
1 

Smart Knowledge Engineering for Cognitive Systems: A Brief 

Overview 

Caterine Silva de Oliveira1, Cesar Sanin1, and Edward Szczerbicki2 

1Department of Mechanical Engineering, University of Newcastle, Callaghan, NSW, 

Australia 

(Caterine.SilvaDeOliveira@uon.edu.au, cesar.sanin@newcastle.edu.au) 

Address: ES320, Faculty of Engineering and Built Environment, University of 

Newcastle, Callaghan, NSW 2308, Australia; 

2Faculty of Management and Economics, Gdansk University of Technology, Gdansk, 

Poland 

(edward.szczerbicki@newcastle.edu.au) 

This is an Accepted Manuscript version of the following article, accepted for publication in CYBERNETICS AND SYSTEMS. 
Postprint of: Silva de Oliveira C., Sanin C., Szczerbicki E.: Smart Knowledge Engineering for Cognitive Systems: A Brief Overview, CYBERNETICS AND 
SYSTEMS (2022), pp.1-19, DOI: 10.1080/01969722.2021.2018542
It is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), 
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, 
or built upon in any way.

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://dx.doi.org/10.1080/01969722.2021.2018542


2 

Smart Knowledge Engineering for Cognitive Systems: A Brief 

Overview 

Abstract:  Cognition in computer sciences refers to the ability of a system to learn at scale, 

reason with purpose, and naturally interact with humans and other smart systems, much like 

humans do. To enhance intelligence, as well as to introduce cognitive functions into machines, 

recent studies have brought humans into the loop, turning the system into a human–AI hybrid. 

To effectively integrate and manipulate hybrid knowledge, suitable technologies and guidelines 

are required to sustain the human–AI interface so that communication can occur. However, 

traditional Knowledge Management (KM) and Knowledge Engineering (KE) approaches 

encounter new problems when dealing with cutting-edge technologies, imposing impediments 

for the use of traditional methods in cognitive systems (CS). This paper presents a brief 

overview of the Smart Knowledge Engineering for Cognitive Systems (SKECS), which is based 

on methods, technologies, and procedures that bring innovations to the fields of KE, KM, and 

CS. The goal is to bridge the gap in the hybrid cognitive interface by the use of emerging 

technologies such as deep learning, experience-based knowledge representation, context-aware 

indexing/retrieval, active learning with a human-in-the-loop, and stream reasoning. In this work 

Set of Experience Knowledge Structure (SOEKS) and Decision DNA (DDNA) is extended to 

the visual domain and utilized for knowledge capture, representation, reuse, and evolution. 

These technologies are examined throughout the layers of SKECS for applications in 

knowledge acquisition, formalization, storage/retrieval, learning, and reasoning, with the final 

goal of achieving knowledge augmentation (wisdom) in CS. Features of the SKECS and their 

implementation in practice is discussed through a case study – the Cognitive Vision Platform 

for Hazard Control (CVP-HC) – suggesting that methods, techniques and procedures 

comprising the SKECS are suitable for advancing systems towards augmented cognition. 
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Keywords: Cognitive Systems, Human–AI Hybrid, Knowledge Engineering, Knowledge 

Representation, SOEKS, DDNA, Knowledge Augmentation 

 

Introduction and Background 

Knowledge is a valuable asset for individuals, organizations, and society (Mancilla-

Amaya et al., 2010). For this reason, humankind has always attempted to make it part of 

their assets. Knowledge is a complex term to define precisely, and there are many 

definitions in the literature. Lin at al. (2002) describes knowledge as “An organized 

mixture of data, integrated with rules, operations, and procedures, and it can be only 

learnt through experience and practice” (Lin et al., 2002). Knowledge emerges from 

interpretation, analyses, and judgement of information (processed and useful organized 

data). Intelligence is the ability to apply knowledge to inform or to help drive decision 

making (Taylor, 1986). Knowledge learned from training, investigation, observation, or 

experience directs intelligence towards wisdom (Figure 1). It is important to point out 

that knowledge has little or no value unless it can be accessed and put into practice. 

 

 

 

Figure 1. Visual representation of data, information, knowledge intelligence, and 

wisdom. 

In the field of Knowledge Management (KM) and Knowledge Engineering (KE), 

knowledge is usually categorised into two groups: formal knowledge and informal 

Data Information Knowledge Intelligence Wisdom 
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knowledge (Quintas et al., 1997). Formal knowledge is easily articulated and can be 

embedded into written rules and procedures in information systems. Systems are also 

capable of generating it – often called artificial knowledge. Informal or tacit knowledge 

is individual, subjective, context-specific, and experience-based intuition. It is hard to 

formalize and communicate. Despite these challenges, tacit knowledge is a valuable 

component in intelligent systems, such as those based on cognitive computing, since it 

aims to simulate human thought processes (Shafiq, 2016). The lack of focus on tacit 

knowledge directly results in a systems reduced capability for smartness, innovation, 

and cognition. 

Cognition in computer sciences refers to the ability of a system to learn at scale, reason 

with purpose, and interact with humans and other smart systems naturally, such as 

humans do. Indeed, cognitive systems have emerged as an attempt to mimic in some 

way human intelligence, and many recent studies have been treated as a human–AI 

hybrid combination (Zheng et al., 2017). Rather than being systematically programmed 

for all possible scenarios and situations, these systems should learn and reason from 

their interactions with their surroundings, through collaboration, and from experience 

(Demirkan et al., 2017). In these hybrid systems, the interface must be sustained in a 

way that agents can communicate/exchange knowledge effectively. This will direct the 

coupling towards purposeful behaviour, at the same time as it ensures adaptability, 

explainability, extendability, and trustworthiness – key features of cognitive systems. 

Such requirements and challenges involve several fields of Knowledge Engineering 

(KE) for implementation. 

However, traditional KE approaches are triggered by new problems when dealing with 

cutting-edge technologies, imposing impediments for the use of traditional methods in 
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cognitive applications (Fensel et al., 2002). Therefore, old-style knowledge engineering 

techniques must be extended by applying breakthroughs in emerging technology, such 

as the new trends in machine learning algorithms, Knowledge Representation (KR), 

learning methodologies, information retrieval, reasoning, etc. – which are grouped and 

called here Smart Knowledge Engineering for Cognitive Systems (SKECS). 

The objective of this paper is to provide an overview on motivations and technologies 

involved in the proposal of the SKECS as well as brief description of the layers that 

composes it. This paper is organised as follows: firstly, some background about 

fundamental concepts and technologies are briefly described. In the subsequent section, 

the concept of cognitive technologies is presented, as well as how knowledge 

engineering strategies can be used to bridge the human-AI gap for further advance 

cognitive systems. Finally, SKECS is introduced as a solution that applies 

breakthroughs in emerging technology to the field of KE to promote advances in 

cognitive technologies by endowing the gathering, representing, sharing, learning, and 

growth of artificial and human experiential knowledge. A short discussion on the 

practical implementation of suggested technologies is also provided. 

Fundamental Concepts 

This section presents a brief review of the different technologies that underlie this 

research. That includes (i) Knowledge Management (KM), (ii) Knowledge Engineering 

(KE), and (iii) Set Of Experience Knowledge Structure (SOEKS) and Decisional DNA 

(DDNA).  
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Knowledge Management (KM)  

Knowledge Management (KM) has become a critical element for organizations 

(Mancilla-Amaya et al., 2010). In short, KM is a discipline that integrates multiple 

approaches to identify, capture, evaluate, develop, share, and use knowledge as a 

valuable asset to achieve organisational objectives (Nonaka, 2008). Due to its 

interdisciplinary nature, KM is a field that is still far from being consolidated (Maier, 

2002); but is commonly considered to have three aspects: Capitalization, sharing and 

creation of knowledge (Ermine, 2000). 

Efforts to promote use of knowledge engineering (KE) methods and practices has 

contributed to the field of KM. Research to understand what knowledge is needed to 

make what decision, and enable action, has brought the need to straighten connections 

within the KE field. Although KM projects can proceed without KE efforts (for instance 

in people-based KM systems), ideally every KM project should embrace some attempt 

at KE expertise in order to provide the value-added services that are often needed in 

knowledge processing (Tsui at al., 2000).  

Applications in the field of KM have taken many different direction, and often overlap 

on a high degree among different sub-fields; for example, KR, KD, knowledge 

acquisition, knowledge refinement, and knowledge sharing are all topics of different 

technologies, which may complement each other in a common problem domain 

(Hansen et al., 1999; Argote et al., 2003; Sanín, 2007; Nowacki & Bachnik, 2016; Choi, 

Ahn et al., 2020). Furthermore, recent advances in AI, cognitive science, and other 

research areas have broadened platforms to implement technologies for KM 

development (Liao, 2003). 
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Knowledge Engineering (KE) 

Knowledge engineering is traditionally concerned with the development of information 

systems in which knowledge and reasoning play central roles (Preece et al., 2001). It is 

distinct from but closely related to software engineering (Schreiber et al., 2000; Motta, 

1999). Among its distinct aspects are a range of techniques for knowledge elicitation 

and modelling, a collection of formalisms for representing knowledge, and a toolkit of 

mechanisms for implementing automated reasoning (Preece et al., 2001).  

The disciplines of Knowledge Management (KM) and Knowledge Engineering (KE) 

have strong ties (Newman, 1996). KE can be understood these days as a discipline that 

aims to offer solutions to complex problems by means of integrating and manipulating 

knowledge in computer systems so as to generate value, i.e. to develop the means to 

accomplish KM. In other words, techniques developed in KE are analogous to “micro” 

knowledge strategies, whereas approaches to KM are generally considered as “macro” 

knowledge strategies for an organization (Figure 2). KE involves the use and 

application of several computer science domains such as artificial intelligence, 

knowledge representation, databases, and decision support systems, among others, so as 

to solve complex problems normally requiring a high level of human expertise (Shafiq, 

2016).  

By definition, Knowledge Engineering techniques could certainly be applied to 

cognitive technologies since they are extendable to a hybrid AI–human system. In this 

context, KE relies on instructional methodologies and computer science and tries to 

mimic knowledge and behaviours that are intrinsically human into a certain domain and 

into the scope of an artificial system. This broad definition reveals not only the need for 
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specific and advanced technologies, but also the need to overcome related 

implementation issues, especially when dealing with current cutting-edge technologies 

(Shafiq, 2016). 

 

Figure 2:  Relationship between Knowledge Management (KM) and Knowledge 

Engineering (KE). 

Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) 

A common way for humans to obtain knowledge is through living or experiencing, i.e. 

raw experience. Crucially, survival of the species is due to our ability to evaluate 

situations based on experience, that is, experience-based decision-making (Noble, 

1998). Hence, it is very common among researchers to study nature in order to develop 

bio-inspired models. Artificial intelligence techniques based on experience is not the 

exception; in fact, smart artificial systems try to implement techniques that unify, 

enhance, reuse, communicate, and distribute knowledge (Shadbolt et al., 2006) as a way 

to support decision-making. 
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In nature, DNA contains “the genetic instructions used in the development and 

functioning of all known living organisms” (Popovici, 2010). The main role of DNA 

molecules is the long-term storage of information. DNA is often compared to a set of 

blueprints and the DNA segments that carry this genetic information are called genes 

(Sinden, 1994). The Decisional DNA (DDNA) technique is a simile of what human 

DNA does. In this technology, experienced knowledge is primarily captured in SOEKS 

and then incorporated into Decisional Chromosomes (DC), which in groups create 

DDNA that can hold this knowledge for future decision-making events (Figure 3).  

Set of Experience Knowledge Structure (SOEKS) 

Figure 3: Set Of Experience Knowledge Structure (SOEKS) and Decisional DNA 

(DDNA) (Shafiq et al., 2018). 

Sanin and Szczerbicki developed SOEKS as a dynamic, standard domain-independent 

knowledge structure (Sanín & Szczerbicki, 2009). From formal decision events, it 

captures and stores experiential knowledge in an explicit shape that can be shared across 

DDNA 

SOEKS 𝐒𝟏 

Chromosome 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 
 

cognitive platforms and architectures, to be later exploited. Such experiential 

knowledge is accumulated from four basic components: variables (V), functions (F), 

constraints (C), and rules (R) (Figure 1.4). Variables capture the environment by using 

an attribute-value language and form the fundamental element of SOEKS. Functions 

establish relationships among independent and dependant variables. Constraints set 

boundaries between the environment and its variables. Lastly, rules express 

relationships among environment states and the actions that should be performed under 

given circumstances (Sanín, 2007). 

Decisional DNA (DDNA) 

Combining the above-mentioned basic elements of SOEKS produces distinctive, 

complex, dynamic and adaptable experiences resembling a DNA structure. Analogously 

to the combination of the four nucleotides of DNA, the variables, functions, constraints, 

and rules (four elements), mixed in the unique shape of SOE, then form decisional 

chromosomes, and then generate DDNA, which are decisional experience fingerprints. 

In brief, an SOE is an experienced decision result given a set of combined 

environmental circumstances and can respond to a decisional query presented to it 

(Sanín et al., 2009). Besides, as experience grows every day in any organization’s day-

to-day operation, each decision is stored as a decisional gene (SOE), which when 

grouped become decisional chromosomes and comprise an entire inference tool. 

Consequently, several decisional chromosomes structured as DDNA assemble the 

cognitive system’s decisional fingerprint. 

Decisional DNA has been proven to be an adaptable, efficient, non-domain-dependent 

knowledge structure in several applications in areas such as Alzheimer’s disease 
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diagnosis, financial decision-making, engineering processes, engineering design, deep 

learning, embedded systems, neural networks, and robot path planning among others 

(Shafiq et al., 2014). Moreover, DDNA has been shown to solve a system’s scalability 

issues by introducing an experience-based technique that aims to recognize events 

(defined by the user) using production rules adaptable for different conditions, clients, 

and situations (Sanin & Szczerbicki, 2007). These proven applications and case studies 

make DDNA a standard knowledge structure for emerging decision-making 

technologies, and are used in cognitive systems to gather, discover, store, add, improve, 

and share information and knowledge – among other cognitive systems, decision 

makers, and organisations – through collected experience (Sanín et al., 2008). 

From Automation to Cognitive Systems 

In the early stages of the automation process, machines were an extension of man’s 

physical functions, and designed to compensate for the physical deficiencies/limitations 

of humans. With the development of microelectronics, machines began to be enriched 

with smartness and computer systems were able solve complex mathematical problems. 

The development of techniques in fields such as machine learning (ML) has resulted in 

significant progress in computer applications, enabling systems to outperform humans 

in certain tasks. In the field of computer vision, the growth in computational power has 

resulted in image and video applications gaining processing efficiency as well as real 

time execution (Pulli et al., 2012).  

For many real world problems, solutions can be attained based on mathematical models 

without the use of tacit knowledge (Andreopoulos & Tsotsos, 2013). Nevertheless, the 

most common ML approaches involve learning from example, resulting in highly data-
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dependent systems, lacking generalization beyond the training datasets and requiring 

major adaptations to include new conditions (Ji, 2019). They often cannot match real-

world conditions and are not able to estimate unknowns. Consequently, creating robust 

data-driven models that are immune to noise and deviations; that can perform complex 

tasks under poorly controlled environments, and do not require excessive amounts of 

training data to solve unconstrained computing problems became challenging (Meer, 

2012). 

In parallel to the data-driven approaches, humans have been used as a reference model 

for excelling under conditions in which machines fall short (Souza Alves et al., 2018). 

In this context, approaches have been proposed to mimic human intelligence by 

combining available information and expert knowledge to support decision-making in a 

knowledge-driven approach (Ji, 2019). In short, Knowledge-Based Systems (KBS) are 

computer programs that can reason and can use a knowledge base to solve complex 

problems. When they are able to express some characteristics of human knowledge and 

expertise to support decision-making, they are also known as expert systems (Durkin, 

1990).  

The integration of microelectronics, human knowledge, and reasoning through advances 

in networks has enabled the appearance of cyber-physical systems (CPS), which have 

moved humans from controlling machinery to controlling processes (or monitoring a 

self-controlling process). It implies an interface between humans and systems that can 

go beyond just action–reaction which is usually found in classical KBS (Hollnagel & 

Woods, 2005). Additionally, the sense that manually encoding all domain knowledge is 

often impossible has brought doubts if some knowledge should not be learned instead. 
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In this way, systems could modify their behaviour on the basis of experience, such as 

humans do (Hollnagel & Woods, 2005).  

In this context, Cognitive Systems have emerged as an attempt to mimic in some way 

human intelligence. Understanding of human biology has contributed to rapid progress 

in artificial intelligence, endorsing what the human–machine interface has for a long 

time aspired to be: a cognitive-to-cognitive interaction (Hollnagel & Woods, 1983). 

Intelligence, in cognitive computing, can be defined as the ability to learn from 

experience and use the domain of expert knowledge to adapt to new situations (Beheshti 

et al., 2020). In theory, Cognitive Systems bring together and consolidate the 

achievements of the fields of knowledge engineering, automatic perception, machine 

learning, and robotics (Bauckhage et al., 2004). These systems are thought to perform 

human-like tasks in natural environments requiring perception (e.g. vision) and action 

(e.g. robots or agents). By combining subconscious processes with processes that 

humans perceive as more conscious, these systems should be able to not only make 

predictions, but also to explain their predictions (Gunning et al., 2019). 

The Gaps in the Cognitive Interface 

To date, the creation of a general-purpose system with the robustness and resilience of 

human competencies still remains a challenge. In fact, there is no solid evidence to 

support the idea that systems are developing any kind of consciousness (Signorelli, 

2018; Sanz & Aguado, 2020). In reaction, some researchers have shifted the goal of 

replicating human cognitive functions in a system’s design (the ultimate goal of which 

is the replacement of human cognition by artificial cognition) to attempting to combine 

biological and non-biological thinking in a way which “supercharges” the human brain 
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(Griffin, 2015). In this human-in-the-loop cognitive approach, functional (possibly 

black-box) models are integrated with logical, relational, declarative knowledge-based 

approaches (yielding hybrid models). The aim is to have systems incorporate some 

cognitive functions on an everyday basis, just like humans learn from each other – 

collaboratively. Scientists believe that in the coming era of personal cognitive 

augmentation, humans and artificially intelligent entities will work together in a natural 

and collegial partnership, where the total amount of cognition is a combination of 

human and artificial thinking. 

Controversially, on one side, computers are not yet proficient in proceduralizing tacit 

knowledge in a way to understand and reason about it so as to gain insight into human 

cognition. On the other side, output from complex models is difficult for humans to 

interpret and understand unexpected behaviour. This results in a loose connection in 

which little knowledge is passed to and from. 

Therefore, hybrid human–AI coupling can only reach that goal if it can communicate in 

a way that both parts exchange knowledge. Interfaces may help in establishing a link 

between the machine representation and the representation that humans can understand. 

But knowledge must be structured in a way whereby both can gather, interpret, reason, 

and share. Therefore, knowledge representation as well as other knowledge engineering 

techniques play an important role in enabling effective coupling. So far as we know, a 

knowledge representation capable of bridging this gap has not yet been suggested. In 

addition, a clear set of procedures is necessary to coordinate hybrid–AI knowledge in a 

way that a system will display fundamental features of cognitive systems – purposeful 

behaviour, adaptability, anticipation, and extendability (Vernon, 2006). 
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Smart Knowledge Engineering for Cognitive Systems (SKECS) 

The previous sections have briefly introduced the need for applying breakthroughs in 

emerging technology within the field of KE to support advances in cognitive 

technologies. The long-term goal of artificial intelligence (AI) is to make machines 

learn and think like human beings. However, due to the high levels of uncertainty and 

vulnerability in human life, and the open-ended nature of problems that humans face, no 

matter how intelligent machines might be, they are unable to completely replace 

humans – and there is no strong evidence to support the idea that this might happen in 

the near future. Therefore, to achieve higher conceptual levels of cognition in 

applications, it is necessary to introduce human cognitive capabilities or human-like 

cognitive models into AI systems, i.e. to bring the “human-into-the-loop”. This results 

in the development of a new form of AI that carries hybrid-augmented knowledge.  

The best way to guarantee success of this coupling is by assuring the availability and 

high quality of all these knowledge components. Consequently, the SKECS aims at 

applying breakthroughs in emerging technology to the field of KE to promote advances 

in Cognitive Technologies by endowing the gathering, representing, sharing, learning, 

and growth of artificial and human experiential knowledge.” 

 

Smart Knowledge Engineering for Cognitive Systems (SKECS) is based on SOEKS 

and DDNA.  Our consideration of using SOEKS and DDNA as carriers for decision 

making is logically founded on the fact that experience has to be taken into account in 

order to direct cognitive systems towards wisdom. Wisdom can be considered 

intelligence in an advanced form, and can be defined as the capacity to perceive and 

understand, choose, and act successfully under a large variety of circumstances, 
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including in complex environments (Albus, 1991). Intelligence developed from learned 

experience plays a major role between knowledge and wisdom (Liew, 2013). For that 

reason, the well-known data–information–knowledge–wisdom (DIKW) hierarchy 

(Ackoff, 1989) has been slightly reframed, so that knowledge is categorized at the levels 

of data–information–knowledge stored as experience–intelligence–augmented 

intelligence–wisdom (or DIK(E)IW), as represented in Figure 5.  

 
Figure 5: From Data to Augmented Intelligence (Wisdom) – DIK(E)IW. 

Experience built from hybrid human–AI knowledge supports the cognitive properties of 

adaptability, explainability, extendability, and trustworthiness and directed systems 

towards augmented reasoning capabilities. The next sub-sections of this paper are 

organized according to the five layers comprising the SKECS: Knowledge Acquisition, 

Knowledge Formalization, Knowledge Storage/Retrieval, Knowledge Learning and 

Reasoning, and finally Knowledge Augmentation (Figure 6). The following is a brief 

summary of technologies that have been considered and are suggested for application in 

each layer. 
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Figure 6. Layers of Smart Knowledge Engineering for Cognitive Systems (SKECS) 

layers to bridge the Cognitive Interface Gap. 

To show how the features of the SKECS could be implemented in practice a case study 

– the Cognitive Vision Platform for Hazard Control (CVP-HC) - has been investigated 

(de Oliveira et al., 2018). Practical implementations based on CVP-HC shows that 

methods, techniques and procedures comprising the SKECS are suitable for advancing 

systems towards augmented cognition; they also have potential in the field of 

Workplace Health and Safety (WHS). 

The CVP-HC addresses the current limitations of computer vision systems by bridging 

the gap between top-down and bottom-up approaches and enabling cognitive functions. 

The result is a scalable yet adaptable system capable of working in a variety of video 
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analysis scenarios with transparency and confidence, while meeting specific industry 

safety requirements by modifying its behaviour accordingly.  

Knowledge Acquisition 

Knowledge Acquisition consists of the extraction of knowledge from structured and 

unstructured sources. It must be in a machine-readable and machine-interpretable 

format to represent knowledge in a way that facilitates inferencing. As mentioned 

previously, data and information are much easier to store, describe, and manipulate than 

knowledge, but the right tools must be chosen to reach that goal. In order to be 

translated into knowledge, information obtained from data should serve a defined 

purpose in the problem-solving process (Ameri & Dutta, 2005), and this is not trivial.  

To move from data collection to information extraction, range of techniques have been 

developed over the past few decades. Supervised machine learning techniques are very 

often used, such as Linear Support Vector Machines (SVM), Adjusted SVM, k-Nearest-

Neighbors (kNN), Decision Trees, Random Forests (RF), Extremely Randomized Trees 

(ERT), Adaboost, Gradient Boosting, Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), Deep Neural Network (DNN), etc. In this case, the 

hardest part can be finding the right estimator (or learning algorithm) to solve a 

proposed problem. Different estimators are better suited for different types of datasets 

and different issues, and there is no means to precisely predict which one is the most 

suitable for a given task, and of course no estimator is best for all tasks. Moreover, 

when operating in real time scenarios, current systems are still challenged by certain 

characteristics of the elements comprising the scene, such as variation in background, 

noise, change in illumination, and different camera resolutions (Mosberger et al., 2013).  
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The main goal of this layer is to call attention to the universe of machine learning 

methods and algorithms that can serve the purpose of extracting information from the 

data for the generation of knowledge. Experiments on classification and detection 

technologies for the purpose of information extraction on challenging data have been 

conducted over the course of this research to suggest a robust option to integrate CS. 

Focus has been given to the special case of visual content, as the literature has proven 

that computers can already outperform humans in many tasks involving vision. 

Evaluation of a selected group of methods and algorithms has been done on the 

prototype CVP-HC. Convolutional Neural Network (CNNs) were found to be the best 

choice to address classification problems that deal with a dataset composed of a limited 

number of images of low resolution. However, the choice of a better classification 

performance for low resolution images had the trade-off of higher model complexity (de 

Oliveira et al., 2019a). 

For detectors, two algorithms (SSD and Faster R-CNN) have been tested for the multi-

detection problem. These are considered state-of-the-art detectors (de Oliveira et al., 

2019a). In this case, the dataset comprised by classes of personal protective equipment 

(PPE) extracted from frame-videos of low resolution cameras, which were taken in real 

life industrial environments (subject to noise, occlusion, change in illumination, etc.). 

Given the model complexity, and training and detection time, SSD is shown to be a 

reasonable option to tackle the detection issue for a limited training sample size.  

To conclude, the technologies above mentioned comprise the Knowledge Acquisition 

layer of the SKECS. 

Knowledge Formalization 
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Formalizing knowledge has been a central issue of research in artificial intelligence and 

related areas. Even before acquiring knowledge, designers and programmers face the 

representation issue. Computers, unfortunately, are still not capable of forming 

representations of the world as human beings do, and so simple representations of just 

formal decision events are needed. In order to make information useful, after it is 

learned, the knowledge acquired must be represented in an explicit way. The basis for 

using SOEKS and DDNA as the carriers for decision making relates to the fact that 

experience has to be taken into consideration to develop better cognitive systems. These 

technologies include advanced intelligent capabilities for combining tacit and artificial 

knowledge. They also provide the flexibility required to expand over time as more 

decision-making events are experienced, being able to escalate the requirements of real 

time applications. This is another major contribution of this work, as it enables 

intelligent growth of a system – to the point where it becomes more than just a mere 

decision support engine, but can augment human–AI coupling in the direction of 

wisdom. This has only been made possible by the extension of SOEKS and DDNA to 

the visual domain (de Oliveira et al., 2019b), and its implementation using a decoupled 

communication model structure through ROS framework to ensure the required 

scalability and flexibility (ROS Core Components, 2016).  

Experiments conducted with CVP-HC demonstrate that, because the status, functions, 

constraints, and rules of the variables are explicitly represented in a single structure, this 

enhances adaptability and can explain why a certain output was chosen (de Oliveira et 

al., 2019b). However, explainability on the ML side is restricted to the evaluation of the 

status of variables when a response is given, and is therefore limited. Explainable-AI, 

also known as XAI, may help us to understand and interpret predictions, but it has not 

been exploited in this research.  
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SOEKS and DDNA implemented over ROS are included in the Knowledge 

Formalization layer of the SKECS. 

Knowledge Storage/Retrieval  

The development of advanced cognitive systems requires a focus on the integration and 

indexing of hybrid knowledge for retrieval. The interoperation of the architecture (i.e. 

knowledge representation fields that allow experiences to take part in the process of 

making similarity judgements) with a non-trivial knowledge base is essential if we want 

to build systems that “reproduce the entire range of human capabilities”.  

A repository of cognitive experiences is comprised of visual elements, contexts, and 

human experience – important components of tacit knowledge – they can all be 

integrated into a single DDNA IV structure. A DDNA built on SOEKS technology 

contains fields that allow the experiences to become part of a process of computing 

similarity, uncertainty, impreciseness, and incompleteness measures, which has been 

demonstrated through the CVP-HC. These features greatly facilitate obtaining methods 

to efficiently learn the relevant information in a short time, as well as methods to 

efficiently match instances of an object in a large collection to provide quick and correct 

solutions.  

For storage and retrieval of these hybrid experiences, a context-aware approach has 

been investigated to support human judgment and perception to be incorporated into a 

system’s learning and reasoning process. This can be enabled by two means. Firstly, the 

set of rules embedded in the knowledge representation (Sanin et al., 2019). This is an 

explicit and proceduralized formalization of expert knowledge, which can be done 

manually during the configuration process by an expert or produced automatically by 
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rule-mining techniques. Either way involves some extension of human experiential 

knowledge. The second is by feedback given from time to time during operation of the 

system. This is a way of aggregating implicit knowledge as the system runs (on the fly) 

to adjust its unexpected/undesired misperceptions or contradictions (de Oliveira et al., 

2020a). Combining these two mechanisms – in addition to the artificial knowledge 

generated by the output of machine learning algorithms – supports adaptability and trust 

on the Knowledge Storage/Retrieval layer of the SKECS.  

One of the drawbacks of the above mentioned approach is the reduced autonomy of the 

system’s operation. Another point to consider is that software can be fed with 

tendentious information about specific options in order to increase the chances that a 

preferred solution be accepted. Therefore, by considering humans as an important part 

of the cognitive application may also introduce human mistakes/bias into the reasoning 

process. Auditory data is a required element that that should be considered to reduce 

those side effects.  

Knowledge Learning and Reasoning 

The ability to learn and reason about different scenarios and situations is central for the 

success of decision making. In organizations, decisions or lessons are learned, in 

general, from previous analogous situations. In addition, experiences gained with time 

are also used to reason about novel settings. The abilities to learn and reason in diverse 

circumstances are core desirable elements in cognitive technologies. Lessons learned 

from past experiences are used to ensure correctness in decision making when similar 

conditions are encountered and to reason about novel situations. Continuous learning by 

means of active learning, offers a unique and powerful way of directing the entire 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


23 

intelligence of a system towards wiser decisions (de Oliveira et al., 2018). 

The first step towards advancing systems is to improve the continuous learning process, 

including contextual elements into the learning loop, and to also evaluate this feedback 

process in terms of trustworthiness (de Oliveira et al., 2020a). Given the costs of 

training large datasets, and the need for trust by multiple users to be appropriately 

measured, these issues have not yet been addressed in experiments conducted over the 

CVP-HC. It is believed that a combination of continuous learning, growth of the 

platform in terms of experiential knowledge, and feedback auditing would make it 

possible to augment the entire platform’s intelligence. 

Moreover, it is has been investigated throughput the CVP-HC the concept of stream 

reasoning a way to endow cognitive technologies with adaptability and extendability (de 

Oliveira et al., 2020a). By taking into account new sources of information, it is possible 

to draw new conclusions and update decisions in real-time. It enables certain goals to be 

accomplished, even in circumstances which the system was not expected or initially 

programmed for during the design process. From the point of view of application 

maturity, at this point the implementation of stream reasoning has been tested only over 

a few variables, constraints, functions in the CVP-HC; we have learnt that the sytem is 

able to recognize an unsafe situation from simple rules on the first layer of integration 

(visual data from a camera and contextual information) and on a simulated second layer 

with other sensor data.  

Knowledge Augmentation 

The ultimate goal of the SKECS approach is to allow cognitive systems to augment 

their intelligence towards wisdom. Augmented intelligence follows a five-function 
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cadence that allows it to learn with human influence. It repeats a cycle of understanding, 

interpretation, reasoning, learning, and assurance. As yet, the knowledge augmentation 

layer has been fully explored, but steps have been taken on the road towards that 

objective. By the continuous learning process proposed in the fourth layer, where the 

human is placed in the centre, experiential knowledge can be incrementally 

incorporated (de Oliveira et al., 2020b). This will have an impact on the entire reasoning 

system, increase its specificity, and generate more certainty during decision-making. 

Therefore, the concepts and technologies suggested previously can be used as a pathway 

in the direction of augmented intelligence in cognitive applications (directing the whole 

AI–human system towards wiser decision-making).  

 

Conclusion and Future Work 

This research gives support for the development of cognitive systems by providing 

guidelines for effective use of hybrid human–AI knowledge in systems so they can, not 

approach human intelligence, but augment their intelligence capabilities towards 

wisdom. From investigation of techniques, methods, and the most recent technologies, 

significant contributions towards that goal have been made. Although the case-study 

analysis has been limited to the specific case of a cognitive vision system, it is believed 

that the findings of this study could be applied to any cognitive technology. Progress in 

machine learning techniques and reduction in computational costs of web services is 

also expected to make substantial contributions to KE and therefore accelerate the 

growth of intelligence in cognitive systems. 
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Furthermore, advances in biotechnology to understand the human brain better will also 

enhance the capacity of representing human knowledge explicitly. It will facilitate 

obtaining methods to efficiently learn relevant information. From the Cognitive 

Sciences perspective, discoveries will come from a clear idea of not only about what the 

human brain can learn and comprehend, but also how it learns – this knowledge will 

make it possible to program machines to absorb and apply knowledge such as humans 

do.  

It is also important to mention that, during the course of this research, some 

philosophical questions have been raised, and they should be brought into the debate 

when talking about the future of hybrid cognitive systems, such as the value of human 

skills, accountability and legal responsibility in system decision, privacy, manipulation, 

opacity, bias, among others. Therefore, we recognise here the importance of bringing 

studies of ethics and philosophy into the field of AI. 

Finally, I hope researchers will find more opportunities and challenges for future work, 

other than the ones mentioned in this paper, and make valuable progress towards 

cognitive systems. 
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