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Smart Virtual Product Development: Process Planning Module 

Abstract:  

Smart Virtual Product Development (SVPD) system provides effective use of 

information, knowledge and experience in industry during the process of product 

development in Industry 4.0 scenario. This system comprises of three primary modules, 

each of which has been developed to cater to a need for digital knowledge capture for 

smart manufacturing in the areas of product design, production planning, and inspection 

planning. Manufacturing Capability Analysis and Process Planning (MCAPP) module is 

an important module of the SVPD system, and it involves the provision of 

manufacturing knowledge to experts working on product development at the early 

stages of the product lifecycle. In this research, we firstly describe the structure and 

working mechanism of the SVPD system’s Manufacturing Capability Analysis and 

Process Planning (MCAPP) module. This is followed by validation of the MCAPP 

module’s Manufacturing Process Planning (MPP) sub-module against the key 

performance indicators (KPIs) by using our threading tap case study. Our results verify 

the feasibility of our approach and show how manufacturing knowledge relating to 

features and functions can be used to enhance the manufacturing process across similar 

products during the early stages of product development. An analysis of the basic 

concepts and methods of implementation show that this is an expert system capable of 

supporting smart manufacturing which can play a vital role in the establishment of 

Industry 4.0. 

 

Keywords: Smart virtual product development system (SVPD), Manufacturing 

Capability Analysis and Process Planning (MCAPP), Manufacturing Process Planning, 

Key Performance Indicators (KPIs), Industry 4.0. 

1 Introduction and Background 

Enormous amounts of information and knowledge are required at the design and 

manufacturing stages of the product development process in order to satisfy customer 

requirements. The process of product development does not rely solely upon the 

knowledge of new technological advancements but depends also upon a comprehensive 
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understanding of the development of all related products past and present. Normally, 

this knowledge is held by different groups of experts working in a range of different 

areas which include product marketing, design, manufacturing, quality, and services. 

However, in practice, there are no clear boundaries that separate the stages of the 

product lifecycle, as they are all interconnected in some way. For example, a designer 

may need to work on such things as the selection of a suitable manufacturing process 

plan or matters of logistics in order to make cost-effective design decisions (Hayes et 

al., 2011). 

Experts working on product development exploit knowledge from a wide range of 

areas. With respect to manufacturing, this knowledge relates to how the product can be 

manufactured to meet criteria such as cost, quality, and time to market. When 

considering the process of product development as a whole, the earlier that product 

developers are able to evaluate the manufacturability of their designs, the better  

(Hedberg Jr et al., 2017).  

The integration of engineering design knowledge with manufacturing knowledge during 

early stages of the product development process is thus of great importance  (Hong et 

al., 2004). The application of inappropriate manufacturing knowledge during product 

development can lead to mistakes, so it is important that designers can be confident that 

the knowledge they wish to apply is appropriate to the manufacturing facility they are 

working in. Designers often have to spend a lot of time searching for such knowledge, 

and this can result in delays to product development that can affect product quality and 

lead times. Evidence suggests that designers are often spending up to forty per cent of 

their work time searching for the right information, and this would obviously affect the 

productivity of a company investing in new product development processes   (Rodgers 

and Clarkson, 1998). 
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Furthermore, the dawning of Industry 4.0 has brought with it the development of 

smarter and more complex products, major impacts to overall product lifecycles, and 

demands for changes to traditional product development processes (Nunes et al., 2017) . 

Effective decision-making at all stages of product development necessitates a 

comprehensive knowledge of each of the manufacturing processes involved and this 

includes a knowledge of all possible manufacturing outcomes. Engineering knowledge 

is embedded throughout the various stages of the product lifecycle in the form of rules, 

logical expressions, ontologies, predictive models, statistics, and information all 

acquired from previous experience and/or extracted from sensors used in areas such as 

production, inspection, product use, supplier networks, and maintenance. However, the 

ability to capture digital knowledge is limited and does not extend to all phases of the 

product life cycle, and this particularly applies to the manufacturing phase. With this in 

mind, organisations are therefore looking to streamline the capture and curation of 

digital knowledge across all phases of product development through the implementation 

of knowledge management strategies. These strategies require tools that are capable of 

analysing the kind of data and knowledge that is extracted from real time sensors and 

enterprise resource planning (ERP) systems used in production, product inspection, 

supplier networks, and maintenance. Such tools can be developed through the 

implementation of appropriate knowledge management techniques. (Feng et al., 2017).   

 The Manufacturing Capability Analysis and Process Planning (MCAPP) module of the 

SVPD system has been designed specifically with this in mind and is able to provide 

manufacturing knowledge to designers and product developers at the early stages of 

product development (Ahmed et al., 2020, Ahmed et al., 2019b, Ahmed et al., 2019c). 
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2 The Architecture of Smart Virtual Product Development (SVPD) 

System 

 

Figure 1: Architecture of SVPD system. 

The Smart Virtual Product Development (SVPD) system is a decisional support tool for 

industrial product development processes. It stores, uses and shares the experiential 

knowledge of past decisional events in the form of sets of experiences (SOEs) (Ahmed 

et al., 2020, Ahmed et al., 2019b, Ahmed et al., 2019c). 

It is based on a smart knowledge management technique called set of experience 

knowledge structure (SOEKS or SOE) and decisional DNA, which were first presented 

by Sanin and Szczerbicki (Sanin and Szczerbicki, 2007, Sanin and Szczerbicki, 2009). 

The main components of SOE are variables, functions, constraints, and rules. Variables 

are the source of other SOE components and are the centre root or the starting point of 

the structure. Functions create relationships between variables and are used to develop 

multi-objective goals. Constraints are also functions and they are applied by SOE to get 

feasible solutions and to control system’s performance with respect to defined goals. 

Rules, on the other hand, are the conditional relationships among the variables and are 

defined in terms of IF-THEN-ELSE logical statements. Therefore, a formal decision 

event is represented by a unique set of variables, functions, constraints, and rules within 

the SOE. 
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The SVPD system has been developed to address a need for digital knowledge capture 

in the areas of product design, production planning, and inspection planning in smart 

manufacturing (Feng et al., 2017) and will bring about the improvements in product 

quality and development times that will be required from an Industry 4.0 perspective.  

The architecture for our SVPD system is given in Figure 1. The system will allow the 

development of new products from existing products or families of products, using 

hierarchies and virtual tools as described earlier in this chapter. The system consists of 

three modules, these being the design knowledge management (DKM) module, 

manufacturing capability analysis and process planning (MCAPP) module, and product 

inspection planning (PIP) module. These modules interact with the system’s DDNA 

knowledge repository, in which is held experiential knowledge acquired from previous 

projects. This knowledge is stored as SOEs in the form of either VEOs or VEPs. 

 

Figure 2: The various phases of APQP methodology. 

Integrated SVPD modules are able to provide confirmation that the processes involved 

in the production of a given product are ecologically sustainable and can be undertaken 

in an existing facility. These modules are also fully capable of supporting the five 

phases of Advance Product Quality Planning (APQP) methodology, which is a 

framework for developing products or services that are able to satisfy customer 
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requirements, and has been widely used in the aerospace, automobile, and medical 

device manufacturing industries. The five phases of APQP are shown in Figure 2 

(Stamatis, 2001, Stamatis, 2018). 

3 Developing and Testing of the MCAPP Module 

 

Figure 3: Structure of the MCAPP module. 

The MCAPP module is the second module of the SVPD system. It deals with important 

aspects of the manufacturing capability analysis and process planning stages of product 

development (Ahmed et al., 2020, Ahmed et al., 2019b, Ahmed et al., 2019c). As shown 

in Figure 3, this module comprises of three sub-modules, these being the Manufacturing 

Process Planning (MPP) sub-module, the Machine Selection (MS) sub-module, and the 

Machine Capability (MC) sub-module. We introduced a case study involving the design 

and development of a threading tap which was conducted in order to validate all 

modules of the SVPD system (Ahmed et al., 2020, Ahmed et al., 2021, Ahmed et al., 

2018). Initially the DKM module was used to select the appropriate material and to 

create geometric features for the threading tap. The variables and functions pertaining to 
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these are then used as input for the MCAPP sub-modules  (Bilal Ahmed et al., 2019, 

Ahmed et al., 2019a, Ahmed et al., 2020).  

3.1 Working Algorithm of MCAPP Module 

Figure 4: Pseudocode for parser reading CSV file for MCAPP sub-modules. 

The working algorithms of the three sub-modules of MCAPP are similar to each other. 

In each one, important variables and functions involved in manufacturing process 

planning are stored as SOEKS in a comma-separated values (CSV) file, and weighting 

is assigned to the characteristics of each variable. 

Figure 5: Working Algorithm of MCAPP module. 

A similar procedure is followed for the storage of both machine selection data and 

machine capability data, with the only difference being that the machine selection 

process SOEKS are saved as a VEP, while the machine capability SOEKS are saved as 

a VEO. The CSV file component of manufacturing process planning is shown in 
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Appendix 1 for illustrative purposes. After the data has been stored, the next step is 

then to write the parsers capable of reading each these CSV files. As JAVA was used in 

the construction of the SOEKS and DDNA, it was chosen also when writing the parsers. 

The three parsers are as follows: 

a. mppParserCSV 
b. msParserCSV 
c. mcParserCSV 

The pseudocode for each of these parsers is given in Figure 4, whereas Figure 5 shows 

the generic working mechanism of each of the sub-modules of the MCAPP module. The 

same parsing procedure applies to each of these sub-modules (Ahmed et al., 2019b).  

3.2 Graphical User Interface (GUI) for the MCAPP Module 

 

 

 

Figure 6: Structure of the MCAPP module. 

The GUI for the SVPD system is shown in Figure 6. After logging in, the user is 

prompted to make a selection from among the system’s three main modules. If the 

MCAPP module is selected, the user is then prompted to select one or other of the three 

MCAPP sub-modules. Subsequently, if the MPP sub-module is selected, the user then 

selects the product to be manufactured (in this case ‘Threading Tap’) from the ‘Select 

product’ dropdown, and then clicks the ‘Add product’ button.  

Next, the material for the product is selected from the ‘Select material’ dropdown (see 

Figure 7). This dropdown provides a list of materials. The user chooses the material, 

enters the relevant code into the text box below, and then clicks the ‘Add material’ 

button. The selection of critical variables then proceeds in a similar way, whereby the 

user selects the value related to a required critical variable from a dropdown, enters that 
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value into the textbox below, and then clicks the ‘Add Variable’ button. Multiple 

variables can be selected and added in this way. After the product, material and critical 

variables selections have been made, they appear below in the ‘Built query’ section of 

the screen (see Figure 4.9) and a possible random query structure is shown below: 

 Product Name = Threading Tap 

 High Speed Steel = T11301 

 Hardness = 60 

 Density = 7 

 Type of use = Machine use 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: GUI for building queries for the MPP sub-module. 

Finally, after the user clicks the ‘Run Query’ button, SOEs that most closely match the 

query are retrieved, and appear below in the ‘Manufacturing Capability Analysis and 
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Process Planning – Experience Based Solutions’ section of the screen. These SOEs 

contain output including the similarity of the query SOE to the output SOE, the product 

name, the relevant material, and all the manufacturing operations required to 

manufacture the selected product. The screens for the other two sub-modules of the 

MCAAP module work in the same way (Ahmed et al., 2020). 

4 Results and Discussion  

The case study for MCAPP module was executed on a Dell laptop with Windows 10 

Enterprise 64-bit operating system having Intel ® Core ™ I5-7300u CPU @ 2.60 and 8 

GB of RAM. The following provides a general analysis of a case study undertaken to 

check the robustness of the system. 

4.1  Parsing time for CSV file and SOEKS elements of the MCAPP module 

The parsing times for the various SOEKS elements for the MPP, MS and MC sub-

modules are shown in Figure 8. The parser for the MPP sub-module reads data from a 

CSV file that holds information relating to around 20 different types of tool including 

threading tools, drills, reamers and milling cutters. This file stores information about 

manufacturing processes as SOEs, and comprises 200 variables, 20 functions, and 3 

constraints overall (Ahmed et al., 2020). The parsing processes for each of the MCAPP, 

MS and MC decisional chromosomes were executed, with parsing times of 0.098 

seconds for mppParserCSV, 0.093 for msParserCSV and mcParserCSV 0.072 being 

recorded (see Figure 8), which – when taking into the account the size and complexity 

of the SOEKS – is an excellent result. 
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Figure 8: Time taken to parse the MPP, MS and MC submodules. 

 

 

Figure 9: SOEKS elements vs parsing time for the MCAPP sub-modules. 

 
The parsing times for the different SOE elements of the MPP sub-module were 0.035 

seconds to read variables, 0.046 seconds to read functions, and 0.012 seconds to read 

constraints.  Figure 7 compares the parsing times for the SOE elements of the MPP, MS 

and MC sub-modules. Pareto analyses of the parsing times for each of these three sub-

modules is shown in Figures 10, Figure 11, and Figure 12. From these figures we can 
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see that in the case of all three sub-modules, variables are the most time-consuming 

elements to parse. 

 

 

 Figure 10: Pareto analysis of SOEKS elements vs parsing times for the MPP sub-module. 

 

Figure 11: Pareto analysis of SOEKS elements vs parsing times for the MS sub-module. 
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Figure 12: Pareto analysis of SOEKS elements vs parsing times for the MC sub-module. 

4.2 Searching for the most similar SOEs 

 

 
 

Figure 13: Similarity values for the SOEKS of five stored products. 

The MCAPP module’s graphical user interface (GUI) is used to find SOEKS that are 

most similar to queries relating to each of the MCAPP sub-modules. This interface is an 

extension of the DKM module’s GUI. After the user uses the GUI to input a query 
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based on some initial objectives the similarity values of 10 tools stored as SOEs in 

terms of variables, functions and constraints are then retrieved from the system. An 

example of these similarity values is shown in Figure 13 (Ahmed et al., 2020).  

 
The similarity between the query and each of the SOEs is calculated on the basis of 

Euclidian distance, and can take a value from 0 to 1, where a value of zero equates to 

the greatest similarity. Given a pair of SOEs made up of a SOE mppDNAi (the entire 

MCAPP-DNA repository) and the query SOEj (a SOE made up of the query) ∈ S, it is 

possible to generate a similarity metric for the variables called SV ∈ [0,1] by calculating 

the distance between each of the pairwise attributes k ∈ mppDNAi and QuerySOEj. The 

Euclidean distance measurement has been selected on account of its simplicity and how 

extensively it is used. In keeping with the notion of a range of comparison, the 

‘maximum function’ normalisation form was also included. The similarity metric is 

expressed as per the following equation: 

𝑆𝑣(𝑚𝑚𝑚𝐷𝐷𝐷𝑖,𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗) = �𝑤𝑘  �
�𝑚𝑚𝑚𝐷𝐷𝐷𝑖𝑘2 − 𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗𝑘2 �

max�|𝑚𝑚𝑚𝐷𝐷𝐷𝑖𝑘|, �𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗𝑘��
2�
0.5

∀𝑘 ∈
𝑛

𝑘=1

 

                                                                                      𝑚𝑚𝑚𝐷𝐷𝐷𝑖 ⋀ 𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗   (1) 

         

where mppDNAik and QuerySOEjk are the kth attribute of the sets mppDNAi and 

QuerySOEj, wk is the weight given to the kth attribute (in this case the variable) and n is 

the number of variables in mppDNAi. 

The similarity metric for machine selection and machine capability will then take the 

following forms:   

𝑆𝑣(𝑚𝑚𝐷𝐷𝐷𝑖,𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗) = �𝑤𝑘  �
�𝑚𝑚𝐷𝐷𝐷𝑖𝑘2 − 𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗𝑘2 �

max�|𝑚𝑚𝐷𝐷𝐷𝑖𝑘|, �𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗𝑘��
2�
0.5

∀𝑘 ∈
𝑛

𝑘=1

 

                                                                                      𝑚𝑚𝐷𝐷𝐷𝑖 ⋀ 𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗    (2)
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𝑆𝑣(𝑚𝑚𝐷𝐷𝐷𝑖 ,𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗) = �𝑤𝑘  �
�𝑚𝑚𝐷𝐷𝐷𝑖𝑘2 − 𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗𝑘2 �

max�|𝑚𝑚𝐷𝐷𝐷𝑖𝑘|, �𝑄𝑄𝑄𝑄𝑄𝑆𝑆𝑆𝑗𝑘��
2�
0.5

∀𝑘 ∈
𝑛

𝑘=1

 

                                                                                      𝒎𝒎𝑫𝑫𝑫𝒊 ⋀ 𝑸𝑸𝑸𝑸𝑸𝑺𝑺𝑺𝒋   (3) 

3 Conclusion 

In this research, we presented the concept of enhancing the product development 

process by providing manufacturing knowledge during early stages of product 

development process. We were able to achieve this enhancement using our SVPD 

system’s MCAAP module, which we validated using a case study involving a threading 

tap. Results from the case study indicate that our system is capable of enhancing the 

manufacturing process by using the previously acquired experiential knowledge of 

similar products. 

  

The MCAPP module of the system can be used to generate manufacturing process 

plans, to select suitable machines for the selected processes, and to determine the 

capability of selected machines. After a query based on specific objectives is fed into 

the system, the system’s DDNA retrieves suitable solutions based on a set of priorities 

and constraints. Following execution of the query, the user selects the most appropriate 

solution from among those provided, with this process being stored in in the DDNA of 

the system as new experiential knowledge which then can be used for solving similar 

queries in the future.  The integration of our system with ERP systems such as Systems 

Applications and Products (SAP) or oracle discrete manufacturing would lead to more 

enhanced decision-making in relation to product manufacturing processes. In the next 

chapter, the last module of the SVPD system is introduced, described, and then 

validated in the case study involving production of a threading tap. 
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Appendix 1: CSV file component for the MPP sub-module. 
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