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Abstract. In the paper the size effect phenomenon in concrete is analysed. The results of 
numerical simulations of using FEM on geometrically similar un-notched and notched concrete 
beams under bending are presented. Concrete beams of four different sizes and five different 
notch heights under three-point bending test were simulated. In total 18 beams were analysed. 
Two approaches were used to describe cracks in concrete. First, eXtended Finite Element 
Method (XFEM) describing cracks as discrete cohesive ones with bilinear softening was chosen. 
Alternatively, an elasto-plastic constitutive law with Rankine criterion, associated flow rule and 
bilinear softening was defined. In order to ensure mesh-independent FE results, a non-local 
theory in an integral format as a regularisation technique was applied in the softening regime. In 
both approaches the influence of the decrease of the material parameters (mainly fracture 
energy) in the boundary layer on obtained maximum loads was studied. Additionally the 
influence of the averaging method in non-local plasticity was also examined. Obtained results 
were compared with experimental outcomes available in literature. 

1 Introduction  

The behaviour of heterogeneous quasi-brittle materials, 
like concrete, is very complex. In these materials a 
softening regime with decreasing force with increasing 
displacement is observed. The response of the material is 
govern by fracture process zones, where localization of 
deformation takes place, in the form of cracks (mode I) 
or shear zones (mode II). As a consequence, a strong size 
effect (dependence of strength and other mechanical 
properties on the size of the specimen) is observed. For 
real concrete structures it is between two extremes: the 
plastic limit load theory and linear elastic fracture 
mechanics. The understanding and a proper description 
of the size effect is very important in extrapolating 
experimental results obtained on small specimens into 
bigger ones.  

Within continuum mechanics, there exist two main 
approaches to describe cracks. The first one describes 
them in a smeared sense as localized zone of micro-
cracks with a non-zero finite width. The material can be 
described using e.g. elasto-plastic, damage mechanics or 
coupled constitutive laws. However, classical FE-
simulations with material with softening are not able to 
model localisation properly. The obtained results suffer 
from the mesh sensitivity and produce unreliable results. 
The strains concentrate in one element wide. 
Constitutive laws have to be equipped with a 
characteristic length of microstructure to preserve the 

well-posedness of the boundary value problem. It can be 
done by means of e.g. a micro-polar, non-local or 
gradient theories. In addition, a size effect can be 
properly captured. The alternative approach introduces 
displacement jumps across cracks while keeping the 
remaining region as a continuous one. The oldest 
solutions used interface elements defined along element 
edges. The modern ones allow for considering cracks in 
the interior of finite elements using embedded 
discontinuities or XFEM (eXtended Finite Element 
Method) based on a concept of the partition of unity. A 
smeared approach is more proper when describing a 
micro-crack formation phase while a discontinuous one 
allows for a better simulation of a macro-crack 
propagation. Usually, only one approach is used to 
simulate a crack growth in concrete during the entire 
deformation process. 

Recently, some experiment campaigns were 
performed to investigate fracture and size effect in 
concrete beams under bending. Hoover and et al. [1] 
examined 18 un-notched and notched specimens with 4 
different sizes and 5 notch heights made from one batch 
of concrete. Similar experiments were performed by 
Çağlar and Şener [2]. Grégoire at al. [3] studied the same 
problem by testing 12 beams with 4 different sizes and 3 
notch heights. Next these experiments were numerically 
simulated with cohesive elements [4] or non-local 
damage models [3, 5]. 
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Paper presents results of numerical simulations of 
experiments [1] using two different constitutive laws. In 
both approaches the influence of the decrease of the 
material parameters (mainly fracture energy) in the 
boundary layer on obtained maximum loads was studied. 
Additionally the influence of the averaging method in 
non-local plasticity was also examined. 

2 Elasto-plasticity 

The elasto-plasticity model was defined within a 
standard plasticity theory. Standard Rankine criterion 
was used [6-7]. The yield function for 2D case was 
defined as:      

    tf  21,max (1) 

where 1 and  2 are the principal stresses, t is the 
tensile yield stress and  stands for the hardening/ 
softening parameter (equal to the maximum principal 
plastic strain). An associated flow rule was assumed. In 
order to define the tensile yield strength t, a bilinear 
softening curve was assumed:      
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where f is the value of the herdening parameter when 
yield stress t reduces to 0 and stress k and hardening 
parameter define k the knee point at which the postpeak 
softening slope desreases. The similar curve was 
assumed by Hoover and Bažant [4]. The bilinear 
softening yield curve is shown at Fig. 1.  

Fig. 1. The bilinear softening yield curve in plasticity. 

Strain softening causes the ill-posedness of the boundary 
value problem and FE-results become mesh dependent. 
In order to achieve mesh-independent results, a non-local 
theory in an integral format was used as a regularization 
technique. Rates of the softening parameter d were 
treated non-locally according to Brinkgreve [8]:      

       xxx  ˆdd1d mm  (3) 

where quantity ̂d is defined as: 
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In above equations x are the coordinates of considered 
(actual) point,  are the coordinates of the surrounding 
points, m is the non-locality parameter (it should be 
greater than 1) and 0 is the weighting function. Here the 
Gauss distribution was chosen:      

 
2

1
0









 l

r

e
l

r



(5) 

where r is the distance between two points and l defines 
characteristic length of the microstructure. It should be 
noted that averaging operation affects only to a small 
area around each material point (the influence of points 
at the distance of r=3l is only of 0.01%, see Fig. 2). 

Fig. 2. The Gauss weighting function. 

In FE-simulations, an approximated method was used to 
evaluate non-local quantities. In the given integration 
point, the influence of its neighbors was determined 
using the values from the previous iteration. A split 
method based on the proposal by Strömberg and 
Ristinmaa [9], called the Newton split, was used 
(superscripts (i) and (i-1) stand for iteration counters):      

        xxxx )1()1()()( ˆ   iiii m  (6) 

The terms with the (i-1) iteration counter were taken 
from the previous global iteration and they were frozen 
during local iteration at the material point during the 
global actual iteration (i) while the terms with the 
superscript (i) were active and they could change their 
values. It allowed to simplify FE calculations and to 
preserve the locality of plasticity algorithms. 

3 Extended Finite Element Method 

The Extended Finite Element Method (XFEM) was used 
to describe discrete cracks in continuum. It is based on a 
local partition of the unity (PUM) concept. The method 
assumes that a displacement field is discontinuous across 
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the crack just after its initiation. It enables adding 'ad 
hoc' extra terms to a standard FE displacement field 
interpolation. These extra functions are responsible for 
capturing displacement jumps. Cracks do not have to be 
placed along finite element edges; they may pass through 
elements. The formulation used in the paper follows 
(with some improvements and modifications [10-11]) the 
original concept by Wells and Sluys [12]. In order to 
describe jumps in the displacement field, the so-called 
shifted-basis enrichment proposed by Zi and Belytschko 
[13] was used. The shifted-basis enrichment simplifies
the implementation of XFEM (two types of the finite
elements exist only). Moreover the total nodal
displacements are equal to the standard ones.

Two constitutive laws were defined to describe the 
behaviour of a solid body with a cohesive crack. In a 
bulk (un-cracked) continuum, a linear elastic relationship 
between stresses and strains was assumed. An 
constitutive law between displacement jumps [[u]] and 
tractions t was defined in the crack. The degradation 
process was controlled by the variable  defined as a 
maximum value of normal displacement jumps [[un]] 
obtained during loading (this variable has no connection 
with the  variable in elasto-plasticity). The following 
format of the loading function was chosen:      

   -]][[]],[[ nn uuf  (8) 

During active loading the softening of the normal 
component of the traction vector tn was described by the 
yield curve n using an bilinear softening law, similarly 
as Eqn. (2) in elasto-plasticity. For XFEM this formula 
was redefined with the aid of initial and total fracture 
energies Gf and GF (see Fig. 3 for explanation):      
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In order to improve convergence a tension-compression 
transition of the traction tn the yield stress y was 
multiplied by a factor Df defined as [14]:      
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where df is a drop factor. With increasing df, the value of 
Df approaches 1 and the standard bilinear softening law 
is recovered. In a compressive regime, the penalty 

stiffness in a normal direction was defined as ftf Gfd /2 . 

During unloading, the secant stiffness was used with a 
return to the origin (damage format). In a tangential 
direction, a decrease of the shear stiffness upon the 
normal crack opening was assumed:      
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Fig. 3. Initial Gf (above) and total GF (below) energies. 

A new crack could be activated or an existing crack 
could propagate, if the standard Rankine criterion was 
fulfilled at least in one integration point at the element at 
the front of the crack tip:      

  tf,max 21  (11) 

A crack could develop only in a vertical direction (due to 
the nature of the problem analysed, see next Section).  

4 Problem data 

In the experiment by Hoover et all [1] concrete beams of 
similar geometry and different sizes under three point 
bending were tested. Figure 4 presents the geometry of a 
beam. The depths (heights) H were taken as 40 mm, 93 
mm, 215 mm and 500 mm. The length-to-depth ratio 
was equal to 2.4 in all cases. The span length L was 
taken as 1.176 of the beam height H. The width of all 
beams was equal to 40 mm. The  relative notch  depth 0 

Fig. 4. Geometry and boundary conditions. 
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was equal to 0, 0.025, 0.075, 0.15 and 0.3. 18 different 
beam geometries were analysed. A load was imposed in 
the middle of the top edge of the specimen. It was 
controlled via increasing the distance between selected 
points located symmetrically on the bottom edge. The 
following data was assumed in numerical simulations: 
Young modulus E=41.24 GPa, Poisson ratio =0.172 
and the tensile strength ft=5.2 MPa (after [1]). 

5 FE-results 

5.1 Elasto-plasticity 

First numerical calculations with smeared cracks using 
elasto-plasticity with non-local softening were  executed.  

The characteristic length was equal to l=5 mm and the 
non-locality parameter was taken as m=2. The failure 
softening parameter was f=7.52·10-3. The kink point 
was defined at 15% of the tensile strength and 22.67% of 
the f  value. All parameters were calibrated to reflect 
experimental ad numerical data from [4], especially 
fracture energies (calibrated in 1D problem).  

Figure 5 presents force-displacement diagrams 
obtained for standard isotropic averaging scheme. 
Numerical results overestimated both peak loads and 
resultant fracture energies (no agreement in the softening 
regime). Figure 6 presents comparison of peak stresses 
(calculated as a maximum moment divided by a section 
modulus without taking into account the notch) obtained 
from numerical calculations versus averaged 
experimental values. The average relative error of the 
peak stress was about 32%.  

Fig. 5. Force-CMOD diagrams for all beams from simulations with elasto-plasticity. 
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Fig. 6. Comparison of experimental and numerical maximum 
peak stresses for elasto-plasticity and standard averaging. 

In order to improve the results, an approach proposed 
by Giry et al. [15] was used, in which the influence of 
the stress state in the neighbours is taken into account. 
As a consequence the averaging operator is not isotropic 
any longer. Obtained results are presented at Figs. 7 and 
8. It can be seen that maximum forces were slightly
smaller, but they still overestimated experimental
outcomes. The average relative error of the peak stress
was about 25%. This method, however, significantly
improved the behaviour of the model with to the respect
of properly reproducing the softening branch of the
force-CMOD curve.

Finally, simulations with Giry et al [15] approach 
were repeated with adding the influence of the boundary 
layer along the specimen’s edges. In this band the 
fracture energies linearly decrease with decreasing the 
distance to outer edges till the specified fraction of the 
original values. The width of the boundary layer was 

Fig. 7. Force-CMOD diagrams for all beams from simulations with elasto-plasticity and Giry et el [15] averaging scheme. 
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Fig. 8. Comparison of experimental and numerical maximum 
peak stresses for elasto-plasticity and Giry et al [15] averaging. 

k

assumed as 1 cm with the reduction fraction equal to 0.5. 
The average relative error of the peak stress was again 
smaller, about 18%, but no significant improvement was 
observed. 

5.2 Extended Finite Element Method 

Next numerical simulations with the discrete cracks 
using XFEM were performed. To describe the behaviour 
of the cracks in the softening phase, the initial fracture 
energy was taken as Gf=49.56 N/m and the total fracture 
energy was assumed as GF=70 N/m. The kink stress  
was defined as 15% of the tensile strength (all values 
after [4]). The drop factor was equal to df=104. 

Figure 9 presents obtained force – CMOD curves for 
all geometries compared to experimental bounds. Figure 
10 presents comparison of peak stresses obtained from 
numerical calculations versus averaged experimental 

Fig. 9. Force-CMOD diagrams for all beams from simulations with XFEM. 
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Fig. 10. Comparison of experimental and numerical maximum 
peak stresses for XFEM without the boundary layer. 

values. In general, curves from numerical simulations 
are in good agreement with experimental ones during the 
whole loading (Fig. 9). 

The analysis of peak stress values shows some 
discrepancies. While for the huge beams (H=500 mm, 
the lowest set of points) a very good agreement was 
obtained, the same set of parameters was not able to 
capture experimental values for the small beams (H=40 
mm, highest set of points). The relative error of the peak 
stress was between -1.8% and 19%.  

In order to improve the results, simulations with 
boundary layer with reduced fracture energies were 
performed. The width of the boundary layer was taken as 
0.5 cm and 1.0 cm with the corresponding maximum 
reduction factors at the specimen’s boundary equal to 0.2 
and 0.5, respectively. Figures 11 and 12 present 
maximum peak stresses obtained for the boundary layer 
equal to 0.5 cm and 1.0 cm, respectively. It can bee seen 
that for both cases good agreement between numerical 
and experimental results was obtained. The relative error 
of the peak stress was between -5.6% and 4.8% for the 
boundary of 0.5 cm and between -5.6% and 6.3% for the 
boundary of 1.0 cm. 
 

 
Fig. 11. Comparison of experimental and numerical maximum 
peak stresses for XFEM with the boundary layer 0.5 cm. 
 

 
Fig. 12. Comparison of experimental and numerical maximum 
peak stresses for XFEM with the boundary layer 1.0 cm. 

6 Conclusions  

In the paper the simulations of size effect of concrete 
beams under bending were presented. Both smear and 
discrete cracks’ descriptions were used. Calculations 
have shown that direct application of the experimental 
data into elasto-plastic constitutive law led to 
overestimating maximum experimental forces. A partial 
solution was the use of non-isotropic averaging schemes. 
This problem requires further investigations. On the 
contrary, simulations with XFEM showed very good 
agreement with experimental outcomes. The activation 
of the boundary layer with reduces fracture energies 
resulted in reducing the relative error of the peak 
stresses.  
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