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A B S T R A C T   

Background: The ubiquity of smartphones equipped with an array of sophisticated sensors, ample processing 
power, network connectivity and a convenient interface makes them a promising tool for non-invasive, portable 
food quality assessment. Combined with the recent developments in the areas of IoT, deep learning algorithms 
and cloud computing, they present an opportunity for advancing wide-spread, equitable and sustainable food 
analytical methods that could be used at each stage of food production and distribution. 
Scope and approach: This review focuses on the use of smartphone-based methods in food quality assessment and 
monitoring, with particular emphasis on the ones in which smartphones are used as detectors, either on their 
own or in conjunction with more elaborate analytical procedures. The role of these methods in common and 
equitable access to information on food quality is discussed, together with a consideration of the sustainability 
and greenness of the smartphone-based methods and a perspective on the methodology and validation. Addi-
tionally, recent developments and future research trends are also outlined. 
Key findings and conclusions: Despite the persisting limitations resulting from technical difficulties and the 
complexity of the food sample matrix, smartphones will play an increasingly important role in popularizing the 
access to food analytical techniques for on-site analysis as a readily available and convenient integrated interface, 
connectivity and remote sensing platforms.   

1. Introduction 

The proliferation of smartphones equipped with relatively high- 
quality cameras has, in recent years, created entirely new possibilities 
for the wide-spread introduction of easily accessible tools for rapid 
quality assessment and quality assurance of food products ‘from farm to 
fork’ (see Fig. 1). In particular, the integration within the Internet of 
Things coupled with machine learning-based data processing and 
analysis tools might make tentative food quality tests truly and widely 
accessible to end-users, provided certain methodological difficulties are 
overcome. Such developments would be in line with the stipulations of 
green and equitable analytical chemistry (Chemat, Garrigues, & de la 
Guardia, 2019; Marcinkowska, Namieśnik, & Tobiszewski, 2019) which 
focus not only on reducing the environmental footprint of the analytical 
procedures but also on their widespread availability in terms of low 
price and applicability. 

However, in many cases the implicit promise of using the smart-
phone’s camera for remote sensing is in reality far from being true. They 
are often used as convenient tools for data acquisition and processing 
and as a means of providing a graphic user interface in lieu of personal 

computers, while still requiring the use of peripherals for the actual 
analysis. In other scenarios, the analytical procedure required to obtain 
a meaningful result is relatively elaborate and involves the use of in-
struments typically only found in laboratories. In particular, time- 
consuming and multi-stage sample preparation procedures might 
discourage potential end-users. Moreover, such complexity severely 
limits the practicality of the proposed solutions, especially in field 
conditions, and negates the main advantages of using smartphone-based 
techniques in the first place. 

While it is important to account for the issues associated with the use 
of smartphone cameras themselves, such as white balance functions 
optimized by default for photography in bright ambient light and the 
inter-model transferability of colour readouts, it is crucial to also 
consider and validate the proposed procedures from the analytical and 
food chemistry perspective. The usability of smartphones for food 
quality assessment, not unlike any other analytical procedure, is 
contingent on the repeatability, selectivity and limit of detection (LOD) 
of the proposed methods (Nelis, Tsagkaris, Dillon, Hajslova, & Elliott, 
2020). These issues are particularly important when considering 
matrices as complex as food. In order to develop practical solutions, it is 
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necessary to rigorously validate the smartphone-based approaches, 
considering the matrix effect, sampling conditions, and not relying 
heavily on model or heavily spiked samples. This review is concerned 
with assessing the current status of the approaches to food quality 
assessment using smartphones and to clearly identify the current limi-
tations and future trends and likely developments. A focus is placed on 
developments in which smartphones are used as detectors, either on 
their own or combined with more elaborate instrumental and sample 
preparation procedures. The role of smartphones in common and equi-
table access to information on food quality is discussed. 

2. Equitable and sustainable analytical chemistry 

When assessing smartphone-based food evaluation methods, it is 
important to consider whether the solution in question is in line with the 
stipulations of sustainable analytical chemistry (de la Guardia & Gar-
rigues, 2011; Keith, Gron, & Young, 2007). The development of novel 
analytical tools necessarily entails the validation and optimization of the 
procedure (improving specificity, accuracy, LOD, etc.), as well as the 
economic aspects of the analysis. However, it is perhaps equally 

important to consider the sometimes overlooked social and environ-
mental aspects during the decision making and process development, 
which is the main idea behind the concept of sustainable chemistry 
(Marcinkowska et al., 2019). This social dimension is reflected by fair, 
common and equitable possibilities in obtaining information on pur-
chased or stored food products quality. This ease of getting information 
can be assured with the development of analytical methodologies based 
on everyday devices, such as desktop scanners or more importantly 
smartphones. 

It might be expected that the proliferation of smartphone-based 
personal food testing solutions involving e.g. the use of bioassays for 
quality assessment of food products might initially be limited to the 
developed countries. However, this likely will not be the case with food 
production. According to experts at FAO, family farms and small farms 
are responsible for over 80% of World’s food production, and are esti-
mated to constitute over 80% of World’s farms overall (Lowder, 
Sánchez, & Bertini, 2019). The afore-referenced report calls for dedi-
cating more attention to this category of farms and increasing their 
output as means for eradication of poverty, and indicates that techno-
logical progress is the determining factor in improving their 

Fig. 1. Farm-to-fork use of smartphone-based food quality assessment tools.   

• The viability and development of chicken embryos during artificial incubation may be measured in a non-invasive way by monitoring their heart rates using 
smartphones’ video recording capabilities and an external red light source for photoplethysmography (A) (Phuphanin, Sampanporn, & Sutapun, 2019). During 
processing, the quality of the raw poultry meat, e.g. concerning the pale poultry syndrome, can be assessed by analysing its colour based on the analysis of pictures 
captured with the smartphone camera (B) (Barbin et al., 2016; You, Liu, Zhang, Xv, & He, 2020). The consumer’s safety can be then assured prior to distribution, e. 
g. by testing for salmonella in chicken meat using magnetic particle immunoseparation-based biosensors in resource-scarce settings or as portable kits, with 
smartphones used for image analysis (C) (Guo et al., 2019), or during distribution and by the consumers themselves by scanning the colourimetric sensors 
imbedded in packaged poultry meat to detect the onset of spoilage (D) (Chen et al., 2017; Lee, Baek, Kim, & Seo, 2019; Rukchon, Nopwinyuwong, Trevanich, 
Jinkarn, & Suppakul, 2014).  

• The beekeeper might monitor the hive microclimate and the thermal comfort of honeybees by detecting changes in the sound intensity level using the smartphone’s 
built-in microphone (E) (Lima et al., 2019), while an opto-sensing accessory mounted on a smartphone and utilizing aptamer-conjugated gold nanoparticles for 
point-of-need safety inspection can be used to examine the concentration of streptomycin in honey (F) (Liu et al., 2017).  

• Similarly, smartphone-based food quality assessment methods find application in wine production from the pre-harvest grapes inspection in the vineyard (G) (Ang, 
Seng, Oczkowski, Deloire, & Schmidtke, 2018; Aquino, Barrio, Diago, Millan, & Tardaguila, 2018) to detecting the deterioration of wine’s organoleptic properties 
during ageing and storage by monitoring the browning process (H) (Pérez-Bernal, Villar-Navarro, Morales, Ubeda, & Callejón, 2017). 
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productivity. Since only approx. 2% of the farms are located in 
high-income countries (according to the World Bank (World Bank, 
2017)), the effort to improve food production through technological 
innovation ought to be focused on developing countries. This seems to 
be the perfect use case for smartphone based food quality assessment, 
especially at the production and distribution stages, as their imple-
mentation could drastically improve the otherwise limited access to 
instrumental methods. For instance, while the machine learning-based 
methods for crop yield estimation might not be on par with industrial 
solutions used in extensive farming, they would be of great use in family 
farms in which the alternative would be to perform the assessment 
manually, or to dispense of it altogether. While the smartphone 
ownership in certain developing countries remains relatively low (e.g. 
36% in Kenya and 32% in India (Schumacher & Kent, 2020)), it is 
increasing at a rapid pace, alongside with mobile network connectivity 
and bandwidth (Cisco Visual Networking Index: Global Mobile Data Traffic 
Forecast Update, 2017–2022, 2019). 

The environmental impact of the implementation of an analytical 
method is often indirectly considered during the evaluation of its eco-
nomic aspects, since certain decisions, such as e.g. reducing the amount 
of used reagents or increasing the sample throughput might both reduce 
the operating costs and minimize the environmental footprint (de la 
Guardia & Armenta, 2011). The issue of the environmental impact can, 
however, be tackled more directly and purposefully by implementing 
the stipulations of green analytical chemistry, notably its 12 principles 
(Gałuszka, Migaszewski, & Namieśnik, 2013). In the context of food 
analysis, this could entail for instance the monitoring of various pro-
duction processes in order to evaluate whether unwanted and/or haz-
ardous by-products are formed and by favouring analytical 
methodologies which do not adversely affect the analyst’s health or the 
environment. 

While the ‘greenness’ of analytical methods is increasingly being 
considered during their development (Aparecida de Marco, Saú Rechelo, 
Gandolpho Tótoli, Carolina Kogawa, & Regina Nunes Salgado, 2018; 
Gilbert-López, Mendiola, & Ibáñez, 2017; Pena-Pereira, Wojnowski, & 
Tobiszewski, 2020; Płotka-Wasylka, 2018), their social dimension is 
often overlooked. One of the main tasks of analytical chemistry is to 
provide analytical information according to the requirements of 
end-users (Koel, 2016), which is particularly important in the context of 
food safety and quality control, where ideally the product should be 
tested by manufacturers, distributors and consumers to assure the lat-
ter’s well-being. For this reason, analytical devices and the possibility of 
their use as well as the results of the measurements, should be accessible 
to everyone who may need them. In other words, emphasis should be put 
on the development of analytical methodologies that can be applied by 
non-trained users, preferably with the use of low-cost, readily available 
equipment. The ubiquity of smartphones, with their integrated and 
portable suite of features such as optical and other sensors, network 
connectivity, processing capabilities and, perhaps most importantly, 
familiar and accessible interface makes them the obvious choice when 
aiming at increasing the accessibility of food analytical methods 
(Grudpan, Kolev, Lapanantnopakhun, McKelvie, & Wongwilai, 2015; 
Roda et al., 2016). 

3. Smartphones: self-contained, mobile spectrometers 

Perhaps the most intuitive application of smartphones in food quality 
assessment and monitoring would be to use them as mobile spectrom-
eters, since nearly all currently marketed devices are equipped with 
complementary metal-oxide-semiconductor (CMOS) camera which 
could act as a detector, coupled with an integrated user interface and 
image processor. However, there are several factors to which one can 
attribute the lack of general-purpose smartphone-based spectrometers 
(Scheeline, 2016). Smartphones are not specifically designed as optical 
measuring instruments and their image sensors register polychromatic 
light which decreases the certainty of measurement and resolution 

(Capitán-Vallvey, López-Ruiz, Martínez-Olmos, Erenas, & Palma, 2015). 
While on paper the sophisticated smartphone camera sensors with their 
>40-megapixel resolution (in some recent models up to 100-megapixel) 
seem more than sufficient for photometry, their performance is limited 
by the small pixel size and 8-bit digitization, which degrade the S/N 
ratio and precision. The latter will, however, be greatly improved, since 
smartphone models with 10-bit encoding are being introduced at the 
time of writing, effectively increasing the colour palette from 2563 to 
10243 colours (Tonelli et al., 2019), albeit at the cost of increased file 
size and computational effort. Still, the capabilities of most smartphone 
camera sensors are adequate for screening tests and field use (Scheeline, 
2016), as evidenced by the number of reported possible applications 
(Aguirre, Long, Canals, & Cunningham, 2019; de Oliveira Krambeck 
Franco, Suarez, & Santos, 2017; Jung, Kim, Kim, & Bae, 2017; McGo-
nigle et al., 2018; Patange, Mukundan, & Kumar, 2005; Rico-Yuste et al., 
2016; Salinas et al., 2014; Scheeline, 2016; Song, Jiang, Wang, & Vin-
cent, 2020; Ulrici, Foca, Ielo, Volpelli, & Lo Fiego, 2012). Another 
possible future improvement is broadening the sensor’s response range. 
This could be achieved simply by removing the existing bandpass filters 
which limit the response only to the visible spectrum or by introducing 
additional ones, widening the range to between ~310 nm and ~900 nm 
(Wilkes et al., 2016). This would limit the camera’s usefulness for con-
ventional photography, but the manufacturers seem willing to equip the 
smartphones with as many as 5 or more rear-facing cameras, each with 
its sensor (Gartenberg, 2019), and so such development does not seem 
entirely unlikely. It would be particularly useful for non-invasive food 
content measurement – an application in which NIR spectrometry is 
already commonly used (Porep, Kammerer, & Carle, 2015). Alterna-
tively, the analytically useful spectrum of radiation could be extended 
by using external UV light (Intaravanne, Sumriddetchkajorn, & Nukeaw, 
2012), also for excitation in fluorescence-based tests (Feng et al., 2013). 

Another factor limiting the proliferation of direct smartphone 
camera-based spectrometry in particular, and smartphone-based imag-
ing in general, is the rapid pace of the development of new image sen-
sors, which presents challenges for standardization (Ozcan, 2014). 
While most new smartphones now offer access to raw image format 
(RAW) files, and so to the signal from individual pixels, it should be 
remembered that proper colour calibration and white balancing is a 
challenge for professional photographers, and requires at a minimum 
the use of calibration cards or another reference. In the mid-2010s the 
reader would point to the possible solving of this issue through the 
imminent development of modular smartphones with the then ongoing 
projects such as Ara, Phoneblocks or RePhone (Hankammer, Jiang, 
Kleer, & Schymanietz, 2016, 2018). The latter could be even equipped 
with modules geared towards remote sensing, such as a UV sensor or a 
micro electro mechanical system (MEMS) gas sensor (“RePhone Intro-
duction - Seeed Wiki,” n.d.). The implementation of an array of metal-
–oxide–semiconductor field-effect transistor gas sensors in a replaceable 
module which could operate as an electronic nose, would have been a 
particularly useful development. This is because their use in smart-
phones, despite the small size and low power consumption, is limited by 
issues with long-term durability and signal stability (Wojnowski, Kali-
nowska, Majchrzak, Płotka-Wasylka, & Namieśnik, 2019). However, 
some five years later these concepts have not gained sufficient traction 
to disrupt the industry. The issue of sensor readout equivalence will 
perhaps only be compounded by the manufacturers increasingly relying 
on computational photography for improving image quality, making 
them even more reluctant to open the access to back-end image pro-
cessing protocols, and so the researchers instead turn to machine 
learning to tackle this problem (Abdalla, Cen, Abdel-Rahman, Wan, & 
He, 2019; Solmaz et al., 2018). 

Apart from the camera, smartphones are also equipped with other 
sensors which could potentially find application in food quality assess-
ment. A good example is the use of the built-in microphone to monitor 
the thermal comfort of honeybees. The intensity of the sound produced 
by the insects and registered using a smartphone was linked to the hive 
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microclimate which impacts the honey production and, more impor-
tantly concerning agricultural output, the foraging activity of the bees, 
leading to the pollination of crops (Lima et al., 2019). The device’s 
microphone, in combination with its speaker, could also be used for 
ultrasonic sensing (Wang et al., 2019) which could be particularly useful 
for characterization and control of processes such as drying, emulsifi-
cation, fermentation or crystallization (Mohd Khairi, Ibrahim, Md 
Yunus, & Faramarzi, 2015). 

The current technical difficulties with realizing the smartphone-as- 
spectrometer concept in food analysis have led some to believe that 
the future trend will be to combine smartphones with inexpensive at-
tachments with optics (Scheeline, 2016). Others, however, work on 
increasing the accessibility of food analytical chemistry through the 
integration of the already-existing methodologies with 
smartphone-based detector systems, as described in the following 
section. 

4. Smartphone-based biosensors 

The integration of the already-existing methodologies for food 
analysis with smartphone-based detector systems is an interesting 
example of efforts to make food analytical chemistry more accessible. 
For instance, the coupling of various immunoassays and smartphones is 
gaining popularity in multiple fields of science. Methods in which the 
formation of a complex between the analyte and an antibody are used in 
order to achieve the detection, i.e. immunoassays, have gained vast 
popularity due to the simplicity of their use (Dixit & Twyman, 2019). 
Since the results can be expressed through the appearance of one or two 

coloured lines (control line indicating correct functioning of the assay 
and, possibly, the test line indicating the presence of the analyte in 
question), they can be easily read even by a non-trained individual in a 
way not unlike the interpretation of pregnancy test results. While in 
some use cases the test’s results can be evaluated using the naked eye, 
this approach is usually not sufficient in situations in which the results 
obtained using immunoassays are quantitative. This is where the 
coupling with smartphone-based detection systems facilitates the 
quantitation of the results, since the intensity of the test line’s colour 
usually depends on the concentration of the analyte. Owing to the ad-
vances in smartphone imaging, it is possible to discriminate between 
colour intensities which would otherwise be indistinguishable to the 
human eye, especially after converting the colour space from red, green, 
blue (RGB) model to e.g. hue, saturation, intensity (HSI) colour model, 
where the intensity component can be easily isolated (see Figs. 1 and 2). 
For example, in the study of Li et al., latex microsphere immunochro-
matography was integrated with a smartphone-based device in order to 
perform a quantitative detection of zearalenone, mycotoxin often pre-
sent in cereals and feed (Li et al., 2019). With the use of test strip, 
smartphone, a 3D-printed device with two lenses and camera obscura 
they obtained results highly consistent with the results obtained with 
both commercial kits and LC-MS/MS. 

While paper-based reaction strips are seen as easy to use, even in the 
field or by untrained personnel, the same cannot be said about glass 
capillaries which are often used e.g. for the detection of contaminants. 
However, their fragility limits their usability in field applications. For 
instance, a smartphone attachment for E. coli detection in liquid samples 
based on quantum dot-based sandwich assays requires a rather 

Fig. 2. A schematic representation of the approach 
to food quality assessment based on remote sensing 
with a smartphone camera: (1) capturing an image 
in a controlled environment, with reference colour 
values for calibration; (2) image processing: white 
balance, calibration, RAW conversion, colour 
space translation, etc.; (3) extraction and stan-
dardization of variables, followed by application of 
a machine learning model; (4) result expressed in a 
way convenient to the end-user. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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complicated sample preparation stage to perform the analysis (Zhu, 
Sikora, & Ozcan, 2012). The use of similar methods in the home setting 
is further complicated by the need to use equipment that is relatively 
difficult to obtain and might be too burdensome for someone with no 
laboratory experience. Since the capillary tubes used for the analysis can 
be secured within the device, they are far more useful in 
resource-limited environments compared to traditional capillary-based 
analytical methods, if not yet ready for home-use. 

The ease of use is, however, of utmost importance in the various 
methodologies developed for the detection of allergens in food products 
in response to the emerging need, such as the smartphone-based quan-
tum dots ratiometric fluorescence-sensing system for monitoring fluo-
roquinolone antibiotics in food samples (Ye et al., 2020), or the 
pocket-sized system utilizing a magneto-chemical sensor for the detec-
tion of antigens (Lin et al., 2017), shown in Fig. 3. The system consists of 
a pocket-sized detector, electrode and extraction kit that may be 
disposed of after use. Antigens are extracted from food as well as 
concentrated with the use of the kit and subsequently quantified using a 
keychain-sized reader in under 10 min. Since the cost of a single analysis 
is estimated by the authors to be lower than 4 $, it represents a tangible 
step towards implementing the stipulations of equitable chemistry. The 
prototype system was tested for only five model antigens, and further 
research should be performed in order to assess the impact of various 
food processing techniques and matrix composition could have on 
extraction and detection of the analytes. However, it showcases the 
potential of placing smartphone-based biosensors in the hands of 
involved consumers. 

In a similar approach, a smartphone-mounted tube reader was 

developed for use in tandem with allergy test kits by measuring the 
absorption of colourimetric assays (Coskun et al., 2013). This applica-
tion showcases the advantages of utilizing the intuitive and interactive 
smartphone GUI, guiding the untrained user through the steps required 
to perform the analysis using a user-friendly interface. This, combined 
with the possibility of uploading the test results to a dedicated server to 
build allergen maps, thus leveraging the inherent connectivity of 
smartphones, indicates the possibility of overcoming the difficulties 
outlined in Sections 3 and 6. Focusing on utilizing the numerous ad-
vantages of smartphones as platforms in which detection and commu-
nication capabilities are integrated with a convenient interface might 
bridge the gap in analytical capabilities between developed and devel-
oping countries. Solutions which, when implemented, could facilitate 
performing routine analyses in resource-scarce environments also 
include the smartphone-integrated rapid diagnostic tests (RDTs), like 
the ones used in medical diagnostics (Mudanyali et al., 2012). While 
these were not developed specifically for food safety assurance, they 
could be relatively easily geared towards detecting e.g. E. coli instead of 
M. tuberculosis. Some methods based on the use of smartphone bio-
sensors, like the one developed for the determination of the phenol index 
using emulsification microextraction (Shahvar, Saraji, & Shamsaei, 
2020) involve sample preparation stages, which might be either too 
complicated to be performed by untrained staff, or at least not practical 
in field conditions, as is the case with the method for allergen deter-
mination illustrated in Fig. 4. Nonetheless, they could nonetheless 
greatly improve the accessibility of food analytical methods. 

Fig. 3. A pocket-size system for antigen detection. 
Antigens are captured on magnetic beads (MBs) 
which are held in place during the extraction stage 
using a sheathed magnetic bar and subsequently 
labelled with antibodies conjugated with oxidizing 
agents. The MBs are then mixed with electron 
mediators and applied on an electrode which is 
then inserted into a reader which in turn transmits 
the data to a smartphone, allowing for data regis-
tration and system control. Adapted with permis-
sion from (Lin et al., 2017). Copyright 2017 
American Chemical Society.   

K. Kalinowska et al.                                                                                                                                                                                                                            

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Trends in Food Science & Technology 111 (2021) 271–279

276

5. Pattern recognition and machine learning 

Apart from calibration in photometry- and colourimetry-based ap-
proaches to the quantification of colour images obtained using smart-
phone cameras, pattern recognition and image analysis finds application 
in food manufacturing and quality assessment based on images and 
videos captured using smartphone cameras. These include crop moni-
toring, e.g. through evaluating the number of grapevine berries in a 
grape (Aquino et al., 2018; Font et al., 2014), fruit sorting and grading 
(Álvarez-Bermejo, Morales-Santos, Castillo-Morales, Parrilla, & 
López-Ramos, 2019; Giraudo et al., 2018; Mizushima & Lu, 2013), 
identification of defects and assessing the fat content in meat products 
(Cruz-Fernández, Luque-Cobija, Cervera, Morales-Rubio, & de la Guar-
dia, 2017; Ulrici et al., 2012). Such approach is to a lesser extent 
impacted by the device-dependent colour space representation 
(although it remains a problem, especially in light-dependent scenarios 
(Álvarez-Bermejo et al., 2019), since the classification and regression 
models might not be sufficiently robust to accommodate data collected 
under different conditions). The issues related to colour measurement 
and colour space conversion in the context of food quality control have 
been discussed by (Wu & Sun, 2013). Despite the recent developments in 
this area (Nixon & Aguado, 2020), extracting the features from images of 
food for the subsequent pattern recognition and machine learning re-
mains a major issue (Zheng, Sun, & Zheng, 2006). 

Other difficulties with the use of machine learning algorithms apply 
to both the pattern recognition and spectrometric applications of 
smartphone cameras. The more general the application, the greater the 
effort required to build a data library sufficiently large to train a robust 
machine learning model without the risk of overfitting. Such libraries, 
containing hundreds of thousands of reliably labelled objects, could 
likely only be built in collaboration with major stakeholders, i.e. big 
food manufacturers, who have at their disposal the necessary resources, 
infrastructure and procedures. The main incentive here could be the 
detection of adulterations (Song et al., 2020). On the other hand, the 
integration of smartphones with other sensor-equipped devices and 
communication networks within the IoT could, to some extent, 
democratize the process of data collection with the aim of building vast 
and robust machine learning libraries, on top of its other uses in food 
safety (Bouzembrak, Klüche, Gavai, & Marvin, 2019). While this would 
require some sort of incentive for e.g. manual classification of images, 
the necessary infrastructure is, on the most part, already in place, with 
ample processing power of the personal devices and 4G (soon to be 5G) 
network connectivity, with the notable exception of data storage which 
is likely to remain the bottleneck for the foreseeable future – an issue 
which would only be compounded by the increasing imaging 

capabilities of smartphone cameras in the context of multi-sensor 
readouts, hyperspectral imaging and large image resolution. 

6. The use of the smartphone camera instead of a detector – 
current issues and future perspectives 

The accessibility and popularity of smartphones may significantly 
improve the applicability of biosensors since with their coupling it is 
possible to facilitate the monitoring of food quality throughout the 
entire production process. Most smartphone-based analytical methods 
can be used by both specialized personnel and non-trained consumers 
and thus, they could be routinely applied to monitor food quality at 
points of distinctive vulnerability, during all stages of production and 
distribution and, finally, at-home (Lu, Shi, & Liu, 2019). However, even 
though significant advances have been made in the area of portable and 
user-friendly analytical methodologies, a substantial amount of work is 
to be done before the ubiquitous use of the solutions proposed by re-
searchers could be even considered. This is particularly true with regard 
to food quality assessment where extensive validation of the potential 
methodologies is of vital importance. 

Numerous smartphone-based analytical solutions are evaluated with 
the use of model samples. While with this approach it is possible to es-
timate whether the concept behind the proposed methodology is not 
misguided, caution should be exercised when ascertaining whether the 
methodology in question can be applied in the analysis of real samples. 
This is particularly important with regards to food analysis – both 
because in case of food quality evaluation or e.g. allergens detection 
uttermost precautions are required and due to the food itself being a 
very complex matrix. While the use of model samples is helpful during 
the method’s development, it is difficult to assess the applicability of 
smartphone-based methodologies, be it at-home water quality analysis 
or the establishment of wells based on the sand samples evaluation, 
when they were tested solely on model samples (Iqbal & Bjorklund, 
2011b). Moreover, even in the case where model solutions are made by 
adding the analyte to the commercially available product or otherwise 
prepared to maintain the similarity to the real samples, it still cannot be 
said that the conditions are identical to real-life analysis (as discussed in 
Section 3). As a result, the effectiveness of e.g. a smartphone-based 
method of coloured additives detection in real-life applications cannot 
be accurately evaluated since the aim of the preliminary research was to 
differentiate between samples of transparent soft drink to which ethyl 
red, reactive blue 2 or bromocresol green was added (Iqbal & Bjorklund, 
2011a) which is only a rough approximation of the analysis of artifi-
cially coloured drinks that can be performed by the potential consumer. 
A similar case could be made with regard to e.g. the detection of 

Fig. 4. Procedure for determination of allergens in 
food samples using a smartphone attachment and 
colourimetric assays: (1) the allergen of interest is 
selected in the application; (2) a food sample is 
finely ground; (3) approx. 5 g of the ground sample 
is transferred to a vessel; (4) the sample is mixed 
with water at 60 ◦C and with extraction solvent; 
(5) 3 drops of the sample solution is added to the 
first tube; (6) 3 drops of the control solution are 
added to the second tube which will act as refer-
ence; (7) following a 10 min incubation period, 
both the test and the control tubes are sequentially 
rinsed with a conjugate, substrate, and a stop so-
lution, with a wash buffer used in between the 
rinses; (8, 9) absorbance of both solutions is 
measured using a dedicated smartphone attach-
ment; (10) the test provides qualitative and quan-
titative information. Own rendering based on 
(Coskun et al., 2013).   
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artificial sweeteners – while the subject is interesting and the proposed 
methodology may in future find its application in at-home food analysis, 
its relatively difficult to accurately assess its potential when it is used to 
detect sweeteners in blank tea solutions prepared in the laboratory and 
not in a commercially available soft drink which usually has a much 
longer ingredient list and is thus a far more complicated matrix (Musto, 
Lim, & Suslick, 2009). A similar problem may arise when pathogens’ 
detection methods are assessed. While it is quite understandable, since 
obtaining commercially available food contaminated with pathogens 
might prove to be difficult, there is still room for improvement in the 
subject of the overall evaluation of these methodologies. Is the proposed 
approach specific for only one type of bacteria and does the presence of 
other species distort the obtained results? Is the recovery sufficient in 
different batches of the product? Does procuring foodstuff from various 
distributors impact the results? How does the method’s limit of detec-
tion compare with reference methods? These are all important questions 
from the point of view of both researchers and industry representative 
who may be interested in the future implementation of these methods. 
While much consideration is given to these issues when novel 
smartphone-based methodologies are reported (de Oliveira Krambeck 
Franco et al., 2017; Silva & Rocha, 2020; Zeinhom et al., 2018; Zhu 
et al., 2012), the validation of new approaches has to become as thor-
ough and commonplace as in other branches of food analysis for the 
smartphone-based techniques to reach maturity. 

Several applications reviewed in this work featured components 3d- 
printed using the widely accessible fused deposition modeling (FDM) 
technology. This is further facilitated by the availability of freeware 
parametric design software allowing for easy tailoring of the CAD model 
to a particular smartphone. The possibility to couple the ease of on-site 
manufacturing of dedicated interfaces between the sample and the 
ubiquitous and increasingly powerful detector, i.e. the smartphone, will 
greatly increase the accessibility of basic food QA/QC methods. 

This coupling between 3d-printing and smartphone detection could 
however be taken a step further. For some years now researchers have 
used stereolithography (STL) to produce intricate microfluidic devices - 
by all means miniaturised and sophisticated instruments for sample 
preparation and analysis (Cocovi-Solberg, Worsfold, & Miró, 2018). 
Until recently, there were no consumer-grade STL printers available at a 
price range which would make them a viable option for low-cost ap-
plications. However, this is no longer the case, and so it is likely that in 
the near future we shall see the development of applications involving 
parametrically customizable STL-printed microfluidic devices with 
smartphones used as detectors, especially in areas where the sample 
matrices are relatively complex, i.e. in food analysis and medical 
diagnostics. 

7. Conclusions 

This review covers the current trends in using smartphones for food 
quality assessment and how they might impact the accessibility of food 
analytical methods and their sustainability. The utility of using smart-
phones as an all-in-one data processing and user interface platform for 
food quality assessment is undeniable, especially with regard to 
lowering the cost of instrumental analytical methods and increasing the 
accessibility to food control procedures in the developing countries. This 
is even more true when considering making use of smartphones’ inte-
grated sensors as detectors, either on their own or in conjunction with 
straightforward sample treatment procedures. Here the recent de-
velopments are focused on using the increasingly sophisticated smart-
phone cameras at each stage of food production and distribution, from 
screening the raw materials to assessing the freshness of the product on 
the shelf. Providing the farmers and consumers alike with ubiquitous 
access to quality assessment tools literally in their pockets would greatly 
improve the public confidence in food safety. However, there remain 
unresolved technical difficulties with utilizing the smartphone camera 
as a mobile spectrometer without any accessories, stemming mostly 

from difficulties with limiting the number of variables during mea-
surement and lack of solutions for assuring the equivalence of mea-
surements conducted using different device models and in different 
conditions. These difficulties are compounded by the fact that food is a 
particularly complex sample matrix, which is likely why the 
smartphone-based solutions for food quality assessment that might see 
widespread practical use in the nearest future involve the use of bio-
sensors. Here the researchers can capitalize on the substantial advances 
in the fields of microfluidics and bioassays, such as the use of nano-
particles or quantum dots, to deliver targeted solutions (Cocovi-Solberg 
et al., 2018; Yang, Liu, & Jiang, 2019). This drastically increases the 
accessibility of analytical methods which would otherwise require costly 
equipment and infrastructure, thus promoting equitable analytical 
chemistry. Furthermore, it necessarily translates, through the minia-
turization and reduction of the number of analytical steps in a proced-
ure, to reduced consumption of samples and reagents, leading to the 
development of more green and sustainable analytical techniques. 

While smartphone-based methods can be used in numerous areas of 
food evaluation, including quality assurance and assessment of 
authenticity, a majority of the reviewed solutions focuses on food safety 
monitoring and consumer-oriented detection platforms (Kalyani, Goel, 
& Jaiswal, 2020; Lu et al., 2019). Food safety and quality is a major 
concern for the consumers, who represent a sufficiently large group of 
stakeholders to possibly incite electronics manufacturers to consider 
their needs during hardware development, e.g. through increasing the 
remote sensing capabilities of the arrays of smartphone cameras. The 
ubiquity of such remote sensing capabilities could, combined with the 
integration of big data mining, cloud computing and deep learning made 
possible through the smartphones’ inherent connectivity and de-
velopments in wireless networks and IoT, produce more generalized 
solutions for analysing a vast number of foodstuffs. This, however, 
presents a chicken-and-egg problem, and so it makes the widespread use 
of smartphone cameras as mobile spectrometers for food safety moni-
toring unlikely in the near future. However, it is clear that smartphones 
will play an increasingly important role in popularizing the access to 
food analytical techniques for on-site analysis as a readily available and 
convenient integrated interface, connectivity and remote sensing 
platforms. 
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Capitán-Vallvey, L. F., López-Ruiz, N., Martínez-Olmos, A., Erenas, M. M., & Palma, A. J. 
(2015, October 29). Recent developments in computer vision-based analytical 
chemistry: A tutorial review. Analytica Chimica Acta, 899, 23–56. https://doi.org/ 
10.1016/j.aca.2015.10.009 

Chemat, F., Garrigues, S., & de la Guardia, M. (2019). Portability in analytical chemistry: 
A green and democratic way for sustainability. Current Opinion in Green and 
Sustainable Chemistry, 19, 94–98. https://doi.org/10.1016/j.cogsc.2019.07.007 

Chen, Y., Fu, G., Zilberman, Y., Ruan, W., Ameri, S. K., Zhang, Y. S., et al. (2017). Low 
cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. 
Food Control, 82, 227–232. https://doi.org/10.5307/JBE.2017.42.4.330 

Cisco Visual Networking Index. (2019). Global mobile data traffic Forecast update, 2017- 
2022. 

Cocovi-Solberg, D. J., Worsfold, P. J., & Miró, M. (2018, November 1). Opportunities for 
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