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A B S T R A C T

A novel numerical framework for the Sobol’ sensitivity analysis of 1D stochastic elasto-plastic wave propagation
is proposed and evaluated. The forward propagation of uncertain input motions through uncertain elasto-plastic
soils and structures is often conducted using the finite element method (FEM) together with the Monte
Carlo simulation. However, it is computationally much more efficient to use the stochastic elasto-plastic
FEM (SEPFEM) instead. Hence the developed framework is based on the SEPFEM. The backward propagation
of uncertainties, that is, the determination of relative influences of individual uncertain input motions and
uncertain material properties on the resulting uncertain seismic wave propagation, is known as the global
sensitivity analysis. A global sensitivity analysis, namely, the Sobol’ sensitivity analysis, is included in the
proposed framework. Uncertain input, bedrock motions are obtained using the ground motion prediction
equations of Fourier amplitude spectra and Fourier phase derivative, and they are modeled as a non-stationary
random process. Stochastic elasto-plastic soil properties are represented as heterogeneous random fields. The
random process and the random fields are discretized in the probabilistic space using an orthogonal Hermite
polynomial chaos (PC) basis. The probabilistic system response is obtained efficiently using the Galerkin
stochastic FEM. The Sobol’ sensitivity analysis is conducted for the PC-represented uncertain system response.
The benefits of the presented framework to the site-specific probabilistic seismic hazard analysis are discussed.

The novel approach enables to take into account the uncertainty in both, seismic load and elasto-plastic
material parameters, and to assess their individual influences on the overall uncertainty in the resulting wave
field accurately and efficiently. The presented framework has been implemented into Real-ESSI Simulator and,
here, it is evaluated and demonstrated to be very useful for the seismic site response analysis.
1. Introduction

A seismic site response analysis deals with the ground surface
motions that result from the input, bedrock seismic motions. The site
response analysis is important in the estimation of seismic demands
for planned engineering structures because it accounts for the local
site effects. In the conventional seismic site response analyses, ma-
terial parameters and input, bedrock motions [1] are assumed to be
deterministic. However, soil parameters are inherently variable and
uncertain [2–4]. Besides, significant variabilities of input, bedrock mo-
tions arise from uncertain seismic sources, uncertain wave propagation
paths, etc. [5]. It is important to account for these uncertainties in
seismic site response analyses [6,7].

In the recent years, the probabilistic modeling of seismic wave
propagation, i.e., the forward propagation of uncertain input, bedrock
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E-mail address: jeremic@ucdavis.edu (B. Jeremić).

motions through uncertain soils and through uncertain structures has
been conducted using the finite element method (FEM), either together
with the Monte Carlo simulation (MCS) [8,9] or, much more efficiently,
together with the polynomial chaos (PC) expansion [10–12]. For exam-
ple, Johari and Momeni [13] performed a stochastic analysis of ground
response using non-recursive algorithm. In addition to the forward
uncertainty propagation, the backward uncertainty propagation can be
carried out, as well. In other words, it may be useful to determine the
relative influences of uncertain input motions and uncertain material
properties on the resulting probabilistic system response. This is pos-
sible using a global sensitivity analysis. A global sensitivity analysis
enables the decomposition of the variance of the probabilistic output
of the model into portions pertaining to the individual random inputs.
In this study, a global sensitivity analysis of a stochastic seismic wave
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propagation is conducted and it is used for the site response analysis.
Several global sensitivity measures have been proposed in the liter-

ture, e.g., the correlation ratio [14], the Fourier amplitude sensitivity
test indices [15] and the Sobol’ indices [16]. Among these sensitivity
measures, the Sobol’ indices [16] have shown the largest accuracy in
most cases and hence they will be incorporated in this study. Using
the Sobol’ indices, Abiatti et al. [17] evaluated the sensitivity of the
probabilistic response of a structure due to the uncertainty of the
structure and of the excitation parameters. Zeighami et al. [18] studied
the Sobol’ sensitivity of the stochastic mechanical behavior of a seismic
meta-barrier with respect to its uncertain mechanical parameters. The
Sobol’ sensitivity analysis was also used for bridge retrofits in a regional
road network subjected to an uncertain seismic hazard [19].

The Sobol’ indices are commonly computed using the MCS. How-
ever, using the MCS, the evaluation of the Sobol’ indices in the case
of complex systems is computationally very demanding. To overcome
the limitations of the MCS, the PC expansion [20–25] has been incor-
porated into the FEM. This enables efficient and accurate propagation
nd quantification of uncertainty. By combining the PC expansion
nd the FEM, the stochastic FEM (SFEM) has been developed [20,

26–31] and successfully applied in many engineering problems in-
volving uncertainties, e.g., stochastic analysis of: fluid flow [23], seis-

ic site response [10], shear frame structure [11,12] and earthquake
soil-structure interacting system [32]. In addition, Sudret [33] devel-
ped Sobol’ indices from the PC representation of probabilistic system
esponse.

In this study, a novel numerical framework for the Sobol’ sen-
itivity analysis of a 1D stochastic elasto-plastic seismic wave prop-
gation is proposed and tested. The multi-dimensional Hermite PC

expansion is used to represent both, the uncertain soil parameters
and the uncertain bedrock motions. The probabilistic dynamic sys-
tem response to the uncertain bedrock motions propagating through
the uncertain elasto-plastic soil is obtained using the stochastic elas-
to-plastic FEM (SEPFEM) [30]. The Sobol’ indices are computed from
he PC-represented system response for the purpose of a global sensi-
ivity analysis.

The main novelty of the presented framework relies on the combi-
nation and implementation of:

• an accurate modeling of uncertain seismic load using ground
motion prediction equations of Fourier amplitude spectra and
Fourier phase derivative [34,35]

• SEPFEM [30] based on the use of the PC expansion [10–12] and
• the Sobol’ sensitivity analysis [16].

Such approach has not been proposed in the literature as yet. It has
een implemented into Real-ESSI Simulator [36] and it is evaluated

here.

2. Modeling of uncertain input, bedrock motions

Different ground motion prediction equations (GMPEs) have been
proposed in the literature in order to estimate the variability of inten-
sity measures of seismic motions, for example, the spectral acceleration,
 𝑎, [37]. However, the variability of an intensity measure alone is not

sufficient in a stochastic site response analysis. The quantification of
ncertainty within a site response analysis requires the uncertain input
ime-domain seismic motions.

As proposed by Wang et al. [11,12], uncertain time-domain seis-
ic motions can be inverse Fourier synthesized from the stochastic

ourier amplitude spectra (FAS) and Fourier phase spectrum (FPS).
n this approach, the uncertain FAS of seismic motions is modeled as
 log-normally distributed random process [34,35] in the frequency

space, where the median behavior is quantified using the stochastic
ethod by Boore [38] or the recently developed GMPEs of FAS by Bora

t al. [39] and by Bayless and Abrahamson [40]. The inter-frequency
correlation of the FAS random process should also be taken into account
2 
in the ground motion modeling [41]. Hence the recent inter-frequency
correlation model for FAS [35,42] is adopted here.

The stochastic FPS complements the FAS in the modeling of uncer-
tain motions. Boore [43] showed that the Fourier phase information of
seismic motions can be obtained as the integral of the Fourier phase
erivative �̇� defined as

�̇� = 𝛥𝛷
𝛥𝑓

, (1)

where 𝛥𝛷 is the Fourier phase difference within the frequency interval
𝛥𝑓 . Based on 3551 recordings of ground motions from PEER NGA-West
1 database, Baglio [44] demonstrated that the distribution of the phase
erivative, �̇�, is leptokurtic and that it fits well to the logistic model.
he GMPE for the logistic model parameter of the phase derivative [44]

is applied in this study. Phase derivatives �̇�(𝑓 ) for different frequencies
are modeled as logistic distributed random fields described by the
exponential correlation with correlation length 𝑙𝑓 = 0.05 Hz.

Uncertain motions for seismic scenario with magnitude of the earth-
quake 𝑀 = 8, distance from the source of the earthquake 𝑅𝑗 𝑏 =
2 km and bedrock site condition 𝑉𝑠30 = 620 m∕s are simulated using
he stochastic FAS and FPS. Currently available modeling of uncertain
nput, bedrock motions allows for the use of deterministic 𝑉𝑠30 only
nd hence, here, deterministic 𝑉𝑠30 is considered and used in GMPEs to

compute FAS and FPS.
Here, 1500 realizations of the time-domain uncertain motions are

enerated. For example, in Fig. 1, three different realizations of the
time-domain uncertain motions are plotted. Significant differences
among these realizations can be observed, e.g. the peak ground accel-
eration (PGA) varies from 2.1 m/s2 to 9.7 m/s2.

The simulated motions should possess the desired uncertain char-
cteristics that are consistent with the conventional GMPEs. Here,
he generated uncertain motions are verified by comparison with the
orresponding weighted average motions obtained from five different

GMPEs from the NGA-West2 project [37] using weights 0.22 for ASK14,
.22 for BSSA14, 0.22 for CB14, 0.22 for CY14 and 0.12 for I14. The
eights for these five GMPEs are chosen based on work by Rezaeian

t al. [45]. In Fig. 2, the spectral acceleration, 𝑆 𝑎, of the simulated
uncertain motions is plotted together with the one obtained from the
GMPEs. The median 𝑆 𝑎 from the simulated motions and the median 𝑆 𝑎
obtained using the GMPEs coincide very well. It follows from Fig. 2(b)
that the simulated motions also have the desired variability that is
onsistent with the variability term, i.e., the standard deviation, 𝜎,
btained from the GMPEs. Using the GMPEs, the resulting distribution

of the PGA is log-normal. In Fig. 3, a reasonable match between the
simulated distribution of the PGA and the corresponding log-normal
distribution of the PGA obtained from the GMPEs can be seen. Here,
the uncertainty in PGA is obtained for a particular earthquake scenario,
with 𝑀 = 8 and 𝑅𝑗 𝑏 = 12 km, and PDF of PGA does not account for
different possible earthquake scenarios.

The distribution of the simulated accelerations at all time instances
is observed to be Gaussian. Similar observations were made by Wang
et al. [10] from the statistical analysis of a number of seismic record-
ings. The uncertain motions are modeled as a Gaussian distributed
on-stationary random process and they are represented using the
ermite PC Karhunen-Loève (KL) expansion, as described in Section 3.

A random process incorporates much more information about the
ncertain ground motions than the conventional GMPEs. The GMPEs

only quantify the variability of a given intensity measure, for example,
he spectral acceleration, 𝑆 𝑎. Unlike the GMPEs, a random process
ontains information not only about the variability of a single intensity
easure but also information about the variability of other important

characteristics, e.g., PGA, peak ground velocity (PGV), Arias intensity,
etc.

http://mostwiedzy.pl
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Fig. 1. Different realizations of the time-domain uncertain motions: acceleration (Acc) as function of time.
Fig. 2. Verification of uncertain spectrum acceleration, 𝑆 𝑎, of simulated motions against 𝑆 𝑎 obtained from the GMPEs.
Fig. 3. Verification of the probability distribution function (PDF) of the simulated PGA
against the PDF of the PGA obtained from the GMPEs.

3. Hermite Polynomial Chaos Karhunen-Loè ve Expansion

Hermite polynomial chaos (PC) Karhunen-Loève (KL) expansion will
be used to discretize the general heterogeneous random field, 𝐻(𝒙, 𝜃),
of an arbitrary probability distribution. Here, 𝜃 pertains to the random
space and 𝒙 is the general coordinate that can be either temporal, in
the case of an uncertain random process, or spatial, in the case of an
uncertain random field. Random field 𝐻(𝒙, 𝜃) with any type of the
probability distribution can be discretized using the orthogonal Hermite
PC, 𝛺𝑖(𝛾(𝒙, 𝜃)), up to a certain order, 𝑃 , [20,21],

𝐻(𝒙, 𝜃) =
𝑃
∑

𝑖=0
𝐻𝑖(𝒙)𝛺𝑖(𝛾(𝒙, 𝜃)) , (2)

where random functions {𝛺𝑖(𝛾)} are Hermite polynomials constructed
from zero mean, unit variance Gaussian random field 𝛾(𝒙, 𝜃). These
random functions {𝛺𝑖(𝛾)} are determined from the initial condition
𝛺0 = 1 and the recursive relation [20,21],
𝛺𝑖+1(𝛾) = 𝛾 𝛺𝑖(𝛾) −𝛺′
𝑖 (𝛾) . (3)

3 
The deterministic PC coefficient field, 𝐻𝑖(𝒙), can be calculated by
projecting random field 𝐻(𝒙, 𝜃) onto the PC basis {𝛺𝑖}. Given the input
covariance, 𝐶𝐻 (𝑥1, 𝑥2), of the original random field, the covariance,
𝐶𝛾 (𝑥1, 𝑥2), of Gaussian random field 𝛾(𝒙, 𝜃) can be determined from

𝐶𝐻 (𝑥1, 𝑥2) =
𝑃
∑

𝑖=1
𝐻𝑖(𝑥1) 𝐻𝑖(𝑥2) 𝑖 ! 𝐶𝛾 (𝑥1, 𝑥2)𝑖 , (4)

see [21]. Using the KL expansion [20], the underlying Gaussian random
field, 𝛾(𝒙, 𝜃), can be represented as

𝛾(𝒙, 𝜃) =
𝑀
∑

𝑖=1

√

𝜆𝑖𝑓𝑖(𝒙)𝜉𝑖(𝜃) , (5)

where the eigenvalues, 𝜆𝑖, and eigenfunctions, 𝑓𝑖(𝒙), of covariance
𝐶𝛾 (𝑥1, 𝑥2) have to satisfy the Fredholm’s integral equation of the second
kind [21]. Zero mean and unit variance Gaussian random variables
{𝜉𝑖(𝜃)} are represented in 𝑀 independent dimensions.

By combining Eqs. (2) to (5), the PC-KL expansion of random field
𝐻(𝒙, 𝜃) into multi-dimensional orthogonal Hermite PC basis {𝛹𝑖} of
order 𝑃 and dimension 𝑀 can be obtained as

𝐻(𝒙, 𝜃) =
𝐾
∑

𝑖=0
ℎ𝑖(𝒙)𝛹𝑖({𝜉𝑗 (𝜃)}) (6)

ℎ𝑖(𝒙) =
𝑝!

⟨𝛹 2
𝑖 ⟩
𝐻𝑝(𝒙)

𝑝
∏

𝑗=1

√

𝜆𝑘(𝑗)𝑓𝑘(𝑗)(𝒙)
√

∑𝑀
𝑚=1(

√

𝜆𝑚𝑓𝑚(𝒙))2
, (7)

where 𝐾 is the maximum order of the multi-dimensional Hermite PC
basis {𝛹𝑖} that depends on order 𝑃 and dimension 𝑀 , i.e., 𝐾 = 1 +
∑𝑃
𝑠=1

1
𝑠!
∏𝑠−1

𝑗=0(𝑀 + 𝑗). The upper product limit 𝑝, in Eq. (7) is the order
of 𝛹𝑖({𝜉𝑗 (𝜃)}). The mean, variance, correlation and any other statistics
of random field 𝐻(𝒙, 𝜃) can be obtained from the above Hermite PC-KL
expansion. The accuracy of the PC-KL expansion can be evaluated by
comparing the statistics obtained from the PC-KL expansion with the
input statistics of random field 𝐻(𝒙, 𝜃).

4. Galerkin stochastic elasto-plastic finite element method

The uncertain material properties and the uncertain input mo-
tions are modeled in Section 6 as heterogeneous random fields and

http://mostwiedzy.pl


H. Wang et al.

i
t

𝜌

l

𝑘

t

𝑘

r
b
a

m

d

R

𝛼
d

t

a
m
t
i
i
h

a

o

Soil Dynamics and Earthquake Engineering 191 (2025) 109283 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

a non-stationary random process, respectively. The Hermite PC ex-
pansion is applied to both, the input uncertainties and the output
uncertainties, like the probabilistic displacement or acceleration fields.
The stochastic Galerkin projection is used in order to minimize the error
n the PC coefficients of the output fields. These PC coefficients are used
o obtain the statistics and distributions of the uncertain output fields.

The weak form of the deterministic discrete dynamic equilibrium
equation [46] can be written as

∫𝐷𝑒

𝑁𝑚(𝒙)𝜌(𝒙)𝑁𝑛(𝒙)𝑑 𝑉 �̈�𝑛(𝑡) +∫𝐷𝑒

∇𝑁𝑚(𝒙)𝐸(𝒙)∇𝑁𝑛(𝒙)𝑑 𝑉 𝑢𝑛(𝑡) −𝑓𝑚(𝑡) = 0 ,

(8)

where 𝑁𝑚(𝒙), 𝑁𝑛(𝒙) are the shape functions, 𝑓𝑚(𝑡) is the nodal force,
(𝒙) is the deterministic material density and 𝐸(𝒙) is the deterministic,

elastic or elasto-plastic, material stiffness.
The tangent stiffness, 𝐸(𝒙), is generally a heterogeneous random

field and the dynamic nodal force, 𝑓𝑚(𝑡), is a non-stationary ran-
dom process. Both, 𝐸(𝒙) and 𝑓𝑚(𝑡), can be represented using mul-
ti-dimensional Hermite PC expansions

𝐸(𝒙, 𝜃) =
𝑃1
∑

𝑖=0
𝐸𝑖(𝒙)𝛹𝑖(

{

𝜉𝑟(𝜃)
}

) (9)

𝑓𝑚(𝑡, 𝜃) =
𝑃2
∑

𝑗=0
𝑓𝑚𝑗 (𝑡)𝜓𝑗 (

{

𝜉𝑟(𝜃)
}

) (10)

with known PC coefficients, 𝐸𝑖(𝒙) and 𝑓𝑚𝑗 (𝑡).
When a system with uncertain properties is excited by uncertain

oads, the resulting displacement and acceleration are also uncertain
and they can be represented using the Hermite PC expansions up to
order 𝑃3,

𝑢𝑛(𝑡, 𝜃) =
𝑃3
∑

𝑘=0
𝑢𝑛𝑘(𝑡)𝜙𝑘({𝜉𝑙(𝜃)}) (11)

�̈�𝑛(𝑡, 𝜃) =
𝑃3
∑

𝑘=0
�̈�𝑛𝑘(𝑡)𝜙𝑘({𝜉𝑙(𝜃)}) , (12)

with unknown PC coefficients 𝑢𝑛𝑘(𝑡) and �̈�𝑛𝑘(𝑡).
After substituting Eqs. (9) to (12) into Eq. (8), and denoting the

gradient, ∇𝑁𝑛(𝒙), of a shape function, 𝑁𝑛(𝒙), as 𝐵𝑛(𝒙), one arrives at
𝑃3
∑

=0
∫𝐷𝑒

𝑁𝑚(𝒙)𝜌(𝒙)𝑁𝑛(𝒙)𝑑 𝑉 𝜙𝑘�̈�𝑛𝑘(𝑡) +

𝑃3
∑

𝑘=0

𝑃1
∑

𝑖=0
∫𝐷𝑒

𝐵𝑚(𝒙)𝐸𝑖(𝒙)𝐵𝑛(𝒙)𝑑 𝑉 𝛹𝑖𝜙𝑘𝑢𝑛𝑘(𝑡) −
𝑃2
∑

𝑗=0
𝑓𝑚𝑗 (𝑡)𝜓𝑗 = 0 . (13)

Eq. (13) can be multiplied with PC basis 𝜙𝑙 [26] and, then, the expec-
ation operator, ⟨⋅⟩, can be applied to obtain
𝑃3
∑

=0
⟨𝜙𝑘𝜙𝑙⟩∫𝐷𝑒

𝑁𝑚(𝒙)𝜌(𝒙)𝑁𝑛(𝒙)𝑑 𝑉 �̈�𝑛𝑘(𝑡) +

𝑃3
∑

𝑘=0

𝑃1
∑

𝑖=0
⟨𝛹𝑖𝜙𝑘𝜙𝑙⟩∫𝐷𝑒

𝐵𝑚(𝒙)𝐸𝑖(𝒙)𝐵𝑛(𝒙)𝑑 𝑉 𝑢𝑛𝑘(𝑡) =
𝑃2
∑

𝑗=0
⟨𝜓𝑗𝜙𝑙⟩𝑓𝑚𝑗 (𝑡) (14)

with 𝑙 = 0, 1, 2,… , 𝑃3, where 𝑃3 is the maximum order of the PC
expansion, 𝑚 = 1, 2,… , 𝑁 and 𝑁 is the number of FE nodes. Eq. (14)
epresents the stochastic Galerkin projection. The expectations of dou-
le products, ⟨𝜙𝑘𝜙𝑙⟩, ⟨𝜓𝑗𝜙𝑙⟩, and of triple products, ⟨𝛹𝑖𝜙𝑘𝜙𝑙⟩, can be
nalytically computed beforehand and used in the SEPFE calculation.

Eq. (14) can be rewritten into the following tensor form

𝑴 ∶ �̈� + 𝑲 ∶ 𝒖 = 𝑭 , (15)

where 𝑴 , 𝑲 and 𝑭 are the stochastic mass, stiffness and force, respec-
tively. The unknown PC coefficients of the acceleration and displace-

ent are denoted as �̈� and 𝒖, respectively.
Eq. (15) can be further rewritten using the index notation with the

Einstein summation convention,
𝑀𝑚𝑙 𝑛𝑘�̈�𝑛𝑘 + 𝐾𝑚𝑙 𝑛𝑘𝑢𝑛𝑘 = 𝐹𝑚𝑙 , (16)

4 
where the following holds

𝑀𝑚𝑙 𝑛𝑘 =
⋃

𝑒
⟨𝜙𝑘𝜙𝑙⟩∫𝐷𝑒

𝑁𝑚(𝒙)𝜌(𝒙)𝑁𝑛(𝒙)𝑑 𝑉 (17)

𝐾𝑚𝑙 𝑛𝑘 =
⋃

𝑒

𝑃1
∑

𝑖=0
⟨𝛹𝑖𝜙𝑘𝜙𝑙⟩∫𝐷𝑒

𝐵𝑚(𝒙)𝐸𝑖(𝒙)𝐵𝑛(𝒙)𝑑 𝑉 (18)

𝐹𝑚𝑙 =
⋃

𝑒

𝑃2
∑

𝑗=0
⟨𝜓𝑗𝜙𝑙⟩𝑓𝑚𝑗 (19)

and ⋃

𝑒
is the assembly operator for the elemental mass, stiffness and

force. The Rayleigh damping can also be taken into account, that is,
𝑴 ∶ �̈� + 𝑪 ∶ �̇� + 𝑲 ∶ 𝒖 = 𝑭 . (20)

The stochastic damping matrix is
𝑪 = 𝛼𝑴 + 𝛽𝑲 , (21)

where 𝛼 and 𝛽 are the Rayleigh damping parameters. The Rayleigh
amping corresponds to the damping ratio, 𝜉, being a function,

𝜉 = 1
2
( 𝛼
𝜔

+ 𝛽 𝜔) , (22)

of the response frequency, 𝜔, see Chopra [47]. The uncertainty in the
ayleigh damping is included via the uncertainties of the mass and

stiffness. In Eq. (21), both, mass 𝑴 and stiffness 𝑲 , are stochastic
and account for the uncertainties from the material density and stiff-
ness. Additional uncertainties could be included through the uncertain
Rayleigh damping parameters, 𝛼 and 𝛽. However, these uncertainties
are difficult to quantify. Hence, in this study, Rayleigh parameters,

and 𝛽, are assumed to be deterministic and the uncertainty in the
amping results solely from the uncertainty in the mass and stiffness.

The same Galerkin projection scheme as in Eq. (14) is applied to
propagate the uncertainty from the damping through the system.

Eqs. (15) and (20) can be solved using, for example, the Newmark
ime integration method [48]. The size of the SEPFE system of equa-

tions is larger compared to the corresponding deterministic FE system
of equations. This difference results from the PC expansion used to
represent the probabilistic displacement and acceleration fields.

After solving Eq. (15) or (20) for the unknown PC coefficients of
the displacement, 𝑢𝑛𝑘, and of the acceleration, �̈�𝑛𝑘, one obtains the
complete probabilistic dynamic response of the system. Using these PC
coefficients, 𝑢𝑛𝑘 and �̈�𝑛𝑘, any probabilistic characteristic of the uncertain
system response can be obtained. For example, the time-evolving mean
and variance of the probabilistic displacement response at node 𝑛 can
be computed as follows

⟨𝑢𝑛(𝑡, 𝜃)⟩ = 𝑢𝑛0(𝑡) (23)

Var (𝑢𝑛(𝑡, 𝜃)) =
𝑃3
∑

𝑘=1
⟨𝜙2

𝑘⟩𝑢
2
𝑛𝑘(𝑡) . (24)

4.1. Probabilistic elasto-plastic constitutive modeling

The probabilistic 1D tangent stiffness, 𝐸(𝒙, 𝜃), needs to be updated
t each incremental step. The probabilistic elasto-plastic constitutive
odel is called at each Gauss point to update the uncertain elas-

o-plastic stiffness and stress. The constitutive behavior of the soil
s described by a 1D elasto-plastic material model with a vanish-
ng elastic region and the Armstrong-Frederick non-linear kinematic
ardening [49,50].

The 1D deterministic relationship between the stress increment, d𝜎,
nd the strain increment d𝜖, can be written as

d𝜎 = 𝐻𝑎d𝜖 − 𝐶𝑟𝜎|d𝜖| , (25)

where 𝐻𝑎 and 𝐶𝑟 are the model parameters [49,50]. The resulting shear
strength is 𝑆𝑢 = 𝐻𝑎∕𝐶𝑟. The elasto-plastic tangent stiffness is a function
f stress 𝜎,

𝑑 𝜎
𝐸(𝜎) = d𝜖 = 𝐻𝑎 − 𝐶𝑟𝜎 sgn(d𝜖) , (26)
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where sgn(d𝜖) is the sign function of the strain increment, d𝜖. This
unction returns sgn(d𝜖) = 1 for d𝜖 > 0 and sgn(d𝜖) = −1 otherwise.

Here, the model parameters, 𝐻𝑎 and 𝐶𝑟, are uncertain and they are
represented as random fields using the Hermite PC expansion with basis
{𝜑𝑖({𝜉𝑟(𝜃)})}, i.e.,

𝐻𝑎(𝒙, 𝜃) =
𝑃
∑

𝑖=0
𝐻𝑎𝑖(𝒙)𝜑𝑖({𝜉𝑟(𝜃)}) (27)

𝐶𝑟(𝒙, 𝜃) =
𝑃
∑

𝑖=0
𝐶𝑟𝑖(𝒙)𝜑𝑖({𝜉𝑟(𝜃)}) . (28)

Strain increments d𝜖(𝒙, 𝜃) represent input to the constitutive driver, see
q. (25). Strain increments d𝜖(𝒙, 𝜃) are also uncertain and are obtained

from displacements using 𝜖(𝒙, 𝜃) = 𝐵(𝒙)𝑢𝑛(𝑡, 𝜃), so that

d𝜖(𝒙, 𝜃) =
𝑃
∑

𝑖=0
d𝜖𝑖(𝒙)𝜑𝑖({𝜉𝑟(𝜃)}) . (29)

The probabilistic incremental stress, d𝜎(𝒙, 𝜃), and the tangent stiffness,
(𝒙, 𝜃), can be represented using unknown PC coefficients d𝜎𝑖(𝒙) and
𝑖(𝒙),

d𝜎(𝒙, 𝜃) =
𝑃
∑

𝑖=0
d𝜎𝑖(𝒙)𝜑𝑖({𝜉𝑟(𝜃)}) (30)

𝐸(𝒙, 𝜃) =
𝑃
∑

𝑖=0
𝐸𝑖(𝒙)𝜑𝑖({𝜉𝑟(𝜃)}) . (31)

Eqs. (27) to (31) can be substituted into Eqs. (25) and (26). Then,
both equations can be multiplied with PC basis 𝜑𝑚 and the expectation
perator, ⟨⋅⟩, can be applied to obtain
𝑃
∑

𝑖=0
d𝜎𝑖⟨𝜑𝑚𝜑𝑖⟩ =

𝑃
∑

𝑖=0

𝑃
∑

𝑘=0
𝐻𝑎𝑖d𝜖𝑘⟨𝜑𝑚𝜑𝑘𝜑𝑖⟩ ±

𝑃
∑

𝑖=0

𝑃
∑

𝑛=0

𝑃
∑

𝑠=0
𝐶𝑟𝑖𝜎𝑛d𝜖𝑠⟨𝜑𝑚𝜑𝑛𝜑𝑠𝜑𝑖⟩

(32)

𝑃
∑

𝑖=0
𝐸𝑖⟨𝜑𝑚𝜑𝑖⟩ =

𝑃
∑

𝑖=0
𝐻𝑎𝑖⟨𝜑𝑚𝜑𝑖⟩ ±

𝑃
∑

𝑖=0

𝑃
∑

𝑛=0
𝐶𝑟𝑖𝜎𝑛⟨𝜑𝑚𝜑𝑛𝜑𝑖⟩ . (33)

Unknown PC coefficients of the incremental stress d𝜎𝑖(𝒙) and of the
elasto-plastic stiffness 𝐸𝑖(𝒙) can be computed using the orthogonality
of the Hermite PC basis,

d𝜎𝑖 =
1

Var [𝜑i]

[

𝐻𝑎𝑗d𝜖𝑘⟨𝜑𝑗𝜑𝑘𝜑𝑖⟩ ± 𝐶𝑟𝑙𝜎𝑛d𝜖𝑠⟨𝜑𝑙𝜑𝑛𝜑𝑠𝜑𝑖⟩
]

(34)

𝐸𝑖 = 𝐻𝑎𝑖 ±
1

Var [𝜑i]
𝐶𝑟𝑙𝜎𝑛⟨𝜑𝑙𝜑𝑛𝜑𝑖⟩ , (35)

where Var [𝜑i] is the variance of 𝜑𝑖{𝜉𝑟(𝜃)} and it equals to ⟨𝜑2
𝑖 ⟩. The

instein’s summation convention is used in Eqs. (34) and (35) with
index 𝑖 being a free index. The probabilistic material response, d𝜎, is
here obtained using the explicit forward Euler algorithm [46].

In Fig. 4, the stress-strain relation is plotted using the uncertain
aterial parameters, representing initial stiffness, 𝐻𝑎 with the mean of

10 MPa and the coefficient of variation, CV = 25%, and the uncertain
hear strength, 𝑆𝑢 = 𝐻𝑎∕𝐶𝑟, with the mean of 150 kPa and CV = 25%.
he material is driven by uncertain cyclic strain with the mean strain

ncrement of 10−4 and CV = 20%.
The SEPFE material response matches well the MCS with 10,000

samples. The SEPFE is nearly 2000 times more computationally effi-
cient than the MCS, for the same level of accuracy.

5. Sobol’ sensitivity analysis using the polynomial chaos expan-
sion

In the Sobol’ sensitivity analysis, the variance of the uncertain
utput of a model is decomposed into the sum of contributions from the

individual random inputs and groups of random inputs. A mathematical
model with 𝑛 uncertain independent inputs gathered in vector 𝒙 and the
esulting uncertain scalar output,
𝑦 = 𝑓 (𝒙) , (36)

5 
Fig. 4. Hysteretic behavior of 1D elasto-plastic material with uncertain parameters 𝐻𝑎
and 𝑆𝑢 = 𝐻𝑎∕𝐶𝑟.

is considered. This uncertain scalar 𝑦 is assumed to have a finite
variance. Model output 𝑓 (𝒙) can be decomposed [16] in the following

ay

𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛) = 𝑓0 +
𝑛
∑

𝑖=1
𝑓𝑖(𝑥𝑖) +

∑

1≤𝑖<𝑗≤𝑛
𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 ) + ⋯

+ 𝑓1,2,…,𝑛(𝑥1,… , 𝑥𝑛) . (37)

Eq. (37) is known as the analysis of variance (ANOVA) representation
of 𝑓 (𝒙). There are 2𝑛 summands in Eq. (37). Constant 𝑓0 is the mean
value of 𝑓 (𝒙). The integral of each summand in Eq. (37) over any of its
independent random arguments is zero,

∫ 𝑓𝑖1 ,…,𝑖𝑠 (𝑥𝑖1 , 𝑥𝑖2 ,… , 𝑥𝑖𝑠 ) d𝑥𝑖𝑘 = 0 f or 1 ≤ 𝑘 ≤ 𝑠 ≤ 𝑛 . (38)

Using Eq. (38), it can be shown that the summands are orthogonal to
each other, i.e.,

∫ 𝑓𝑖1 ,…,𝑖𝑠 (𝑥𝑖1 , 𝑥𝑖2 ,… , 𝑥𝑖𝑠 )𝑓𝑗1 ,…,𝑗𝑡 (𝑥𝑗1 , 𝑥𝑗2 ,… , 𝑥𝑗𝑡 ) d𝒙 = 0

f or {𝑖1,… , 𝑖𝑠} ≠ {𝑗1, .., 𝑗𝑡} . (39)

For given mathematical model 𝑓 (𝒙), the above ANOVA representa-
tion, Eq. (37), is unique and can be derived analytically. The univariate
terms can be found as

𝑓𝑖(𝑥𝑖) = ∫ 𝑓 (𝒙) 𝑑𝒙∼𝑖 − 𝑓0 , (40)

where ∫ (⋅) 𝑑𝒙∼𝑖 denotes the integration over all dimensions except 𝑥𝑖.
imilarly, the bivariate terms can be derived as

𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 ) = ∫ 𝑓 (𝒙) 𝑑𝒙∼[𝑖𝑗] − 𝑓𝑖(𝑥𝑖) − 𝑓𝑗 (𝑥𝑗 ) − 𝑓0 . (41)

Any summand, 𝑓𝑖1 ,…,𝑖𝑠 (𝑥𝑖1 , 𝑥𝑖2 ,… , 𝑥𝑖𝑠 ), in Eq. (37) can be obtained using
multidimensional integrals of model output 𝑓 (𝒙).

The total variance of the probabilistic model response, 𝑦 = 𝑓 (𝒙), is
𝐷 = Var [𝑓 (𝒙)] = ∫ 𝑓 2(𝒙) 𝑑𝒙 − 𝑓 2

0 . (42)

Using Eqs. (37) and (39), the total variance, 𝐷, can be decomposed as
follows

𝐷 =
𝑛
∑

𝑖=1
𝐷𝑖 +

∑

1≤𝑖<𝑗≤𝑛
𝐷𝑖𝑗 + ⋯ + 𝐷1,2,…,𝑛 . (43)

The individual summands in Eq. (43) are given by

𝐷𝑖1 ,…,𝑖𝑠 = ∫ 𝑓 2
𝑖1 ,…,𝑖𝑠

(𝑥𝑖1 ,… , 𝑥𝑖𝑠 ) d𝑥𝑖1 ,… ,d𝑥𝑖𝑠 wit h 1 ≤ 𝑖1 <⋯ < 𝑖𝑠 ≤ 𝑛,

𝑠 = 1,… , 𝑛 . (44)

The Sobol’ indices are defined as
𝑆𝑖1 ,…,𝑖𝑠 = 𝐷𝑖1 ,…,𝑖𝑠∕𝐷 . (45)
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The Sobol’ indices, 𝑆𝑖1 ,…,𝑖𝑠 , express the fractional contributions from
independent random inputs stored as 𝒙 = {𝑥𝑖1 ,… , 𝑥𝑖𝑠} to the total
variance, 𝐷. The first order indices, 𝑆𝑖, describe the individual influ-
ence of each uncertain input, 𝑥𝑖. The higher-order terms describe the
mixed influence, when a group of uncertain inputs is considered. From
q. (43), it follows that
𝑛

𝑖=1
𝑆𝑖 +

∑

1≤𝑖<𝑗≤𝑛
𝑆𝑖,𝑗 + ⋯ + 𝑆1,2,…,𝑛 = 1 . (46)

The total sensitivity index, 𝑆 t ot al
𝑖 , is defined to evaluate the total influ-

nce of a given input, 𝑥𝑖, as

𝑆 t ot al
𝑖 =

∑

S𝑖

𝐷𝑖1 ,…,𝑖𝑠 , (47)

where set S𝑖 gathers all 𝑖1,… , 𝑖𝑠 that include 𝑖,

S𝑖 = {(𝑖1,… , 𝑖𝑠) ∶ ∃𝑘, 1 ≤ 𝑘 ≤ 𝑠, 𝑖𝑘 = 𝑖} . (48)

Sobol’ indices 𝐷𝑖1 ,…,𝑖𝑠 in Eq. (47) are partial sensitivity indices related
o a given input, 𝑥𝑖.

Using the Hermite PC expansion [20], the probabilistic model re-
ponse, 𝑦 = 𝑓 (𝒙), can be represented as

𝑦 =
𝑃
∑

𝑗=0
𝑦𝑗𝛹𝑗 (𝝃), 𝝃 = {𝜉1,… , 𝜉𝑀} , (49)

where {𝛹𝑗} is multi-dimensional orthogonal Hermite PC basis of max-
imum order 𝑃 that is constructed from 𝑀-dimensional standard Gaus-
sian random vector 𝝃 with independent components 𝜉𝑖.

The input random vector, 𝒙, of any prescribed joint PDF or any
iven marginal PDF and correlation can be approximately transformed
nto the standard Gaussian random vector, 𝝃, using a transformation
echnique, for example, the isoprobabilistic transform and the Nataf
ransform [51]. Therefore, the probabilistic model response can be eval-

uated and represented using the Hermite PC expansion from Eq. (49).
Here, the input random vector, 𝒙, is transformed into the standard
Gaussian random vector, 𝝃, and the Hermite PC expansion is used. The
nput random vector, 𝒙, can also be transformed into other standard

random variables, e.g. into the standard uniform random variable,
and the model response, 𝑦, can, then, be represented using the PC
expansion [22].

The PC basis, {𝛹𝑗 (𝝃)}, is zero mean and orthogonal. Hence the mean,
𝑦, and the total variance of the model response, 𝐷𝑃 𝐶 , can be calculated
from its PC representation,

𝑦 = 𝑬[𝑓 (𝒙)] = 𝑦0

𝑃 𝐶 = Var
[ 𝑃
∑

𝑗=0
𝑦𝑗𝛹𝑗

]

=
𝑃
∑

𝑗=1
𝑦2𝑗𝑬

[

𝛹 2
𝑗

]

,
(50)

where 𝑬[⋅] is the expectation operator.
To compute the Sobol’ indices, the PC expansion of the model

response, 𝑦, from Eq. (49) needs to be reorganized into the ANOVA
orm [33]. The multi-dimensional PC basis, {𝛹𝑗 (𝝃)}, is generally ob-

tained as the tensor product of uni-dimensional PC bases,

𝛹𝑗 (𝝃) =
𝑛
∏

𝑖=1
𝜙𝛼𝑖 (𝜉𝑖) , (51)

where 𝜙𝛼𝑖 (𝜉𝑖) is a uni-dimensional polynomial of order 𝛼𝑖 in 𝜉𝑖. This
𝛼𝑖 (𝜉𝑖) is dependent on the standard random variable, 𝜉𝑖, [22]. The con-
ection between the PC expansion of model response 𝑦 from Eq. (49),

and the ANOVA representation of 𝑦 from Eq. (36) can be established
by defining set S from 𝜶 as [33]

S𝑖1 ,…,𝑖𝑠 =
{

𝜶 ∶ ∀𝑘 = 1,… , 𝑛,when 𝑘 ∈ (𝑖1,… , 𝑖𝑠), 𝛼𝑘 > 0, ot her wise,
𝛼𝑘 = 0} . (52)

For example, set S𝑖 would correspond to the PC basis depending only
on dimension 𝜉 . With Eq. (52), the PC expansion from Eq. (49) can be
𝑖

6 
Fig. 5. 1D shear beam model.

rewritten into the ANOVA representation as

𝑦 = 𝑦0 +
𝑛
∑

𝑖=1

∑

𝜶∈S𝑖

𝑦𝜶𝛹𝜶(𝜉𝑖) +
∑

1≤𝑖1<𝑖2≤𝑛

∑

𝜶∈S𝑖1 ,𝑖2

𝑦𝜶𝛹𝜶(𝜉𝑖1 , 𝜉𝑖2 ) + ⋯

+
∑

1≤𝑖1<⋯<𝑖𝑠≤𝑛

∑

𝜶∈S𝑖1 ,…,𝑖𝑠

𝑦𝜶𝛹𝜶(𝜉𝑖1 ,… , 𝜉𝑖𝑠 ) + ⋯

+
∑

𝜶∈S1,2,…,𝑛

𝑦𝜶𝛹𝜶(𝜉1,… , 𝜉𝑛) ,

(53)

where the term ∑

𝜶∈S𝑖1 ,…,𝑖𝑠
𝑦𝜶𝛹𝜶(𝜉𝑖1 ,… , 𝜉𝑖𝑠 ) denotes the summation

of these PC expansions which depend on standard random variables
{𝜉𝑖1 ,… , 𝜉𝑖𝑠} only. Using Eq. (53), the PC-based Sobol’ indices can be
derived as

𝑆𝑃 𝐶𝑖1 ,…,𝑖𝑠
=

∑

𝜶∈S𝑖1 ,…,𝑖𝑠

𝑦2𝜶𝑬
[

𝛹 2
𝜶
]

∕𝐷𝑃 𝐶 . (54)

The total Sobol’ indices, 𝑆𝑃 𝐶 ,t ot al𝑗1 ,…,𝑗𝑡
, for any group of random inputs can

be obtained as

𝑆𝑃 𝐶 ,t ot al𝑗1 ,…,𝑗𝑡
=

∑

(𝑖1 ,…,𝑖𝑠)∈S𝑗1 ,…,𝑗𝑡

𝑆𝑃 𝐶𝑖1 ,…,𝑖𝑠
, (55)

where set S𝑗1 ,…,𝑗𝑡 is defined as

S𝑗1 ,…,𝑗𝑡 = {(𝑖1,… , 𝑖𝑠) ∶ (𝑗1,… , 𝑗𝑡) ⊂ (𝑖1,… , 𝑖𝑠)} . (56)

Once the PC representation of the probabilistic model response is
stablished, the Sobol’ sensitivity indices can be analytically evaluated

with a very small computational cost.

6. Sobol’ sensitivity analysis of a 1D elasto-plastic shear wave
propagation

6.1. Uncertain soil properties

Let us consider the stochastic site response of a 10 m soil layer
described by uncertain material properties and subjected to uncertain
bedrock motions. The soil is discretized into 10 shear beam elements
with the size of 1 m, Fig. 5. The soil is modeled using 1D elasto-plastic
material with a vanishing elastic region and the Armstrong-Frederick
kinematic hardening from Section 4.1. Solely the uncertainty in ma-
terial parameter 𝐻𝑎, being the initial stiffness, i.e., the stiffness at
the geostatic stress state, is taken into account. Material parameter
𝐶𝑟 is assumed to be deterministic, due to the practical difficulties in
the estimation of its statistical properties. To ensure positive initial
stiffness, 𝐻𝑎 is represented as log-normally distributed random field
with the mean of 10 MPa and CV = 25%. Parameter 𝐶𝑟 is taken as
55.6. The uncertainty in the strength parameter, 𝑆𝑢 = 𝐻𝑎∕𝐶𝑟, with the
mean of 180 k Pa and CV = 25% [2,52] is due to the uncertainty in 𝐻𝑎.
The correlation of material parameter 𝐻 is modeled as exponential
𝑎
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Fig. 6. Uncertainty characterization of random field 𝐻𝑎(𝒙, 𝜃).
o

t
e

p
1
d

function with correlation length 𝑙𝑐 = 15 m as per Eq. (57). The
correlation of the strength parameter, 𝑆𝑢 = 𝐻𝑎∕𝐶𝑟, is the same as the
one of material parameter 𝐻𝑎.

𝜌(𝑥1, 𝑥2) = 𝑒−
|𝑥1−𝑥2 |

𝑙𝑐 (57)

Unit weight 𝛾 = 18 kN/m3 of the soil is deterministic. The Rayleigh
damping is used with deterministic parameters, 𝛼 = 0.7 Hz and 𝛽 =
4.2 × 10−3 s. Parameters 𝛼 and 𝛽 are selected to obtain damping ratio

≈ 7%, see Argyris and Mlejnek [53], over frequencies of interest,
.e., 1...10 Hz, cf. Eq. (22). The uncertain material parameters are

represented using the Hermite PC-KL expansion, see Section 3. The PC
with order 2 captures the log-normal distribution of material parameter
𝐻𝑎 and it is computationally more efficient than the PC of order 4, see
Fig. 6(a). The PC of dimension 4 is sufficient for the input exponential
correlation of material parameter 𝐻𝑎, see Fig. 6(b). Therefore, the
Hermite PC expansion of dimension 4 and order 2 is used for the PC
representation of uncertain material parameters.

6.2. Uncertain input motions

Input, bedrock motions are another source of the uncertainty. The
tochastic motions from Section 2 correspond to seismic scenario with
agnitude of the earthquake 𝑀 = 8, distance from the source of the

earthquake 𝑅𝑗 𝑏 = 12 km and bedrock site condition 𝑉𝑠30 = 620 m∕s
and they are used here. These uncertain input motions are modeled as
a non-stationary random process with statistics, e.g., mean, standard
deviation and correlation structure, obtained from 1500 simulated
realizations of uncertain motions from Section 2. As shown in Fig. 7,
the mean of this random process is close to zero and is much smaller
compared to the standard deviation.

The probability distribution of the random process is Gaussian and
hence the Hermite PC expansion with order 1 is sufficient, as shown
in Fig. 7. The statistics synthesized from the PC representation are
xact, see Fig. 7. However, a relatively large-dimensional Hermite PC
xpansion is required to capture the non-stationary correlation of the

random process, see Fig. 8(a). The Hermite PC expansions with order 1
nd different values of dimension, namely, 50, 100 and 200 are tested.
t is found that 50 dimensions of the Hermite PC expansion do not
uffice to capture the correlation of the random process, see Table 1.

The use of a larger-dimensional PC expansion allows to capture the
correlation better. However, large dimensional PC expansion will also
increase the computational cost of the SEPFE analysis. In Table 1, the
errors in the mean, standard deviation and correlation for different
dimensions of the PC expansion are given. Here, the ground motions
will be represented as a non-stationary random process with the PC
expansion of order 1 and dimension 100. The choice of the order
and dimension is dictated by the optimal accuracy and computational
efficiency.
 o

7 
Fig. 7. Verification of the mean and standard deviation of the Hermite PC-KL expansion
f the uncertain motions.

Table 1
Errors in the mean, standard deviation (S.D.) and correlation of the Hermite PC-KL
expansion of the uncertain motions.

PC dimension Dim. 50 Dim. 100 Dim. 200

Mean error [m∕s2] 1.74 × 10−11 1.74 × 10−11 1.74 × 10−11
S.D. error [m∕s2] 2.06 × 10−9 2.06 × 10−9 2.06 × 10−9
Correlation error 0.11 0.039 0.014

6.3. Probabilistic elasto-plastic wave propagation

After both, the uncertain material parameters and the uncertain
input motions, are discretized using the Hermite PC-KL expansion,
the stochastic elasto-plastic seismic wave propagation can be analyzed
using the SEPFEM. Here, its implementation in Real-ESSI Simulator
[36] was used. The Hermite PC expansion of dimension 4 is used
for the uncertain material parameters and the Hermite PC expansion
of dimension 100 is used for the uncertain seismic motions. Hence
he dimension of the Hermite PC expansion of the resulting fields,
.g., displacement or acceleration, is 104.

In a single SEPFE calculation, the complete probabilistic site re-
sponse is obtained from the intrusive propagation of the uncertain input
motions through the uncertain material. It is more computationally
efficient compared to the conventional Monte Carlo approach. The
resented case study took less than 15 min on a 4-core machine with
6 GB memory. The time-evolving mean and standard deviation of
isplacement and acceleration at the ground surface and at the depth
f 5 m are plotted in Figs. 9 and 10.
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Fig. 8. Verification of the correlation of the Hermite PC-KL expansion of uncertain motions.
Fig. 9. Mean and standard deviation (S.D.) of the uncertain displacement at the ground
surface and at the depth of 5 m.

The mean displacement and acceleration achieve significantly
smaller values compared to the corresponding values of the standard
deviation, both, at the ground surface and at the depth of 5 m. The
response at the ground surface, in terms of the displacement and
acceleration, is described by larger standard deviations than in the
case of the response at the depth of 5 m. Apart from that, there is
some uncertain permanent displacement, that is, a non-zero standard
deviation of ground displacement at the end of the seismic loading. This
is due to the material plastification.

With the results of the probabilistic site response represented by the
Hermite PC expansion, any ground motion intensity measure commonly
used in the probabilistic seismic hazard analysis (PSHA) can be ob-
tained. For example, PDFs of the PGA and of the spectral acceleration,
𝑆 𝑎(𝑇 = 1.0 s), at the ground surface and at the depth of 5 m are plotted
in Fig. 11. PDF of the PGA from Fig. 11 shows the so-called fat-tailed
characteristic, similarly as the one from Fig. 3 does. The PGA and the
spectral acceleration, 𝑆 𝑎(𝑇 = 1.0 s), at the ground surface have larger
median values and more variability than those at the depth of 5 m.

The results from the MCS with 10,000 runs are also given in Figs. 10
and 11. In Fig. 10, it can be seen that both, the mean and the standard
deviation, of the acceleration obtained from the SEPFE calculation are
close to those obtained using the MCS. The SEPFE calculation results in
a slightly larger variability, in terms of the standard deviation, than the
MCS. Some discrepancies between the PDFs obtained from the SEPFE
calculation and from the MCS can be seen in Fig. 11. For the mean
response of surface PGA, there is 9% difference between SEPFEM and
MCS. The mean response of surface acceleration 𝑆 𝑎(𝑇 = 1.0 s) from
SEPFEM is 8.3% higher than that from MCS. The differences can result
from the error in the probabilistic discretization of PC-KL expansion as
8 
shown in Table 1, Figs. 6 and 8. The limited number of samples in MCS
might have also contributed to the discrepancies between the results for
SEPFEM and MCS.

Site-specific effects should be taken into account in the seismic
ground motion modeling. Some empirical models have been proposed
in the literature in order to account for the site amplification and
non-linear effects in the case of a few intensity measures, like the PGA
or the spectral acceleration, 𝑆 𝑎, [54]. A site response analysis allows to
investigate the site-specific effects in a more general and accurate way.
Most of the current site response analyses are deterministic, however.
Here, a framework for the elasto-plastic seismic site response analyses
is used. It allows to account for the uncertainty in material properties
and input motions. This framework can be successfully used in the
site-specific PSHA. From the simulated site behavior, not only the PDF
of any intensity measure but also the correlation between different
intensity measures can be obtained. In Fig. 12, the joint PDF of the
PGA and 𝑆 𝑎(𝑇 = 1.0 s) for the probabilistic site response at the ground
surface is plotted. The PGA and spectral acceleration 𝑆 𝑎(𝑇 = 1.0 s)
are positively correlated. The joint PDF and the correlation of intensity
measures enable the vector-valued PSHA.

6.4. Sobol’ sensitivity of the surface PGA

As per Section 5, Sobol’ indices of surface PGA probabilistic re-
sponse are calculated using the following input uncertainties, see Sec-
tions 6.1 and 6.2.

• Uncertain Soil Properties
The initial shear stiffness of the soil is modeled as log-normally
distributed random field with the marginal mean of 10 MPa and
CV = 25%. The correlation structure is modeled using the expo-
nential function with the correlation length of 15 m. The uncertain
soil parameter, 𝐻𝑎, is represented using PC basis {𝜉1, 𝜉2, 𝜉3, 𝜉4} of
dimension 4, order 2.

• Uncertain Input Seismic Motions
Time-domain uncertain motions are simulated for a given earth-
quake scenario with 𝑀 = 8, 𝑅𝑗 𝑏 = 12 km and bedrock site
condition 𝑉𝑠30 = 620 m∕s. The simulated uncertain motions
are modeled as non-stationary, Gaussian random process with
standard deviation 𝜎 = 0.6 for ln (PGA) and represented with PC
basis {𝜉5, 𝜉6,… , 𝜉104} of dimension 100, order 1.

From the computed Sobol’ indices, the relative contributions of
different input uncertainties to the variability of the output PGA at
ground surface can be obtained.

• Contribution from Uncertain Soil Properties
The total Sobol’ index describing the contribution from the un-
certain soil properties is 𝑆𝑃 𝐶 ,t ot al1,2,3,4 = 11.6%. The contribution to the
total variance of the PGA from the uncertain soil properties only,
i.e., excluding their interactions with the uncertain input motions,
is 1.2%. The contribution from the interaction of the uncertainty
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Fig. 10. Mean and standard deviation (S.D.) of the uncertain acceleration at the ground surface and at the depth of 5 m obtained from: (a) SEPFE calculation (b) MCS.
Fig. 11. PDFs of the PGA and of the spectral acceleration, 𝑆 𝑎(𝑇 = 1.0 s), at the ground surface and at the depth of 5 m.
Fig. 12. Joint PDF of the PGA and the spectral acceleration, 𝑆 𝑎(𝑇 = 1.0 𝑠), for ground surface motions.
in the material parameters and in the input motions, i.e., contribu-
tion from the interacting PC components from both, {𝜉1, 𝜉2, 𝜉3, 𝜉4}
and {𝜉5, 𝜉6,… , 𝜉104}, is 10.4%. Sensitivity of the probabilistic
system response to both, the individual uncertain material prop-
erties and input motions, as well as their combinations, should all
be analyzed.
The Sobol’ indices describing the contributions from the uncertain
soil properties to the overall uncertainty in the PGA at the ground
surface are given in Table 2.

• Contribution from Uncertain Input Motions
The total Sobol’ index describing the contribution from the uncer-
tain input motions is 𝑆𝑃 𝐶 ,t ot al5,6,…,104 = 98.8%. It is much larger than the
contribution from the uncertain soil properties, i.e., 11.6%. The
contribution to the total variance of the PGA from the uncertain
input motions only, that is, excluding their interactions with
the material parameters, is 88.4%. The contribution from these
interactions is 10.4%.
9 
The Sobol’ indices describing the contributions from uncertain
input motions to the uncertainty in the PGA at the ground surface
are given in Table 3.

The total variability of the PGA is controlled mainly by the uncertain
input motions. Such knowledge can be used in the engineering practice
for the purpose of a better management of funds and time dedicated for
the characterization of uncertain seismic input motions and uncertain
soil properties. In this case, more resources should be prescribed to
investigation of the uncertain input motions because they contribute
to the overall variance of the PGA at the ground surface much more
than the uncertain soil parameters do.

7. Conclusions

The Sobol’ sensitivity analysis of a stochastic elasto-plastic seismic
wave propagation was conducted using a novel numerical framework.
The uncertain input bedrock motions and the uncertain elasto-plastic
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Table 2
10 largest Sobol’ indices describing the contributions of the uncertain soil properties
o the uncertainty in the PGA at the ground surface.
Sobol’ index Value

𝑆𝑃 𝐶1,8 0.034

𝑆𝑃 𝐶1,6 0.013

𝑆𝑃 𝐶1,10 0.011

𝑆𝑃 𝐶1 0.009

𝑆𝑃 𝐶1,14 0.009

𝑆𝑃 𝐶1,17 0.007

𝑆𝑃 𝐶1,13 0.007

𝑆𝑃 𝐶1,15 0.006

𝑆𝑃 𝐶1,12 0.005

𝑆𝑃 𝐶1,5 0.003
... ...

Table 3
10 largest Sobol’ indices describing the contributions of the uncertain input motions to
the uncertainty in the PGA at the ground surface.

Sobol’ index Value

𝑆𝑃 𝐶26 0.142

𝑆𝑃 𝐶29 0.084

𝑆𝑃 𝐶35 0.076

𝑆𝑃 𝐶9 0.047

𝑆𝑃 𝐶27 0.043

𝑆𝑃 𝐶53 0.041

𝑆𝑃 𝐶5 0.038

𝑆𝑃 𝐶8 0.037

𝑆𝑃 𝐶34 0.036

𝑆𝑃 𝐶1,8 0.034
... ...

soil properties were modeled as a non-stationary random process and
eterogeneous random fields, respectively. 1D probabilistic dynamic
esponse of the soil was obtained using the SEPFEM. Through the
robabilistic discretization of the uncertainties using the Hermite PC
xpansion, the probabilistic system response was obtained efficiently.
he Sobol’ indices were computed to evaluate the sensitivity of the
ystem response to different uncertain inputs and their groups.

In this particular case, the uncertainty in the stochastic site response
s mainly related to the uncertainty in the input motions. The com-
ined uncertainty, in soil properties and motions, also significantly
ontributed to the overall uncertainty in the system response. The
roposed calculation of the sensitivity of the system response to the
ndividual uncertain inputs is very useful when making decisions about
he distribution of funds in order to reduce the overall uncertainty
n the predicted system response. Such influence should be analyzed

for each case individually. The presented framework has been im-
lemented into Real-ESSI Simulator [36] and it is available under

http://real-essi.us/. In the future, the presented framework will be
extended into a general 3D case, i.e., considering realistic, uncertain
3D heterogeneous site/geological conditions and 3D inclined, uncertain
input motions.

CRediT authorship contribution statement

Hexiang Wang: Writing – original draft, Validation, Software,
Methodology, Investigation. Fangbo Wang: Writing – review & edit-
ing, Software, Methodology. Han Yang: Writing – review & editing,
oftware, Methodology. Katarzyna Staszewska: Writing – review &

editing, Validation, Software, Methodology. Boris Jeremić: Writing –
10 
review & editing, Writing – original draft, Validation, Supervision, Soft-
ware, Resources, Project administration, Methodology, Investigation,
unding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
oris Jeremic reports financial support was provided by US Department
f Energy. Boris Jeremic reports a relationship with US Department
f Energy that includes: funding grants. If there are other authors,
hey declare that they have no known competing financial interests or
ersonal relationships that could have appeared to influence the work
eported in this paper.

Acknowledgments

Financial support for presented work was provided by the USA
epartment of Energy (DE-AC02-05CH11231), University of California,

Gdańsk University of Technology (DEC-014/2022/IDUB/II.1/
AMERICIUM) and by personal funds from the senior Author.

Data availability

Data will be made available on request.

References

[1] Kramer SL. Geotechnical earthquake engineering. Upper Saddle River, New
Jersey: Prentice Hall, Inc; 1996.

[2] Phoon K-K, Kulhawy FH. Characterization of geotechnical variability. Can
Geotech J 1999;36:612–24.

[3] Phoon K-K, Kulhawy FH. Evaluation of geotechnical property variability. Can
Geotech J 1999;36:625–39.

[4] Johari A, Amjadi A, Heidari A. Stochastic nonlinear ground response
analysis: A case study site in Shiraz, Iran. Sci Iran 2021;28(4):2070–86.
http://dx.doi.org/10.24200/sci.2021.55997.4507, arXiv:https://scientiairanica.
sharif.edu/article_22130_77198ba46377a18c9b124af6b01ac475.pdf URL
https://scientiairanica.sharif.edu/article_22130.html.

[5] Atik LA, Abrahamson N, Bommer JJ, Scherbaum F, Cotton F, Kuehn N. The
variability of ground-motion prediction models and its components. Seismol Res
Lett 2010;81(5):794–801.

[6] Amjadi AH, Johari A. Stochastic nonlinear ground response analysis considering
existing boreholes locations by the geostatistical method. Bull Earthq Eng
2022;20(5):2285–327. http://dx.doi.org/10.1007/s10518-022-01322-1.

[7] Johari A, Vali B, Golkarfard H. System reliability analysis of ground
response based on peak ground acceleration considering soil layers cross-
correlation. Soil Dyn Earthq Eng 2021;141:106475. http://dx.doi.org/10.1016/
j.soildyn.2020.106475, URL https://www.sciencedirect.com/science/article/pii/
S0267726120311015.

[8] Kottke AR, Rathje EM. Technical manual for strata. Tech. rep., Berkeley,
California: Pacific Earthquake Engineering Research Center; 2009.

[9] Sun Q, Guo X, Dias D. Evaluation of the seismic site response in randomized
velocity profiles using a statistical model with monte carlo simulations. Comput
Geotech 2020;120:103442. http://dx.doi.org/10.1016/j.compgeo.2020.103442,
URL https://www.sciencedirect.com/science/article/pii/S0266352X20300057.

[10] Wang F, Sett K. Time-domain stochastic finite element simulation of uncertain
seismic wave propagation through uncertain heterogeneous solids. Soil Dyn
Earthq Eng 2016;88:369–85. http://dx.doi.org/10.1016/j.soildyn.2016.07.011,
URL http://www.sciencedirect.com/science/article/pii/S0267726116300896.

[11] Wang H, Wang F, Yang H, Feng Y, Bayless J, Abrahamson NA, Jeremić B.
Time domain seismic risk analysis framework for nuclear installations. In:
Proceedings of the 25th international conference on structural mechanics in
reactor technology. sMiRT 25, Charlotte, NC, USA; 2019, p. 8.

[12] Wang H, Wang F, Yang H, Feng Y, Bayless J, Abrahamson NA, Jeremić B. Time
domain intrusive probabilistic seismic risk analysis of nonlinear shear frame
structure. Soil Dyn Earthq Eng 2020;136:106201. http://dx.doi.org/10.1016/
j.soildyn.2020.106201, URL http://www.sciencedirect.com/science/article/pii/
S0267726119313016.

[13] Johari A, Momeni M. Stochastic analysis of ground response using non-recursive
algorithm. Soil Dyn Earthq Eng 2015;69:57–82. http://dx.doi.org/10.1016/
j.soildyn.2014.10.025, URL https://www.sciencedirect.com/science/article/pii/
S0267726114002279.

http://real-essi.us/
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb1
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb1
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb1
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb2
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb2
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb2
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb3
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb3
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb3
http://dx.doi.org/10.24200/sci.2021.55997.4507
https://scientiairanica.sharif.edu/article_22130_77198ba46377a18c9b124af6b01ac475.pdf
https://scientiairanica.sharif.edu/article_22130_77198ba46377a18c9b124af6b01ac475.pdf
https://scientiairanica.sharif.edu/article_22130_77198ba46377a18c9b124af6b01ac475.pdf
https://scientiairanica.sharif.edu/article_22130.html
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb5
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb5
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb5
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb5
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb5
http://dx.doi.org/10.1007/s10518-022-01322-1
http://dx.doi.org/10.1016/j.soildyn.2020.106475
http://dx.doi.org/10.1016/j.soildyn.2020.106475
http://dx.doi.org/10.1016/j.soildyn.2020.106475
https://www.sciencedirect.com/science/article/pii/S0267726120311015
https://www.sciencedirect.com/science/article/pii/S0267726120311015
https://www.sciencedirect.com/science/article/pii/S0267726120311015
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb8
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb8
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb8
http://dx.doi.org/10.1016/j.compgeo.2020.103442
https://www.sciencedirect.com/science/article/pii/S0266352X20300057
http://dx.doi.org/10.1016/j.soildyn.2016.07.011
http://www.sciencedirect.com/science/article/pii/S0267726116300896
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb11
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb11
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb11
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb11
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb11
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb11
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb11
http://dx.doi.org/10.1016/j.soildyn.2020.106201
http://dx.doi.org/10.1016/j.soildyn.2020.106201
http://dx.doi.org/10.1016/j.soildyn.2020.106201
http://www.sciencedirect.com/science/article/pii/S0267726119313016
http://www.sciencedirect.com/science/article/pii/S0267726119313016
http://www.sciencedirect.com/science/article/pii/S0267726119313016
http://dx.doi.org/10.1016/j.soildyn.2014.10.025
http://dx.doi.org/10.1016/j.soildyn.2014.10.025
http://dx.doi.org/10.1016/j.soildyn.2014.10.025
https://www.sciencedirect.com/science/article/pii/S0267726114002279
https://www.sciencedirect.com/science/article/pii/S0267726114002279
https://www.sciencedirect.com/science/article/pii/S0267726114002279
http://mostwiedzy.pl


H. Wang et al. Soil Dynamics and Earthquake Engineering 191 (2025) 109283 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

[14] McKay MD. Evaluating prediction uncertainty. Tech. rep., Nuclear Regulatory
Commission; 1995.

[15] Saltelli A, Tarantola S, Chan K-S. A quantitative model-independent method for
global sensitivity analysis of model output. Technometrics 1999;41(1):39–56.

[16] Sobol I. Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates. Math Comput Simulation 2001;55(1):271–80. http:
//dx.doi.org/10.1016/S0378-4754(00)00270-6, the Second IMACS Seminar on
Monte Carlo Methods. URL http://www.sciencedirect.com/science/article/pii/
S0378475400002706.

[17] Abbiati G, Marelli S, Tsokanas N, Sudret B, Stojadinović B. A global sen-
sitivity analysis framework for hybrid simulation. Mech Syst Signal Process
2021;146:106997. http://dx.doi.org/10.1016/j.ymssp.2020.106997, URL https:
//www.sciencedirect.com/science/article/pii/S0888327020303836.

[18] Zeighami F, Sandoval L, Guadagnini A, Di Federico V. Uncertainty
quantification and global sensitivity analysis of seismic metabarriers. Eng
Struct 2023;277:115415. http://dx.doi.org/10.1016/j.engstruct.2022.115415,
URL https://www.sciencedirect.com/science/article/pii/S0141029622014912.

[19] Bhattacharjee G, Baker JW. Using global variance-based sensitivity analysis to
prioritise bridge retrofits in a regional road network subject to seismic hazard.
Struct Infrastruct Eng 2023;19(2):164–77. http://dx.doi.org/10.1080/15732479.
2021.1931892, arXiv:https://doi.org/10.1080/15732479.2021.1931892.

[20] Ghanem RG, Spanos PD. Stochastic finite elements, a spectral approach, revised
edition edition. Dover Publications Inc.; 1991.

[21] Sakamoto S, Ghanem R. Polynomial chaos decomposition for the sim-
ulation of non-gaussian nonstationary stochastic processes. J Eng Mech
2002;128(2):190–201.

[22] Xiu D, Karniadakis GE. The Wiener–Askey polynomial chaos for stochastic
differential equations. SIAM J Sci Comput 2002;24(2):619–44. http://dx.doi.org/
10.1137/S1064827501387826.

[23] Xiu D, Karniadakis GE. Modeling uncertainty in flow simulations via generalized
polynomial chaos. J Comput Phys 2003;187(1):137–67.

[24] Oladyshkin S, Nowak W. Data-driven uncertainty quantification using the arbi-
trary polynomial chaos expansion. Reliab Eng Syst Saf 2012;106:179–90. http:
//dx.doi.org/10.1016/j.ress.2012.05.002, URL http://www.sciencedirect.com/
science/article/pii/S0951832012000853.

[25] Jakeman JD, Franzelin F, Narayan A, Eldred M, Plfüger D. Polynomial chaos
expansions for dependent random variables. Comput Methods Appl Mech En-
grg 2019;351:643–66. http://dx.doi.org/10.1016/j.cma.2019.03.049, URL http:
//www.sciencedirect.com/science/article/pii/S0045782519301884.

[26] Ghanem R, Kruger RM. Numerical solution of spectral stochastic finite element
systems. Comput Methods Appl Mech Engrg 1996;129(3):289–303. http://dx.doi.
org/10.1016/0045-7825(95)00909-4.

[27] Ghanem R. Ingredients for a general purpose stochastic finite elements
implementation. Comput Methods Appl Mech Engrg 1999;168(1–4):19–34.

[28] Matthies HG, Brenner CE, Bucher CG, Soares CG. Uncertainties in probabilistic
numerical analysis of structures and solids – stochastic finite elements. Struct
Saf 2004;19(3):283–336.

[29] Matthies HG, Keese A. Galerkin methods for linear and nonlinear elliptic
stochastic partial differential equations. Comput Methods Appl Mech Engrg
2005;194(1):1295–331.

[30] Sett K, Jeremić B, Kavvas ML. Stochastic elastic–plastic finite elements. Com-
put Methods Appl Mech Engrg 2011;200(9–12):997–1007. http://dx.doi.org/10.
1016/j.cma.2010.11.021.

[31] Karapiperis K, Sett K, Kavvas ML, Jeremić B. Fokker-planck linearization for non-
gaussian stochastic elastoplastic finite elements.. Comput Methods Appl Mech
Engrg 2016;307:451–69.

[32] Wang F, Sett K. Time domain stochastic finite element simulation towards
probabilistic seismic soil–structure interaction analysis. Soil Dyn Earthq Eng
2019;116:460–75. http://dx.doi.org/10.1016/j.soildyn.2018.10.021, URL http://
www.sciencedirect.com/science/article/pii/S0267726118306365.
11 
[33] Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab
Eng Syst Saf 2008;93(7):964–79.

[34] Bora SS, Scherbaum F, Kuehn N, Stafford P, Edwards B. Development of a
response spectral ground-motion prediction equation (GMPE) for seismic-hazard
analysis from empirical fourier spectral and duration models. Bull Seismol Soc
Am 2015;105(4):2192–218.

[35] Stafford PJ. Interfrequency correlations among fourier spectral ordinates and
implications for stochastic ground-motion simulationinterfrequency correlations
among fourier spectral ordinates and implications. Bull Seismol Soc Am
2017;107(6):2774–91.

[36] Jeremić B, Jie G, Cheng Z, Tafazzoli N, Tasiopoulou P, Pisanò F, Abell JA,
Watanabe K, Feng Y, Sinha SK, Behbehani F, Yang H, Wang H, Staszewska KD.
The real-ESSI simulator system. Davis: University of California; 1988-2024, http:
//real-essi.us/.

[37] Gregor N, Abrahamson NA, Atkinson GM, Boore DM, Bozorgnia Y, Campbell KW,
Chiou BS-J, Idriss I, Kamai R, Seyhan E, et al. Comparison of NGA-West2 GMPEs.
Earthq Spectra 2014;30(3):1179–97.

[38] Boore DM. Simulation of ground motion using the stochastic method. Pure Appl
Geophys 2003;160:635–76.

[39] Bora SS, Cotton F, Scherbaum F. NGA-West2 empirical fourier and duration
models to generate adjustable response spectra. Earthq Spectra 2018;2.

[40] Bayless J, Abrahamson NA. Summary of the ba18 ground-motion model for
fourier amplitude spectra for crustal earthquakes in california. Bull Seismol Soc
Am 2019;109(5):2088–105.

[41] Bayless J, Abrahamson NA. Evaluation of the interperiod correlation of
ground-motion simulations. Bull Seismol Soc Am 2018;108(6):3413–30.

[42] Bayless J, Abrahamson NA. An empirical model for the interfrequency cor-
relation of epsilon for fourier amplitude spectra. Bull Seismol Soc Am
2019;109(3):1058–70.

[43] Boore DM. Phase derivatives and simulation of strong ground motions. Bull
Seismol Soc Am 2003;93(3):1132–43.

[44] Baglio MG. Stochastic ground motion method combining a Fourier amplitude
spectrum model from a response spectrum with application of phase derivatives
distribution prediction. (Ph.D. thesis), Politecnico di Torino; 2017.

[45] Rezaeian S, Petersen MD, Moschetti MP, Powers P, Harmsen SC, Frankel AD.
Implementation of NGA-West2 ground motion models in the 2014 US national
seismic hazard maps. Earthq Spectra 2014;30(3):1319–33.

[46] Jeremić B, Yang Z, Cheng Z, Jie G, Tafazzoli N, Preisig M, Tasiopoulou P,
Pisanò F, Abell J, Watanabe K, Feng Y, Sinha SK, Behbehani F, Yang H,
Wang H, Staszewska KD. Nonlinear finite elements: modeling and simulation
of earthquakes, soils, structures and their interaction, self-published-online.
University of California, Davis, CA, USA; 1989–2024, uRL: http://sokocalo.engr.
ucdavis.edu/jeremic/LectureNotes/.

[47] Chopra AK. Dynamics of structures, theory and application to earthquake
engineering. second ed.. Prentice Hall; 2000.

[48] Newmark NM. A method of computation for structural dynamics. ASCE J Eng
Mech Div 1959;85:67–94.

[49] Armstrong P, Frederick C. A mathematical representation of the multiaxial
bauschinger effect.. Technical Report RD/B/N/ 731, C.E.G.B., 1966.

[50] Pisanò F, Jeremić B. Simulating stiffness degradation and damping in soils via a
simple visco-elastic–plastic model. Soil Dyn Geotech Earthq Eng 2014;63:98–109.

[51] Lebrun R, Dutfoy A. An innovating analysis of the nataf transformation from the
copula viewpoint. Probab Eng Mech 2009;24(3):312–20.

[52] Jiang SH, Huang J, Huang F, Yang J, Yao C, Zhou CB. Modelling of spatial
variability of soil undrained shear strength by conditional random fields for slope
reliability analysis. Appl Math Model 2018;63:374–89.

[53] Argyris J, Mlejnek H-P. Dynamics of structures. North Holland in USA Elsevier;
1991.

[54] Kamai R, Abrahamson NA, Silva WJ. Nonlinear horizontal site amplification for
constraining the NGA-West2 GMPEs. Earthq Spectra 2014;30(3):1223–40.

http://refhub.elsevier.com/S0267-7261(25)00076-4/sb14
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb14
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb14
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb15
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb15
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb15
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://www.sciencedirect.com/science/article/pii/S0378475400002706
http://www.sciencedirect.com/science/article/pii/S0378475400002706
http://www.sciencedirect.com/science/article/pii/S0378475400002706
http://dx.doi.org/10.1016/j.ymssp.2020.106997
https://www.sciencedirect.com/science/article/pii/S0888327020303836
https://www.sciencedirect.com/science/article/pii/S0888327020303836
https://www.sciencedirect.com/science/article/pii/S0888327020303836
http://dx.doi.org/10.1016/j.engstruct.2022.115415
https://www.sciencedirect.com/science/article/pii/S0141029622014912
http://dx.doi.org/10.1080/15732479.2021.1931892
http://dx.doi.org/10.1080/15732479.2021.1931892
http://dx.doi.org/10.1080/15732479.2021.1931892
https://doi.org/10.1080/15732479.2021.1931892
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb20
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb20
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb20
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb21
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb21
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb21
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb21
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb21
http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1137/S1064827501387826
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb23
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb23
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb23
http://dx.doi.org/10.1016/j.ress.2012.05.002
http://dx.doi.org/10.1016/j.ress.2012.05.002
http://dx.doi.org/10.1016/j.ress.2012.05.002
http://www.sciencedirect.com/science/article/pii/S0951832012000853
http://www.sciencedirect.com/science/article/pii/S0951832012000853
http://www.sciencedirect.com/science/article/pii/S0951832012000853
http://dx.doi.org/10.1016/j.cma.2019.03.049
http://www.sciencedirect.com/science/article/pii/S0045782519301884
http://www.sciencedirect.com/science/article/pii/S0045782519301884
http://www.sciencedirect.com/science/article/pii/S0045782519301884
http://dx.doi.org/10.1016/0045-7825(95)00909-4
http://dx.doi.org/10.1016/0045-7825(95)00909-4
http://dx.doi.org/10.1016/0045-7825(95)00909-4
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb27
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb27
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb27
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb28
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb28
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb28
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb28
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb28
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb29
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb29
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb29
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb29
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb29
http://dx.doi.org/10.1016/j.cma.2010.11.021
http://dx.doi.org/10.1016/j.cma.2010.11.021
http://dx.doi.org/10.1016/j.cma.2010.11.021
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb31
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb31
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb31
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb31
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb31
http://dx.doi.org/10.1016/j.soildyn.2018.10.021
http://www.sciencedirect.com/science/article/pii/S0267726118306365
http://www.sciencedirect.com/science/article/pii/S0267726118306365
http://www.sciencedirect.com/science/article/pii/S0267726118306365
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb33
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb33
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb33
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb34
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb34
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb34
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb34
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb34
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb34
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb34
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb35
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb35
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb35
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb35
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb35
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb35
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb35
http://real-essi.us/
http://real-essi.us/
http://real-essi.us/
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb37
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb37
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb37
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb37
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb37
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb38
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb38
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb38
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb39
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb39
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb39
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb40
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb40
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb40
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb40
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb40
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb41
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb41
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb41
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb42
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb42
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb42
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb42
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb42
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb43
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb43
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb43
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb44
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb44
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb44
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb44
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb44
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb45
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb45
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb45
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb45
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb45
http://sokocalo.engr.ucdavis.edu/%20jeremic/LectureNotes/
http://sokocalo.engr.ucdavis.edu/%20jeremic/LectureNotes/
http://sokocalo.engr.ucdavis.edu/%20jeremic/LectureNotes/
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb47
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb47
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb47
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb48
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb48
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb48
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb49
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb49
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb49
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb50
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb50
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb50
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb51
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb51
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb51
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb52
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb52
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb52
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb52
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb52
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb53
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb53
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb53
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb54
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb54
http://refhub.elsevier.com/S0267-7261(25)00076-4/sb54
http://mostwiedzy.pl

	Sobol' sensitivity analysis of a 1D stochastic elasto-plastic seismic wave propagation
	Introduction
	Modeling of Uncertain Input, Bedrock Motions
	Hermite Polynomial Chaos Karhunen-Loe ve Expansion
	Galerkin Stochastic Elasto-plastic Finite Element Method
	Probabilistic Elasto-plastic Constitutive Modeling

	Sobol' Sensitivity Analysis using the Polynomial Chaos Expansion
	Sobol' Sensitivity Analysis of a 1D Elasto-plastic Shear Wave Propagation
	Uncertain Soil Properties
	Uncertain Input Motions
	Probabilistic Elasto-plastic Wave Propagation
	Sobol' Sensitivity of the surface PGA

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


