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Smart Approach for Glioma Segmentation in Magnetic Resonance 

Imaging using Modified Convolutional Network Architecture (U-NET) 

Abstract: 

Segmentation of a brain tumor from magnetic resonance multimodal images is a 

challenging task in the field of medical imaging. The vast diversity in potential target 

regions, appearance and multifarious intensity threshold levels of various tumor types are 

few of the major factors that affect segmentation results. An accurate diagnosis and its 

treatment demand strict delineation of the tumor affected tissues. Herein, we focus on a 

smart, automated, and robust segmentation approach for brain tumor using a modified 3D 

U-Net architecture. The pre-operative multimodal 3D-MRI scans of High-Grade Glioma

(HGG) and Low-Grade Glioma (LGG) are used as data. Our proposed approach solves 

the problem of memory and system resource constraints by robustly applying dense 

network training on image patches of 3D volumes.  It improves the border region artifact 

detection by applying convolutions at an appropriate phase in the proposed neural 

network. Multi-class imbalance data are handled by using Categorical Cross Entropy 

(CCE) loss developed by combining the Weighted Cross Entropy (WCE) with Weighted 

Multi-class Dice Loss (WMDL) functions, which enables the network to perform smart 

segmentation of the smaller tumorous regions. The proposed approach is tested and 

evaluated for the challenge datasets of multimodal MRI volumes of tumor patients. 

Experiments are performed to compute the average dice scores on BraTS-2019 and 

BraTS-2020 datasets for the whole tumor region. 

Keywords: U-Net, MRI, Semantic, Glioma, Deep learning, Brain tumor, Lesion 

segmentation 
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1 Introduction and Background 

Sarcoma caused by abnormal over-development of brain cells is considered as tumor, 

lesion or neoplasia. It is broadly ranked into two categories as primary and metastatic 

carcinoma. Primary brain tumors arise from supporting brain cells typically termed as 

astrocytes, ependymal and oligodendroglia cells, which can be benign or noncancerous.  

Whereas, secondary brain tumors arise from other parts of the body e.g. colon or lungs, 

which can be cancerous or malignant. These can rapidly spread to the brain through the 

bloodstream (Lapointe, S., Perry, A., and Butowski, N. A.2018). An average survival rate 

for 36% of patients diagnosed with a brain tumor is just 5 years (Abdel-Maksoud, 

Elmogy, and Al-Awadi 2015). Specific causes for a brain tumor are not fully understood; 

however, most tumors are caused by changes in the DNA cells. The clinical history and 

symptoms of a patient are considered as key inputs for diagnosis of a brain tumor, which 

can be performed by using various scan procedures. These scan procedures include 

computed tomography (CT), angiograms and magnetic resonance imaging (MRI) 

(Tiwari, Srivastava, and Pant 2020). During the brain MRI procedure, it has been noticed 

that about 80% of all malignant brain tumors are high-grade glioma (HGG) or low-grade 

glioma (LGG) and are shown in Figure 1. 

Figure 1: LGG and HGG in brain MRI (van Dellen et al. 2012). 
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MRI scanning technique is mostly utilized for glioma detection due to its extensively 

diverse imaging resolution (Amin et al. 2019; Bauer et al. 2013) (Upadhyay and Waldman 

2011; Liaqat et al. 2018; Weninger et al. 2018. ). It plays a vital role in radiotherapy and 

surgical planning, where affected regions can be segregated from the healthy tissues. 

Segmentation analysis is commonly used in MRI scans for delineation of the tumor 

regions for tumor localization, its volume estimation and surgery planning tasks. Manual 

segmentation approach is predominant in the present radiological routines. However, 

more time and clinical practice are required by the radiologists to correctly locate and 

segment the exact tumorous tissues (Hameurlaine, Messaoud, and Abdelouahab 

Moussaoui 2019). Furthermore, complexity in glioma features and huge variations among 

various MRI scanners poses an inescapable challenge for even the expert radiologist to 

precisely detect tumors through MRI visual examination. In such a scenario, automatic 

approaches offer effective ways to make the process of diagnosis more efficient and 

reliable (Fernandes, Steven Lawrence, U. John Tanik, V. Rajinikanth, and K. Arvind 

Karthik 2020).  

In the past few years, deep learning (DL) has played a vital role in the field of medical 

imaging and many deep network-based techniques are developed for segmenting the 

brain tumors robustly. Basically, DL methods determine the architecture of the network 

by integrating multiple layers with multiple abstraction levels (Zhao et al. 2018). 

Consequently, these techniques have shown promising results in accomplishing 

segmentation of brain tumor. For example, the contributions made in BraTS 2018 

challenge achieved the highest dice scores of 0.91 and 0.94 on the Whole Tumor (WT) 

(Bakas et al. 2018). The automated tumor segmentation of brain sub-regions has gained 

a lot of significance in the medical field for diagnosis purpose. In this regard, different 

approaches have been proposed by using deep convolutional neural network, which is 
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one of the most popular deep network model (Isensee et al. 2017b; Yang, Ou, and Huang 

2017) (Huang et al. 2019).  

2D and 3D-variants have been successfully deployed for various biomedical applications 

(Xie et al. 2016). These variants have achieved competitive results in current biomedical 

image segmentation challenges (Isensee, Kickingereder, et al. 2018) (Isensee, Petersen, 

et al. 2018). Similarly, context-aware generative adversarial networks (GAN) are 

proposed for MRI data synthesis to improve glioma grading and they achieved an 

accuracy of 89% on the heterogeneous BraTS dataset (Huang et al. 2019). A U-Net based 

model has been presented by (Hai et al. 2019), which is capable of performing feature 

mapping in encoding to decoding model by performing successive concatenation (Hai et 

al. 2019). In multi-network approach, each network is trained separately to segment a 

tumor sub-type. The biophysical tumor growth modelling has been used by (Pei et al. 

2020) to perform longitudinal brain tumor segmentation with better longitudinal tumor 

prediction. In a recent study, a GAN is proposed to generate segmentation from multi-

channel 3D MRI images that penalize unrealistic segmentations generated in the early 

phases of training (Cirillo, Abramian, and Eklund 2020).  

Although, several methods have been presented in literature, but still there exists room to 

achieve better results and performance in semantic segmentation of gliomas. Therefore, 

in this research we present a smart approach for segmentation of whole tumor of brain 

MRI based on datasets of BraTS 2019 and BraTS 2020. Our proposed approach is derived 

from the famous U-Net architecture by (Ronneberger, Fischer, and Brox 2015), a standard 

benchmark algorithm in medical segmentation domain. Our main contributions are:  

• Development of an improved framework in MATLAB to precisely locate and

segment the actual regions of interest by classifying each 3D pixel/voxel in an

MR image as background and a whole tumor.
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• Enhancing the performance of the model using patch-based segmentation along

with dense data augmentation to resolve the issues of over-fitting and lowering

error rate.

• Robust training of modified model using a combination of weighted multi-class

dice loss and cross entropy loss formulation to resolve the issue of multiclass

imbalance. An overlap tile method for test data segmentation is also used to avoid

the border region artifacts in output prediction.

The structure of this paper comprises of fundamental concepts in Section 2, which 

presents the basic concept of use of DL in medical applications, convolutional neural 

network (CNN) model and description of image dataset. The proposed methodology is 

explained in Section 3. Experimental Results and discussion are presented in Section 4 

followed by concluding remarks in Section 5 respectively. 

2 Fundamental Concepts 

2.1 Uses of deep learning (DL) in medical applications  

In deep learning, a model is being trained with the help of input data along with its 

corresponding labels, which are termed as ground truths. Ground truths are confirmed 

and attested by expert radiologists in the medical domain. Currently, many deep network-

based techniques are developed for robustly segmenting localized brain tumors. These 

techniques have shown promising results in performing segmentation of the brain tumor. 

For instance, the contributions made in BraTS 2018 challenge achieved the highest dice 

scores of 0.91 and 0.94 on the Whole Tumor (WT) (Bakas et al. 2018).The imaging 

modalities and ground truth labels of BraTS 2019 dataset are presented in Figure 2.  

The terms  T1 weighted (T1-w), T2 weighted (T2-w) and T2 Flair are basic radio-

frequency pulse sequences in MRI technique, which depict differences in signals based 
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upon intrinsic relaxation time of various tissues. The T1- weighted image is shown in 

Figure 2(a), which highlights fat tissues within the body. The T1 post-contrast image in 

Figure 2(b) represents a T1 image in which a contrast agent/medium is injected 

intravenously (into a vein) as part of an MRI scan, and eliminated from the body through 

the kidneys. Such a T1 image is also named as T1 Contrast Enhanced (T1-CE) and is used 

to enhance the contrast agent sensitive region.  

Figure 2: BraTS 2019 dataset imaging modalities and ground truth-labels: (a) T1 weighted, (b) 

T1 post-contrast, (c) T2 weighted, (d) T2 Flair and (e) T1 labelled image with colors of sub-tumor 

regions as described in (Bakas et al. 2018). 

The most frequently used agent is known as “Gadolinium” or “GD” which is a chemical 

substance. The timing of radiofrequency pulse sequences used to make T2-weighted 

images (see Figure 2 (c)) results in images showing fat and water (both) within the body. 

Moreover, T2 FLAIR and T1 labelled images are shown in Figure 2 (d) and Figure 2 (e) 

respectively. The T1 labelled image is an expert annotated image with ground truth labels, 

further elaborating the sub-tumorous regions by distinguishing them with separately 

labelled colors. For the labels in Figure 2(e), the blue colour indicates the peritumoral 

edema, green represents the necrotic and non-enhancing tumor, and the red symbolizes 

the GD enhancing core (B. H. Menze et al.2015).  
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2.2 Convolutional neural network (CNN) model 

The convolutional neural network (CNN) includes several convolutional layers, which 

are concatenated with pooling layers followed by fully connected (FC) layer to process 

the high-level input data. CNN technique outperformed conventional approaches in brain 

lesion segmentation problems (Kamnitsas et al. 2017). A novel technique was proposed 

for brain tumor segmentation by incorporating a fully connected neural network along 

with conditional random fields (Zhou et al. 2020). The method was evaluated on BraTS 

dataset and achieved improved performance as compared to other DL methods. Another 

CNN based approach with small convolutional kernel for MRI segmentation was 

proposed in (Yamashita et al. 2018). To study and analyze MRI, a hybrid approach using 

a combination of clustering and CNN was also proposed in (Abdel-Maksoud, Elmogy, 

and Al-Awadi 2015). A 3D CNN architecture comprising of 11-layered structure for the 

classification of healthy/ unhealthy tissues in MRI was employed in (Kamnitsas et al. 

2017).   

2.3 Description of Image Dataset 

In this research, we used the publicly available benchmark dataset from challenges of 

Brain Tumor Segmentation (BraTS 2019 and BraTS 2020), which is annually organized 

by Medical Image Computing and Computer Assisted Intervention (MICCAI) 

conference. After being registered to these online segmentation challenges, the datasets 

were downloaded and used to train and evaluate the performance of our proposed method. 

The dataset contains 3D MRI volumes of 335 individuals in total, with 259 HGG and 76 

LGG patients. The test volumes were not provided with labels, so we did not use their 

test data. Instead, we split the 335 volumes into three sub-sets used for training, validation 

and testing. The size of each multimodal image is 240 x 240 x 155 pixels. 
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 Each multimodal imaging data is provided as Nifti format (.nii.gz) with four 

sequences/modalities: native (T1), contrast enhanced (T1c), T2-weighted and Fluid 

Attenuated Inversion Recovery (FLAIR). The pathologically confirmed images are skull-

striped, which means non-brain tissues are eliminated from brain MR images for clinical 

applications. These images are used for analysis and re-sampled to an isotropic resolution 

with all the four sequences of the same patient already been co-registered. This dataset 

has been acquired from various scanners with different clinical protocols and obtained 

from multiple institutions. All the ground truth labels against each case have been denoted 

by "seg" in the dataset. These labels are obtained from the expert neuroradiologists 

following the same annotation protocol (Bakas et al. 2018). 

3 Proposed Methodology 

Figure 3: Block diagram of the proposed architecture. 

 Our proposed approach comprises of four major sections as shown in Figure 3. The first 

section is about data pre-processing, which makes the input data suitable for feeding the 

network and initializing the training. Here, the MR slices are grayscale images (black and 
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white) with gray pixel values and variance is computed by looking at the distribution of 

pixel values. The training process of a segmentation network having few annotated 

images requires to have random elastic deformations of the training samples. To cope 

with this, the smooth deformations are generated by using random displacement vectors 

and are then sampled from a ‘Gaussian Distribution’. The dropout technique is used to 

prevent the network model from overfitting, whereas implicit data augmentation is 

achieved by using the drop-out layer at the end of the contracting path.    

In the next step, the 3D U-Net layers are set up for the proposed model by using the 

combination of Weighted Cross Entropy Loss (WCE) and Dice Loss (DL) formulation 

for smart segmentation. For specifying training options, the optimized hyper-parameters 

are selected for initializing training from the scratch by using MRI modalities of BraTS 

2019 and BraTS 2020 datasets.  The final testing was performed using the trained model 

on the randomly split testing dataset along with its respective ground truth.  Testing 

process took 30 seconds on a single 3D volume. All of the experiments were performed 

in MATLAB R2019 (b) by using Deep Learning Toolbox, Parallel Computing Toolbox 

and Computer Vision Toolbox. The working detail of each section of our proposed 

methodology is explained below.  

3.1 Data pre-processing 

The input image dataset needs to be pre-processed before sending it to the 3D U-Net 

network for initiating training process. Therefore, the following pre-processing steps are 

performed on BraTS 2019 and BraTS 2020 datasets: 

• Cropping brain images

Each of the input images is cropped to the tumor region and brain portion. A bounding 

box is created over the Region of Interest (ROI) for tumor volume and its corresponding 

labels, respectively. The two vector matrices comprising of tumor rows, columns and 
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planes are merged to form the cropped tumor volume and cropped tumor label, which are 

then fed to the next step of data normalization. The size of data is reduced due to cropping, 

however, useful information part in each MRI volume and each volume's labels is 

retained. 

• Data normalization

The input MRI data contains four modalities, which requires channel-wise pre-

processing.  This is achieved by normalizing each volume modality of the cropped brain 

region independently by subtracting the mean and dividing with its standard deviation. 

• Data splitting

In this process, the input data is segregated into training, validation and test sets. An 

approximate value of 82% of the input data is assigned for training, 6% for validation and 

12 % for testing purpose. 

• Random patch extraction

The random patches are extracted from the input data sets to provide the U-Net model 

with test data for training and validation purpose. The stored data is maintained by 

extracting random patches from volumetric images and corresponding pixel label data.  

Patching technique is very useful for the hardware systems facing memory constraints 

while performing the dense training on arbitrarily large volumetric images. During the 

training process of every pair of MR volumes and labels, a patch size of 64 x 64 x 64 

voxels is specified, with a mini-batch size of 8 and 16 patches per image from randomly 

positioned patches.  

• Data augmentation

Data augmentation is the last step of the data preprocessing section and is used to augment 

the training and validation images respectively. This is performed by applying the spatial 
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elastic transformation after rotating, mirroring and cropping the 3D random patches. 

These random patches are as per network size requirement i.e., 44 x 44 x44 voxels. 

3.2       Network model 

The proposed network architecture has been derived from previously proposed ‘3D U-

Net architecture’ (Çiçek et al. 2016). In this model, the initial convolutional layers are 

diffused with max-pooling layers (down-sampling operator), which decreases the input 

image resolution successively. The output spatial dimensions are kept equivalent to the 

input by choosing padded convolutions with an input stride of 2 and kernel size of 3 

respectively. Leaky rectified linear units with a negatively decaying slope (Isensee et al. 

2017a), is used as a non-linearity function (Maas, Hannun, and Ng 2013). The network 

has 22 convolutional layers. For seamless tiling of the output segmentation map, we 

selected the input tile size in such a way that all 2x2 max-pooling operations are applied 

to each layer. These variations in selecting different parameters and empirical values are 

chosen to be best fit for our network model training. As a result of this, a 3D U-Network 

by using U-Net Layers is created which specifies dual class segmentation.   

• 3D U-Net layers

The 3D U-Net layers proposed by (Çiçek et al. 2016) comprises of following layers: 

● 3-D input image layer

● 3-D convolutional layer for CNN

● Batch normalization layer

● Leaky rectified linear unit (ReLU) layer

● 3-D max pooling operation layer

● 3-D Transposed/de-convolutional layer

● Softmax output layer

● Concatenation layer
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Figure 4: Overall model layers for 3D UNet. 

The model layers of 3D U-Network are shown in Figure 4, which is having an image 

layer followed by contracting path. The contracting path has three encoder modules, 

which further contains two convolution layers with a filter size of 3x3x3 that doubles the 

size of total feature maps. The first convolution is followed by a batch of normalization 

layer. Each encoder ends with a max-pooling layer that halves the image resolution in all 

dimensions. It is followed by an expanding path in the proposed network. This expanding 

path comprises of four decoder modules and all of these decoders contain two convolution 

layers with the filter size of 3x3x3. These convolution layers are aimed to cut half the 

number of feature maps, while the nonlinear function is activated by using leaky ReLU 

non-linearity function. The first three decoders terminate with a transposed convolution 

layer, which upsamples the image by a factor of 2. The final decoder includes a 
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convolution layer that maps the feature vector of each voxel to each of the two classes 

(tumor/glioma and background). The custom weighted “dice pixel classification layer” is 

used as the loss function to increase the impact of the small glioma regions on the dice 

score. The input layer and encoder modules are concatenated with the fourth decoder 

module by using concatenation layers. The second ReLU layer of each encoder module 

is connected with the transposed convolution layer of equal size from a decoder module. 

Finally, the output of each concatenation layer is connected with the first convolution 

layer of the decoder module after applying softmax layer.  

3.3  Training and loss

The model is trained from scratch on BraTS 2019 and BraTS 2020 HGG training datasets 

by using Compute Unified Device Architecture (CUDA) capable NVIDIA GEFORCE 

GTX 1080Ti GPU with compute capability of 6.0. The optimizers for a neural network 

can be either selected as stochastic gradient descent (SGD) or ADAM. However, ADAM 

outperforms with its momentum and the huge amount of impact in reducing error in 

segmentation problems (Lindsey, Tony, and Jin-Ju Lee 2020). Hence “ADAM” is used 

as an optimizer for the training of input patches of 64x64x64 in deep learning tool, as 

shown in Table 1. The initial rate of learning is fixed to 5e-4   which decreases slowly as 

the training progresses.  
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Sr.# Parameters Values Set 

1 Patch size 64×64×64 

2 Patch per image 16 

3 Mini-batch size 8 

5 Input encoder modules in contracting 
path 3 

6 Convolutional filter size 3×3×3 

7 Nonlinear activation function Leaky ReLU 

8 Decoder modules in expanding path 4 

9 Upsampling factor 2 

10 Number of concatenation layers 3 

11 Total U-Net layers 44 

12 Max epochs 50 

13 Optimizer ADAM 

14 Initial learn rate 5.00E-04 

15 Learn rate drop period 5 

16 Learn rate drop factor 0.95 

17 Validation frequency 200 

18 Verbose FALSE 

Table 1:  Hyper-Parameters setting for network and training. 

The summary of selected hyper-parameters for the network and training is shown in Table 

1. The training of 44 layered network with 50 epochs took 73 hours on single Nvidia GPU
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GTX1080Ti with Intel core i-7(3.60GHz, 24GB RAM). The validation accuracy is 94.8% 

whereas the training los is 0.4 at the final iteration as shown in Figure 5. 

(a) 

(b) 

Figure 5: Validation accuracy (a) vs. training loss (b). 

3.4 Quantifying Segmentation Accuracy 

Once the training process for the developed framework was completed, the 3D trained 

model was saved in the current directory. Quantification was performed on the test dataset 

that contained the test volumes with its corresponding labels datastore respectively. The 

central portion of test images and labels were cropped to a window size of 128x128x128 

voxels, which is according to the trained model parameters. 
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For each of the test images, the ground truth image volumes and corresponding labels are 

added to cell arrays. After this, the technique of overlap-tile strategy for arbitrarily large 

test volume is applied as shown in Figure 6. Prediction of the segmentation in the yellow 

area requires image data within the blue area as input, whereas missing input data is 

extrapolated by mirroring. This technique determines labels against randomly selected 

overlapped patches and recombines those patches. The predicted labels for each test 

volume have been obtained with the smart segmentation approach by using the trained 

network. 

Figure 6:  Overlap-tile strategy for seamless segmentation of arbitrary large images. 

We used the Dice-Pixel-Classification-Layer instead of plain pixel classification layer to 

efficiently segment smaller tumor regions thereby, decreasing the effect of larger 

unnecessary background regions. Minor post-processing of the predicted labels was 

performed after segmentation. The brain voxels were labelled as ‘1’, and non-rain 

background voxels as ‘0’. The test images are also used to determine which voxels do not 

belong to the brain. The predicted labels were cleaned up by the technique of removing 

islands and filling holes. The filtered labels were cast back to the categorical data type 

and the original pixel label IDs and class names were specified in order to further clean 

up the predicted labels.  
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4 Experimental Results and Discussion 

The glioma lies inside the brain cell tissues, therefore some of the brain pixels were made 

transparent to highlight the tumor portion for better visualization. By doing this, the value 

of the volume threshold is specified to a range of [0, 1]. Any value below this threshold 

is considered to be fully transparent.  However, to get the context of spatial location of 

the tumor inside the brain structure, we have to set some of the brain pixels volume 

threshold intensity to less than ‘1’ (in our case 0.6). The segmentation accuracy of the 

proposed model is measured by using the weighted multi-class dice function.  

The dice similarity coefficient (DSC) between the output predicted volume and ground 

truth segmentation masks against each test set was calculated. The mean dice similarity 

coefficient values have been calculated for all test set volumes. Figure 7 shows the output 

of our network prediction achieving a mean dice score of 0.782 across whole tumor 

volume on BraTS 2019 challenge dataset. Moreover, the same model also predicted a 

mean dice score of 0.723 for whole tumor volume on latest released BraTS 2020 

challenge dataset. These results show the robustness and generalization capability of the 

proposed model over a vast variety of clinical data protocols. 

Figure 7:  Labeled ground truth Vs output predicted segmentation. 
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Figure 8:  Boxplot of Dice Similarity Coefficient between tumor and background across selected 

test volumes. 

The boxplot for computing test dataset (BraTS 2019) accuracy is shown in Figure 8, 

which is drawn to statistically monitor the dice similarity coefficient values against the 

set of selected test volumes and indicates the average dice value for each class labels i.e. 

background and tumor. It can be seen from the boxplot that extreme data points are not 

outliers, as they are not laying at an abnormal distance from other values in our obtained 

data for dice similarity coefficient. 

5    Conclusion and Future Work 

In this study, we have presented the smart semantic segmentation technique using 

modified U-net brain lesions (Glioma) by employing a novel seamless approach of 

data augmentation for robust training. The proposed approach utilizes overlap tile 

strategy to avoid border artifacts. A combination of the weighted multiclass dice 

loss function is used to reduce the impact of larger regions on the dice score, which 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


20 

enables the network to learn the segmentation of smaller tumorous regions.  The 

experimental results obtained on recent data sets released by BraTS 2019 and 

BraTS 2020 validates the robustness of the proposed approach.  

The proposed U-Net based smart method is capable of enhancing the segmentation 

accuracy for clinical applications by reducing the error rate to a considerable range. 

This model can serve as a generalized architecture for clinical and experimental 

databases related to brain abnormalities. In future, it can be further extended for 

prediction and detection of brain lesions (sub-tumoral regions) in coronal and 

sagittal views. 
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