustration of the mapping �
r
(x,�)
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 ▪

Proof of Theorem  2 We must show that for each fixed r ∈ [0,∞) the mapping 
� ∋ � ↦ �r(x,�) ∈ X is measurable. We illustrate this situation in Fig. 10.

Let us define

It follows from the construction that � is a composition �r(x,�) = �
�◦(�)
r (x) . 

If � ∈ �r;m , then the trajectory �
◦
(�) , restricted to the interval [0,  r], belongs to 

ℌr;m(�
∗) . By our Thm. 1, the mapping

is (dr, �) continuous (so measurable). It remains to show that

is measurable. Let A = {a0 = 0, a1, a2,…} ⊂ [0, r] be a countable dense subset of 
[0, r]. Denote Ak = {a0, a1,… , ak} . Consider a closed (for the relative dr topology) 
ball

By separability, we can select a countable and dense set K = {�1, �2,…} in 
Kr;m(�0, �) . We notice that

Thus the trajectory �
◦
(�) , restricted to the time domain [0, r], belongs to Kr;m(�0, �) 

if and only if

�(��
r
(x),��

r
(y)) = �(��(⋅+w1)

r−w1
(��

w1
(x)),��(⋅+w1)

r−w1
(��

w1
(y)))

≤ 2L((w2j−1 − w2j−2)�(r − w2j−1)

+ (w2j−3 − w2j−4)�(r − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w3 − w2)�(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3))

+ �(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)(2Lw1 + �(x, y))

= 2L((w2j−1 − w2j−2)�(r − w2j−1)

+ (w2j−3 − w2j−4)�(r − w2j−1)�(w2j−2 − w2j−3) +⋯

+ (w3 − w2)�(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)

+ (w1 − 0)�(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1))

+ �(r − w2j−1)�(w2j−2 − w2j−3)⋯�(w4 − w3)�(w2 − w1)�(x, y).

𝛺r;m = {𝜔 ∈ 𝛺 ∶ the trajectory 𝜉t(𝜔) changes values at most m times on [0, r]}

= {𝜔 ∈ 𝛺 ∶ tm > r} ∈ F .

ℌr;m ∋ �
◦
(�) ↦ ��◦(�)

r
(x) ∈ X

�r;m ∋ � ↦ �
◦
(�) ∈ ℌr;m(�

∗)

Kr;m(𝔥0, �) = {𝔥 ∈ ℌr;m(�
∗) ∶ dr(𝔥0, 𝔥) ≤ �} .

Kr;m(𝔥0, �) =

∞⋂
k=1

∞⋃
j=1

{𝔤 ∈ ℌr;m(�
∗) ∶ 𝔤(ai) = 𝔥j(ai) for all i = 1, 2,… , k}.
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Clearly, {� ∈ �r;m ∶ �ai(�) = �j(ai)} ∈ F ∩�r;m , as �ai ∶ � ↦ �∗ is measurable. It 
follows that (see Fig. 10) �r(x, ⋅) is F  measurable. To end the proof we remark that 
the continuity of trajectories [0,∞) ∋ t ↦ �t(x,�) ∈ X is a trivial consequence of 
our construction of �� .  ▪
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