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Abstract—In this paper, algorithms for simulation of the wave
propagation in electromagnetic media described by fractional-
order (FO) models (FOMs) are presented. Initially, fractional
calculus and FO Maxwell’s equations are introduced. The
problem of the wave propagation is formulated for media
described by FOMs. Then, algorithms for simulation of the non-
monochromatic wave propagation are presented which employ
computations in the time domain (TD) and the frequency domain
(FD). In the TD algorithm, the electromagnetic field is computed
as a convolution of an excitation with Green’s function formulated
based on an improper integral and the Mittag-Leffler function.
On the other hand, the FD algorithm transforms an analytic
excitation to FD, executes multiplications with phase factors,
and finally transfers back result to TD. This algorithm involves
elementary functions only, hence, computations are significantly
faster and accurate with its use. However, applicability of the FD
algorithm is limited by the sampling theorem. Numerical results
and computation times obtained with the use of both algorithms
are presented and discussed in detail.

Index Terms—Computational electromagnetics, electromag-
netic propagation, Maxwell’s equations, fractional calculus.

I. INTRODUCTION

In 1889, Jacques Curie formulated an experimental law
describing the current i(t) through a capacitor under the
voltage excitation v(t) being the Heaviside step function [1].
An application of the constant dc voltage U0 to a dielectric
material between electrodes at the time t = 0 results in a
current given by i(t) = U0/(h1t

β), where β ∈ (0, 1) is
related to losses and h1 is related to the capacitance of such
a capacitor. Hence, the measured response of a capacitor is
significantly different from predictions of the classical circuit
theory and cannot be understood in terms of the standard the-
ory of capacitance. Currently, this experimental result is known
as Curie’s law. In 1994, Westerlund and Ekstam announced
[2] that they altogether had measured tens of thousands of
various capacitors and had never experienced a capacitor that
does not closely adhere to Curie’s law. Hence, they proposed
the relationship between the voltage and the current of the
capacitor in the form i(t) = CβD

β
t v(t), where Cβ denotes

the pseudo-capacitance and Dβ
t denotes the fractional-order

(FO) derivative. In this model, the standard relation between
the current and the voltage drop at the capacitor is obtained
when β = 1. Thus, it means that FO modelling does not
replace the standard circuit theory but only extends it.

Recently, with the use of FO derivatives [3], [4], the
mathematical modelling of a skin effect has been proposed
which extends standard circuit models of inductive elements.
Furthermore, FO Maxwell’s equations have been formulated
[5]–[9], which allow for inclusion of the skin effect as well as
memory effects of material polarization and magnetization in
electromagnetic models. Such FO Maxwell’s equations can be
useful for describing the evolution of electromagnetic systems
with memory which are dissipative and very complex.

FO electromagnetic systems are also investigated in mi-
crowave engineering. FO models (FOMs) of lumped elements
are developed [10], [11]. The FO modelling of electromag-
netic waveguiding is investigated in hollow waveguides [12]
and transmission lines [13], [14]. Furthermore, the classical
method of microwave circuit analysis based on the Smith chart
is extended towards FO modelling [15]. In [16], [17], a causal
and compact FO transmission line model for THz frequencies
is developed for CMOS on-chip conductor. For this model, a
good agreement of the characteristic impedance is observed
with measurements up to 110 GHz. However, the traditional
integer-order (IO) model agrees with measurements only up
to 10 GHz. These results clearly demonstrate advantages of
the transmission line modelling based on FO derivatives.

Investigations of possible novel effects and phenomena ob-
served when the FO time-derivatives are enabled in Maxwell’s
equations are currently needed. It stems from the fact that such
research can stimulate future applications of FO electromag-
netic systems. Hence, we have recently developed the algo-
rithms for simulation of the non-monochromatic wave prop-
agation in the time domain (TD) and the frequency domain
(FD) [18], [19], which allow one to investigate the general
properties of electromagnetic waves in media described by
FOM (i.e., so called diffusive waves). In this contribution,
both algorithms are compared in terms of accuracy and
computation times. In the TD algorithm, the electromagnetic
field is computed as a convolution of an excitation with TD
Green’s function formulated based on an improper integral
and the Mittag-Leffler function. On the other hand, the FD
algorithm transforms an analytic excitation to FD, executes
multiplications with phase factors, and finally transfers back
result to TD. This algorithm involves elementary functions
only, hence, its computation time is significantly smaller
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than for the TD algorithm. However, applicability of the FD
algorithm is limited by the sampling theorem [20]. Numerical
results obtained with the use of both algorithms are presented
and discussed in detail. Our results favour the FD method in
terms of accuracy and computation times.

II. FRACTIONAL CALCULUS

In the presented below formulation of the FO electromag-
netic theory, the Marchaud derivative concept is applied (refer
to Sections 5.4 and 5.6 in [21] and Section 1.3.1 in [22] as
well as refer to [23] for a historical discussion). The Marchaud
derivative of the order α ∈ (n− 1, n), n ∈ N is defined as

Dαf(t) =

=
{α}

Γ(1− {α})

∫ +∞

0

f (n−1)(t)− f (n−1)(t− τ)

τ1+{α} dτ
(1)

where α = n − 1 + {α}, {α} ∈ (0, 1) and f is assumed
to be smooth enough. One should note that this concept of
the fractional derivative is equivalent to other well known
approach known as Grünwald-Letnikov derivative (refer to
Theorems 20.2 and 20.4 in [21]).

For a function f : R → R whose derivative f (n−1) is
bounded on intervals (−∞, t) and locally Hölder with expo-
nent λ > {α}, the Marchaud derivative of the order α of the
function f exists [21, Section 5.4]. It means that the functions
sin(ωt), cos(ωt) and ejωt have the Marchaud derivative of any
order α > 0. Moreover, one obtains the formula (discussed for
the Grünwald-Letnikov derivative in [24, Formula (2.65)])

Dαejωt = (jω)αejωt (2)

allowing us to apply the phasor representation of the elec-
tromagnetic field. Furthermore, the Marchaud derivative gives
DαC = 0 for any order α > 0 and any constant C ∈ R.

Throughout the paper, we consider functions and vector
fields defined for V ⊂ R3 being a compact volume with
the boundary S being a piecewise smooth surface. It is
assumed that all functions f : R × V → R and vector fields
F : R × V → R3 are of an appropriate smoothness for the
considered volume V .

III. FO MAXWELL’S EQUATIONS

Let us consider Maxwell’s equations in isotropic and ho-
mogeneous media

∇ ·D = ρ (3)

∇×E = −∂B
∂t

(4)

∇ ·B = 0 (5)

∇×H =
∂D

∂t
+ J. (6)

In (3)–(6), E and H denote respectively the electric- and
magnetic-field intensities, D and B denote respectively the
displacement- and magnetic-flux densities, J denotes the cur-
rent density, ρ denotes the charge density.

Constitutive relations for a medium described by FOM are
formulated as follows [10], [11], [18]:

J = σαD
1−α
t E, 0 < α ≤ 1 (7)

εβE = D1−β
t D, 0 < β ≤ 1 (8)

µγH = D1−γ
t B, 0 < γ ≤ 1. (9)

These equations reduce to the classical constitutive relations
of media described by IO model (IOM) for α = 1, β = 1
and γ = 1. For a vacuum, the conductivity σ1 = 0 and the
permittivity and permeability are respectively denoted as ε0
and µ0. The following SI units for the material parameters are
taken: [σα] = (Ωm)−1

secα−1 , [εβ ] = F
sec1−βm

, [µγ ] = H
sec1−γm . Let

us consider a free space without charge and current sources.
Using (7)–(9), one obtains from (3)–(6) the following FO
Maxwell’s equations in TD:

∇ ·E = 0 (10)

∇×E = −µγDγ
tH (11)

∇ ·H = 0 (12)

∇×H = εβD
β
t E + σαD

1−α
t E. (13)

Let us consider the phasor representation of the electromag-
netic field, i.e.

E = <(Ẽejωt) (14)

H = <(H̃ejωt) (15)

where Ẽ and H̃ are electric and magnetic field phasors that
are functions of the spatial variables only and ω denotes the
angular frequency. From (10)–(15), one obtains FO Maxwell’s
equations in FD

∇ · Ẽ = 0 (16)

∇× Ẽ = −µγ(jω)γH̃ (17)

∇ · H̃ = 0 (18)

∇× H̃ = εβ(jω)βẼ + σα(jω)1−αẼ. (19)

Hence, the electromagnetic field can be analysed with the use
of (16)–(19) in the spatial domain only for a single frequency
of an excitation.

IV. SIMULATION ALGORITHMS

The time evolution of the wave propagation can be simu-
lated with the use of TD and FD methods. In this section,
two algorithms are presented allowing for the plane-wave
simulation in media described by FOM. It is assumed that
the diffusive wave propagates along the z direction and the
electric- and magnetic-field vectors are along the x and y
directions, respectively. For the sake of brevity, we assume
that σα = 0. The signalling initial-boundary value condition
is considered which describes impinging of the plane wave on
the half-space being a medium described by FOM. Then, the
wave is transferred into the medium and its TD waveform can
be computed as presented below.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A. TD Method

The electric and magnetic fields are given by E = Exix =
E(z, t)ix and H = Hyiy = H(z, t)iy, respectively. Using the
semigroup property of the Marchaud derivative (see [25] and
[24, Section 2.6.1] for more detailed explanations resulting
from the equivalence to the Grünwald-Letnikov derivative),
the following FO diffusion-wave equation for the electric-field
intensity can be obtained from (10)–(13) in TD:

εβµγD
β+γ
t E = D2

zE. (20)

The signalling initial-boundary value condition is formulated
for (20) as follows:

E(z, 0+) = 0, z > 0 (21)
DtE(z, 0+) = 0, z > 0 (22)

E(0+, t) = h(t), t > 0 (23)
E(+∞, t) = 0, t > 0. (24)

It is further assumed that β + γ = 2ν and ν ∈ (0.5, 1), i.e.,
only solutions between the diffusion and the wave propagation
are considered. TD Green’s function for (20) is given by [19]

Gs(z, t) =
2νz

πt

∫ ∞
0

E2ν(−κ2t2ν) cos(xκ)dκ (25)

when εβµγ = 1. In (25), E2ν denotes the Mittag-Leffler
function defined as (α = 2ν)

Eα(z) =

+∞∑
n=0

zn

Γ(αn+ 1)
α > 0, z ∈ C. (26)

Hence, the solution to the signalling problem (20)–(24) is the
convolution of TD Green’s function (25) with the excitation
signal h(t)

E(z, t) =

∫ t

0

Gs(z, t− τ)h(τ)dτ. (27)

The formula (25) cannot be used directly, as it is derived for
the normalized equation (20), i.e., with εβµγ = 1. So first, the
appropriate change of variables z → ẑ = z/L, t → t̂ = t/T
should be applied, refer to [19] for details.

B. FD Method

The electric and magnetic fields are given by Ẽ = Ẽxix =
Ẽ(z)ix and H̃ = H̃yiy = H̃(z)iy, respectively. Then, the
following FO diffusion-wave equation for the electric-field
intensity can be obtained in FD from (16)–(19):

∇2Ẽ − µγεβ(jω)β+γẼ = 0. (28)

Hence, the propagation of diffusive wave can be described
in FD for the signalling problem with the use of the transfer
function [18]

T (ω) = e−ξ(ω)z (29)

where

ξ(ω) =
ω

β+γ
2

cβγ
ej

π
4 (β+γ) (30)

and

cβγ =
1

√
µγεβ

. (31)

The algorithm of the diffusive-wave simulation can be formu-
lated for the excitation h(t) as follows:
• From a real data sequence h(t), calculate the analytic

signal ha(t) = h(t) + jg(t) with the use of the Hilbert
transformation (g(t) = H[h(t)]) [20].

• Calculate the Fourier transformation of the analytic signal
ha(t), i.e., H̃(ω) = F [ha(t)].

• The amplitude of the plane wave at the distance z is
calculated as Ẽ = H̃(ω)T (ω).

• The TD waveform E(z, t) of the signal at the distance z
is the real part of the inverse Fourier transformation of
Ẽ, i.e., E(z, t) = <[F−1[Ẽ]].

The first two steps of the algorithm can be combined together
because F [H[h(t)]] = −jsgn(ω)F [h(t)].

One can avoid computations of the non-elementary TD
Green’s function with the use of the FD algorithm. However,
the applicability of the FD algorithm is limited as far as the
orders of time derivatives β, γ are concerned. It stems from
the implementation of the method in the discrete-time domain
[18]. The multiplier e−ξz = e−(<ξ)ze−j(=ξ)z involves the
attenuation and the phase delay of the propagating wave. From
this point of view, the phase delay must be greater or equal
to the phase shift corresponding to the sampling time Ts of
the complex signal ha(t). It gives the condition (see Formula
(49) in [18]) for a minimum value of the sum of β and γ
coefficients allowing for the application of the FD simulation
algorithm, i.e.

z

cβγ

(2π

Ts

) β+γ
2

sin
(π

4
(β + γ)

)
≥ 2π. (32)

V. NUMERICAL RESULTS

Both TD and FD algorithms are implemented in Wolfram
Mathematica version 12.0 [26]. The Mittag-Leffler function is
computed by means of the built-in function MittagLefflerE. A
numerical integration is performed on the unbounded domain
(0,+∞) with the method LocalAdaptive and the parameter
AccuracyGoal (AG) set to 6 and 10. The Fourier and Inverse-
Fourier transformations are called with the attribute Fourier-
Parameters set to {1,−1}. The computations are performed
with the assumption εβµγ = ε0µ0 = 1/c2 (but in secβ+γ

m2 SI
units). The time-step size is set to ∆t = 5 fsec allowing for
the application of the FD algorithm (according to Formula
(32)). The computations of TD Green’s function and a signal
propagating in media described by FOM are executed for two
distances L = 1 mm and L = 10 mm of the wave propagation.
In the first case, the simulation consists of 1 000 samples
whilst, in the second case, the simulation consists of 6 000
samples. The number of samples in the simulation corresponds
to the total time of simulation, which is set to 5 psec and
30 psec, respectively. It is verified that the condition (32) is
satisfied for the numerical results presented below.
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Fig. 1. Green’s function at the distance L = 1 mm. (a) FD computations for
ν = 0.95. (b) FD computations for ν = 0.975. (c) Difference between FD
and TD computations for ν = 0.95 and AG = 10. (d) Difference between
FD and TD computations for ν = 0.975 and AG = 10.
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Fig. 2. Green’s function at the distance L = 10 mm. (a) FD computations for
ν = 0.95. (b) FD computations for ν = 0.975. (c) Difference between FD
and TD computations for ν = 0.95 and AG = 10. (d) Difference between
FD and TD computations for ν = 0.975 and AG = 10.

A. Accuracy

In Figs. 1 and 2, results of Green’s function computations
are presented (i.e., h(t) = δ(t) where δ denotes Dirac’s delta
function). Because the results of TD and FD computations
are visually almost identical, the results of FD computations
are presented only in subfigures (a)–(b) with the difference
between TD and FD results in subfigures (c)–(d). The TD
results are evaluated for two different accuracy parameters
(AG = 6 and AG = 10, results for AG = 10 presented in
subfigures (c)-(d)), which correspond to substantially different
computation times (but almost identical numerical results).
One should note that for small values of the time t, TD Green’s
function computations tend to have large error. It may be
explained by the behaviour of the integrated function (25),
which for t ≈ 0 is very close to the cosine function and
the integral over [0,∞) converges very slowly. Hence, the
integration method either needs more time steps to converge or

fails to converge at all. For example, for ν = 0.975 and L = 1
mm, the maximal error of computations is equal to 0.0185401
(for both AG = 6 and AG = 10), with the maximal value
of the reference function equal to 0.0233052. It is relatively
large error (about 80%), but this phenomenon disappears when
one moves away from t = 0. When one finds the maximal
error for samples starting from the sample number 100, the
difference drops down to 2 · 10−5 (which is less than 0.1% of
the maximal value of the function). For other values of ν and
L, one may observe similar effects. It directly results from
assumed integration parameters employed in computations.
These examples demonstrate clearly advantages of the FD
method which does not suffer from any convergence problems.

Using (27), one can simulate propagation of non-
monochromatic waves in media described by FOMs. In Figs.
3 and 4, results of simulations of the propagation of four
sinusoidal pulses of the total length 0.5 psec are presented.
The frequency of the sinusoidal wave enveloped by the gate
function is set to 8 THz. As seen, the signal waveform
is significantly distorted, especially when observed in the
distance L = 10 mm. However, a small perturbation of the
time-derivative orders in Maxwell’s equations (10)–(13) makes
it possible to observe pulses at an observation point earlier
than in the case of the linear medium described by IOM (i.e.,
a vacuum in this test) [18]. Hence, small decrease of the time-
derivative orders in Maxwell’s equations allows for advancing
a signal propagation in an electromagnetic medium.
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Fig. 3. Response to the sinusoidal pulse excitation at the distance L = 1 mm.
(a) the sinusoidal pulse. (b) ν = 1 (vacuum). (c) ν = 0.95. (d) ν = 0.975.

B. Computation Times

In general, the time of convolution computations (27) is
negligible in comparison with the time of TD Green’s function
(25) generation for the TD method. Therefore, computation
times needed to generate Green’s function are only compared
in Tab. I. Each numerical experiment is repeated twice to
confirm that obtained times do not differ significantly between
runs. As seen, computation times of the FD method are
negligible in comparison to the TD method times. For L = 10
mm, the FD vs. TD speedup approaches 6 orders in magnitude
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Fig. 4. Response to the sinusoidal pulse excitation at the distance L = 10 mm.
(a) the sinusoidal pulse. (b) ν = 1 (vacuum). (c) ν = 0.95. (d) ν = 0.975.

TABLE I
COMPUTATION TIMES OF TD GREEN’S FUNCTION

L ν TD TD FD
AG = 6 AG = 10

(mm) (sec) (sec) (sec)
1 0.95 5 151 6 812 0
1 0.975 9 639 10 883 0

10 0.95 48 696 51 610 0.04687
10 0.975 92 521 93 974 0.03125

for AG = 10 demonstrating advantages of the FD method. The
difference results mainly from a long time of the Mittag-Lefler
function generation and the integration on unbounded domain
in the TD method.

Another interesting observation is that the time needed
to compute the value of TD Green’s function for points
t ≈ 0 is greater than for larger times t. This observation is
demonstrated in Fig. 5.
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Fig. 5. Computation time for each sample of TD Green’s function when
ν = 0.95, AG = 6, L = 1 mm.

VI. CONCLUSION

The wave propagation in electromagnetic media de-
scribed by FOMs is presented. The algorithms of the non-
monochromatic wave simulation are developed which employ
computations in TD and FD. Numerical results and compu-
tation times obtained with the use of both algorithms are
presented and discussed in detail. The FD method significantly
outperforms the TD method in terms of accuracy and computa-
tion time. However, its applicability is limited by the sampling
theorem.
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