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Abstract. Karyotyping requires chromosome instances to be segmented 

and classified from the metaphase images. One of the difficulties in 

chromosome segmentation is that the chromosomes are randomly 

positioned in the image, and there is a great chance for chromosomes to be 

touched or overlap with others. It is always much easier for operators and 

automatic programs to tackle images without overlapping chromosomes 

than ones with largely overlapped chromosomes. In order to reduce the 

processing difficulty, adding a smart image selection procedure ahead of 

segmentation is practical and necessary. In this paper, we introduce the 

Smart Karyotyping Image Selection (SKIS) based on Commonsense 

Knowledge Reasoning. The initial experiment demonstrates that the 

proposed approach can select the expected images based on reasoning and 

benefit following karyotyping processes. 
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INTRODUCTION 

Karyotyping (Clare 2008) is a critical technique in chromosome analysis to detect 

genetic abnormalities, such as chronic myelogenous leukaemia, which is usually 

performed by culturing the cells and separating the chromosomes from the nucleus 

during the metaphase stage of cell division and then staining them on slides for 

microphotography and analysis (Sharma et al. 2017). It requires chromosome instances 

in the microscopy to be segmented, classified, and chronologically arranged. Among 

these steps, the segmentation of chromosomes in metaphase images is one of the most 

challenging problems for machine learning models. Many researchers have attempted 

to address it, and various image-processing algorithms have been proposed to separate 

over-lapping chromosomes (Cao et al. 2011; Ji. 1994; Li et al. 2016). Nonetheless, 

chromosome segmentation remains difficult for human operators and automatic 

programs (Arora and Dhir. 2016; Shen et al. 2019). 

Generally, one of the difficulties in chromosome segmentation is that the 

chromosomes are randomly positioned in the image, and there is a great chance for 

chromosomes to be touched or overlap with others. Consequently, these touched or 

overlapped chromosomes significantly challenge operators and automatic programs in 

segmenting them individually from metaphase images. It is always much easier for 

operators and automatic programs to tackle metaphase images without overlapping 

chromosomes than ones with largely overlapped chromosomes. In order to reduce the 

processing difficulty, adding a smart image selection procedure ahead of segmentation 

is practical and necessary.  

Traditional methods like image quality assessment (IQA) do not necessarily equal 

image selection assessment. Fuderer (1988) proposed an objective measure of Magnetic 

Resonance (MR) image quality using Shannon's theoretical information content of the 
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MR images where he took into account the scan resolution, the Contrast-to-Noise Ratio 

(CNR), and the pixel size related to the Field of View (FOV). The scan resolution of 

the karyotyping image we evaluate is identical; hence we do not need to assess the 

image based on the scan resolution. Moreover, CNR cannot be used to assess the 

distribution of chromosomes. The International Telecommunication Union of the 

television industry proposed Double-Stimulus Continuous-Quality Scale (Series. 

2012), which was used as an assessment tool for fast imaging and cannot help identify 

chromosome overlapping or touching. 

The Learning based Blind Image Quality (LBIQ) uses a regression algorithm to 

incorporate numerous image quality features, i.e., natural image statistics, distortion 

texture statistics, and blur/noise statistics (Tang et al. 2011). Even though blur/noise 

measurement is necessary for image quality, it is not the critical feature for metaphase 

image selection. In addition, LBIQ is based on a regression algorithm that lacks 

interpretability. Dutta et al. (2013) use a quantitative statistical method with closed-

form analytical expressions to measure medical image quality on resolution and 

covariance. The covariance of images cannot effectively assess the dispersion of 

chromosomes in images. The Perceptual Difference Model (PDM) (Shiao et al. 2007; 

Daly et al. 1992) is proposed to calculate the visual difference between a test image and 

a standard reference image. Huo et al. (2006) used PDM to evaluate the images 

produced by different values of regularization parameters in parallel MR imaging. 

However, the semantic of less overlap or less touch can barely be measured by 

computing the general feature distance between two images. Moreover, due to the 

variety of chromosomes, it is hard to set an image as the standard reference. 

To succeed in image selection, we argue that the capabilities of evaluating the 

degrees of dispersion, overlapping, and touching of the chromosomes in metaphase 

images are critical. Therefore, we introduce the Smart Karyotyping Image Selection 

(SKIS) based on commonsense knowledge reasoning, a method using commonsense 

knowledge and reasoning to evaluate images, making it explainable and very friendly 

to clinical operators.  
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COMMONSENSE KNOWLEDGE AND REASONING 

Commonsense knowledge (CSK) is information that humans usually have that helps 

them make sense of situations in daily life (Ilievski et al. 2021). It has been 

predominately created directly from human input or extracted from the text (Lenat et 

al. 1990; Liu and Singh. 2004; Carlson et al. 2010). CSK can generally be considered 

to be possessed by most people, and, according to the Gricean maxim (Grice. 1975), it 

is usually omitted in (written or oral) communication. People take CSK for granted 

since they understand CSK naturally. CSK has an exceedingly large scale in both 

amount and diversity. Based on these characteristics, CSK is defined as a tremendous 

amount and variety of knowledge of default assumptions about the world, which is 

shared by (possibly a group of) people and seems so fundamental and obvious that it 

usually does not explicitly appear in people's communications (Zang et al. 2013). 

Commonsense knowledge differs from encyclopaedic knowledge as it deals with 

general knowledge rather than the details of specific entities (Tandon et al. 2018). Most 

regular knowledge bases (KBs) contribute millions of facts about entities such as 

geopolitical entities or people but fail to provide fundamental knowledge, such as the 

notion that a child is likely too young to have a master's degree in mathematics. The 

fact that commonsense knowledge is often implicit presents a challenge for question-

answering (QA) approaches and automated natural language processing (NLP) in that 

the extraction and learning algorithms cannot rely on the commonsense knowledge 

being available directly in the text (Ilievski et al. 2021). Commonsense is elusive 

because it is scarcely and often only implicitly expressed, it is affected by reporting bias 

(Gordon and Durme. 2013), and it may require considering multiple modalities. 

Commonsense reasoning is making deductions based on everyday knowledge and 

reusing it as background knowledge during inference. For instance, we can predict that 

if a person enters a room, the person will be in the room afterwards. Because we make 

such inferences so quickly, we might assume that commonsense reasoning is simple. 

But it is not easy, requiring a large amount of knowledge about the world and the ability 

to use it to reason about the world (Mueller 2014). There are a few different methods 
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for commonsense reasoning in AI. One common method is using a reasoning engine 

that can logically reason information. Another popular method is to use a knowledge 

base, which is a collection of facts and information about the world. In this work, we 

combine the two methods by creating a reasoner and a knowledge base. This approach 

allows more flexible reasoning and rule management as the reasoner and knowledge 

base are independent. 

SMART KARYOTYPING IMAGE SELECTION 

A. The System Overview 

The proposed Smart Karyotyping Image Selection (SKIS) based on commonsense 

knowledge reasoning consists of two stages: image parsing and relationship reasoning 

(see Figure 1). The image parsing acquires the image representation for a given 

metaphase image. It takes a two-step and detection-based approach (Yi et al. 2018) for 

de-rendering: it first generates a set of chromosome object proposals and then predicts 

the positions of each chromosome via these proposals. As a result, the image 

representation contains information about chromosome instances and their positions in 

the image. The relationship reasoning maps an image representation to a latent program 

based on commonsense knowledge and integrates it with a fully transparent and 

interpretable reasoner. The program has a hierarchy of functional knowledge modules, 

each operating independently on the image representation. The reasoner applies these 

 
Figure 1. The structure of the Smart Karyotyping Image Selection based on 
Commonsense Knowledge Reasoning. 
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functional knowledge modules to the image representation and generates a final 

evaluation score from processing the output sequence of these knowledge modules.  

B. Image Parsing 

We use a pre-trained object detection network called DINO (Zhang et al. 2022) to parse 

karyotyping images. It consists of the Swin-Large (Liu et al. 2021), a multi-layer 

Transformer (Vaswani et al. 2017) as its backbone encoder, a multi-layer Transformer 

decoder, and multiple prediction heads. Given a chromosome metaphase image, we 

extract multi-scale chromosome features with the Swin-Large Transformer backbone 

and feed them into the Transformer encoder with corresponding positional embeddings. 

After feature enhancement with the encoder layers, the mixed query selection strategy 

is used to initialize anchors as positional queries for the decoder. With the initialized 

anchors and the learnable content queries, deformable attention (Zhu et al. 2020) is used 

to update the queries layer by layer and combine the features of the encoder outputs. 

Finally, bounding boxes and classification results predicted by refined content features 

comprise the image representation k as the output of the image parsing process. 

Specifically, in the image representation k, each bounding box is defined by two 

coordinates: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 = [(𝑏𝑏0,𝑦𝑦0), (𝑏𝑏1,𝑦𝑦1)]                       (1) 

where (𝑏𝑏0, y0)  represents the lower left corner of the box, and (𝑏𝑏1,𝑦𝑦1)  is the 

coordinate of the upper right corner. Based on this representation, we can have 

information about the box's centre point, width, and height using (2) and (3), 

respectively:  

𝑏𝑏𝑏𝑏𝑏𝑏_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖 = 𝑏𝑏1 − 𝑏𝑏0 ,       𝑏𝑏𝑏𝑏𝑏𝑏_ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤𝑖𝑖 = 𝑦𝑦1 − 𝑦𝑦0 ,        (2) 

𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑒𝑒𝑐𝑐𝑤𝑤𝑒𝑒𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑐𝑐𝑤𝑤𝑖𝑖 = (𝑥𝑥0+𝑥𝑥1
2

, 𝑦𝑦0+𝑦𝑦1
2

) .                  (3) 

C. Chromosome Relationship Reasoning 

This stage has two primary components: the commonsense knowledge base and the 

relationship reasoner.  

1) Commonsense knowledge base (CSK base) 

In our CSK base, commonsense knowledge (CSK) is represented as a latent program 
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consists a set of relations  𝑠𝑠𝑖𝑖 =  {(𝑏𝑏𝑐𝑐) 𝑐𝑐𝑎𝑎, (𝑏𝑏𝑐𝑐, 𝑐𝑐𝑏𝑏)} , where 𝑐𝑐  is an object-object 

relation (Yatskar et al. 2016) and 𝑏𝑏𝑐𝑐 is a logic operation. The CSK base is used to 

manage the CSKs 𝑆𝑆 = {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}. To reason the chromosome relationships, we utilize 

the method of Region Connection Calculus (RCC) (Randell et al. 1992). For example, 

we can create a piece of CSK about good images as: 

𝑠𝑠 = {¬𝑤𝑤𝑐𝑐𝑠𝑠𝑒𝑒𝑐𝑐𝑤𝑤 ∧  ¬𝑤𝑤𝑏𝑏𝑡𝑡𝑐𝑐ℎ ∧   ¬ℎ𝑏𝑏𝑜𝑜𝑤𝑤} ,               (4) 

where insert, touch, and hold are object-object relations, which can be further defined 

as three functional knowledge modules for pairs of chromosomes. For instance, we can 

determine whether two chromosomes insert each other by using the following module: 

max(𝐴𝐴𝑏𝑏0,𝐵𝐵𝑏𝑏0) <= min(𝐴𝐴𝑏𝑏1,𝐵𝐵𝑏𝑏1)  &&  max(𝐴𝐴𝑦𝑦0,𝐵𝐵𝑦𝑦0) <= min(𝐴𝐴𝑦𝑦1,𝐵𝐵𝑦𝑦1), (5) 

where 𝐴𝐴(𝑏𝑏0, y0) represents the lower left corner of box A, and 𝐵𝐵(𝑏𝑏1,𝑦𝑦1) is box B's 

upper right corner. Our commonsense knowledge is inspired by RCC and the Visual 

Dependency Grammar of (Elliott et al. 2014; Elliott and de Vries. 2015)(see Figure 2). 

In this work, we define four types of relations: insert, touch, hold, and disconnect. 

2) Relationship Reasoner 

The relationship reasoner is a program executor based on commonsense 

knowledge as programs consisting of collections of functional modules and is designed 

to host all logic operations behind the relationship contained in functional modules. 

 

Figure 2. We define four types of unique relations: {insert, touch, hold, disconnect}. 
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Each functional module is in one-to-one correspondence with the image representation 

k from the input. The modules equipped with commonsense knowledge share the same 

input/output interface and can be arranged in any length and order.  

A typical program begins with a relation token in the CSK and ends with the last 

relation token. Each functional module of the relation is sequentially performed and 

returns results to the reasoner. After the last module returns, the reasoner calculates the 

final score based on the CSK. 

THE INITIAL EXPERIMENT 

To evaluate the performance of our SKIS, we compare the performance with the 

similarity-based method. Our dataset is created from metaphase images of daily clinic 

cases with overlapping and adherent chromosomes collected at the Department of 

Medical Genetics/Prenatal Diagnostic Center, West China Second Hospital. The 

resolution of images is 1280 x 1024, and they are annotated using the annotation tool 

LabelMe. 

We choose two typical images (see Figure 3) to demonstrate the effectiveness of 

 
Figure 3. Metaphase images for evaluation. Left (a) with fewer insertions. Right (b) 
with more insertions and touches. 
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our method. In Figure 3 (a), the chromosomes are evenly distributed with fewer touches 

and insertions, while there are more touches and insertions in Figure 3 (b). Images with 

fewer insertions are better than ones with more, hence the higher scores. Table 1 shows 

the evaluation results of the proposed method (i.e., SKIS) and the similarity-based 

method. 

 

Table 1 comparison on two images and two evaluation methods 

 

As shown in Table 1, SKIS gives a higher score (i.e., 85.28) on (a) and a lower 

score on (b), which is correct and reasonable because (a) has fewer insertions and 

touches. On the contrary, the similarity-based method suggests (b) over (a) by 

predicting a higher score on (b). The method based on similarity cannot measure the 

chromosome distribution of metaphase images robustly and precisely due to its inability 

to reason the content of the images. 

CONCLUSIONS AND FUTURE WORK 

In this paper, we introduce Smart Karyotyping Image Selection based on commonsense 

knowledge reasoning. The proposed method evaluates metaphase images based on 

inference with commonsense knowledge represented as functional modules. Unlike 

similarity-based methods, our method can assess images according to the object-object 

relations in images' content rather than calculating the images' overall similarities. The 

initial experiment shows that our method can correctly evaluate the metaphase images. 

Since this research is at its early stage, we plan to do further research and 

refinement in: 

- Knowledge representation and relations of chromosomes. 

Method The score of Figure 3 (a) The score of Figure 3 (b) 

Similarity 116.77 119.67 

SKIS 85.28 70.14 
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-Further development and refinement of the reasoning algorithm. 

-Further design and development of the image representation. 
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