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Soft-decision schemes for radar estimation of
elevation at low grazing angles

Michat Meller, Kamil Stawiarski

Abstract—In modern radars, the problem of estimating
elevation angle at low grazing angles is typically solved using
superresolution techniques. These techniques often require one
to provide an estimate of the number of waveforms impinging
the array, which one can accomplish using model selection
techniques. In this paper, we investigate the performance of
an alternative approach, based on the Bayesian-like model
averaging. The Bayesian approach exploits the fact that the
parameters of the model related to multipath signals are
nuisance ones, which allows one to avoid the estimation of the
number of waveforms and improves estimation performance.
The method is introduced for the classical conditional maximum
likelihood estimator and extended to its, recently proposed,
robustified version. We find, however, that the robustified
estimator includes its own soft-decision mechanism and benefits
from the averaging only for low levels of model uncertainty.

I. INTRODUCTION

Estimation of elevation at low grazing angles is one of
long-standing challenges in radar signal processing. What
makes this problem difficult is the phenomenon of multipath
propagation |Barton| [1974]. The term multipath propagation
refers to the situation when the waveform experiences one or
more reflections which result in multiple spurious wavefronts
arriving at the receiver, along with the direct one.

In radar, the predominant source of the multipath is the
reflection of the target’s backscatter from the earth surface. At
medium and high grazing angles, one can reject the spurious
wavefront(s) using the spatial filtering (that is, beamform-
ing), which makes their influence on the estimation accuracy
negligible. However, as the target approaches the horizon,
the spatial proximity of the desired (direct) signal and the
unwanted one (multipath) reduces the effectiveness of the
spatial filtering and the difficulty of the estimation problem
increases. Eventually, the direct signal and the multipath both
enter the array mainlobe. This situation, if not recognized
in the design of the estimator, will result in a substantial
gstimation bias.

Multiple techniques were proposed to address this prob-
lem. Early solutions included the off-boresight tracking Bar-
ton [1974], the complex-valued monopulse method Sherman
[1971]], asymmetric beampatterns Barton| [1974or nuiling
out the reflections [White| [1974]]. Modern approaches typically
employ the so-called superresolution spectrum estimation tech-
niques |[Bonacci et al.| [2015]], Nickel| [2013]], van Trees et al.
[2002], Vincent et al.| [2014].
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Speaking succinctly, one can divide the superresolution
methods into two groups. Nonparametric methods usually
attempt to work out an estimate of the spatial spectfumi]
whose peaks are interpreted as DoAs of the signal sources.
Nonparametric methods include, among others, the Capon
estimator |Capon| [1969]], MUSIC, and ESPRIT methods Roy
and Kailath [[1989]], |Schimidt [1986] or the minimum norm ap-
proach |[Reddy et al.| [2015]. Note that nonparametric methods
are often not suited to the specifics of DoA in radar, because
of their requirements on the minimum number of observations,
source independence or array properties.

In the case of the parametric approach, the direction of
the taiget is found by fitting a parametric model to avail-
able observations. Parametric methods are usually empedded
in the maximum likelihood (ML) framework [Jaffer [1988]],
Nickel [2013]] and, to preserve much-desired model parsimony,
employ the flat-earth, specular reflection assumption Meeks
[1982].

The advantages of the parametric approach that are im-
portant to the application in radar include, among others,
modest computational complexity, ability to work with dsingig
observation (i.e., the monopulse capability) and satisfactory
performance, in most cases. However, the methods belonging
to this class can be sensitive to the modeling uncertainty Nickel
[2013]] — an unknown mismatch between the assumed and the
actual steering vectors. Modeling uncertainty can be caused
by multiple factors, such as poor array calibration, model
simplifications, or the presence of diffuse reflections. When the
mismatch reaches a certain level, the accuracy of the maximum
likelihood estimator breaks down, which means[that gross
estimation errors start occur increasingly often. To improve the
behavior of the maximum likelihood estimator under modeling
errors, we recently proposed its robustified variant Meller and
Stawiarski, which employs the minimax principle. Compared
to the conventional approach, the application of the modified
estimator reduces the number of occurrences of estimation
outliers considerably.

Another factor that can degrade the performance of the
parametric approach is the wrong assessment of the number
of sources. The consequences of using a model that assumes
a wrong number of sources depend on the kind of mistake
one made when choosing the model structure. If the assumed
number of sources is too small, the model lacks the capacity
to accommodate all waveforms arriving at the array. This
situation, which is often referred to as underfitting, usually
results in biased estimates of model parameters, including the
estimates of source DoAs, in particular. When the assumed
number of sources is too large, the estimator is unbiased, but
two other adverse effects take place. First, the variance of DoA
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estimates increases. Second, the interpretation of origins of the
superfluous “sources” becomes difficult Nickel| [2013]], |Wirth
[2013].

In this paper, we study the solutions that allows one to
mitigate this difficulty. First, we exploit the fact that, in the
particular situation of estimating the elevation, one can treat a
large subset of model parameters as nuisance parameters. This
observation allows us to develop a Bayesian-like collaborative
approach based on the model averaging technique [Longford
[2012], Wit et al| [2012]. We develop the proposed ap-
proach for the deterministic (conditional) maximum likelihood
estimator. We also study a, recently proposed, robustified
maximum-likelihood like estimator Meller and Stawiarskil
and investigate the possibility of improving its performance
using the model averaging approach. We find that, however,
that the robustified estimator includes another soft-decision
mechanism, which reduces the benefits of the averaging.

The organization of the paper is the following one: In
Section 2, we introduce the collaborative approach in the
context of the maximum likelihood method. In Section 3, we
extend the method to fit the robustified estimator and analyze
the resultant solution. Section 4 presents results of computer
simulations based on an extended model that included dif-
fuse scattering. Section 5 demonstrates the application of all
algorithms to data collected from a real-world radar system.
Section 6 concludes the paper.

II. COLLABORATIVE APPROACH — MAXIMUM LIKELIHOOD
ESTIMATOR

A. Deterministic maximum likelihood estimator revisited

Denote by y,, n = 1,2,..., N, the available snapshots of
M-variate data, assumed to be generated from the model

Yn = Vo x(Pr)Onjk + Vo )

where k > 1 denotes the number of sources,

D= o1k Pk Pklk |
is the vector of the source DoAs, and
U5 (Pr) = | anle1r)  anloor) an (k) |

is the matrix of the source steering vectors at the n-th snapshot.
Similarly,

0n|k = [ Al,n\k A2,n\k Ak:,n|k ]T

is the vector of complex-valued source amplitudes at the n-
th snapshot. The sequence {v,;;} is assumed to form a zero
mean i.i.d. multivariate circular complex Gaussian white noise
with unknown variance o3, V(i ~ CN(0, o2I). Moreover, we
will treat all unknown model parameters, i.e., the angles, the
amplitudes, and the noise variance, as deterministic quantities.

Observe that model assumes that the source steering
vectors and amplitudes are different at each snapshot. This
feature, which differs from the typical assumption of fixed
steering vectors and source amplitudes, allows us to increase
the model’s flexibility. The situations where a model like (I))
is advantageous include, among others, the cases of varying
the radar’s frequency or the length of its coherent processing

interval. The drawback of (I) is that the number of model
parameters increases.

Under @, the likelihood function of the data reads |van
Trees et al.| [2013]]

Li(Pr, 0111, - - - Onyie, 07) =
NM N 2
1 [Yn — W1 (Pr) O |
_ — .2
() Hew( @

It is well known that, for any values of the angles and
the variance, one can obtain the optimal, in the sense of
maximizing the likelihood function, estimates of the source
amplitudes using the following formula van Trees et al.| [2013]

0,,11(Pr, 07) = 0,11, (Pr) = Py (Br)yn 3)

where
P (Pr) = ¥, (i) [‘I’S\k@k)‘l’mk(@k)} - W) (Br)

denotes the matrix projecting the data onto the signal subspace,
i.e., the subspace spanned by the columns of W, (Py).

Substituting into allows one to arrive at the, so-
called, deterministic maximum likelihood estimator of the
source DoAs

N
b = ar%minZyEQn\k(ka)yn ) “)
k n=1
where

Qnx(Pr) = I — Py (Pr)

is the matrix projecting the data onto the noise subspace, and I
denotes the k x k identity matrix. The corresponding maximum
likelihood estimate of the noise variance a,% reads

N
L1 a
op = an::lyn Q)i (Pr)Yn - 5)

Let us succinctly summarize how one can fit the estimator
(@)-@) to aid solving the problem of estimating the elevation
at low grazing angles. Under the simplified flat-earth specular
multipath model, depicted in Fig. [I] the multipath can be
regarded as originating from an apparent source located below
the horizon Barton| [1974]. It follows that one should fit the
model that assumes k£ = 2 sources. In this case, one may
arbitrarily assign the first source to the target and the second
source to the multipath. Based on such labeling, one may
restrict Py to the positive values, @112 > 0, and Pg2 to
the negative values, g2 < 0, which will make it easier to
interpret the estimation results.

B. Competitive solution

A significant problem with the flat-earth specular multipath
model lies in the fact that it is overly simplistic and does not
account for a variety of scattering phenomena Barton| [1974].

On rare occasions, there may be more than one specular
reflections present, in which case the number of sources
in the model should be increased, i.e., one should assume
k > 2. Since, in this case, the variables Qg, ..., Pgr can


http://mostwiedzy.pl

A\ MOST

Figure 1. Flat-earth model of specular multipath.

be interpreted as corresponding to the multipath sources, one
may constrain them to the range of negative numbers.

More often, however, the specular reflection might be weak
or absent (e.g., due to strong attenuation by vegetation), or the
specular reflection assumption might be inadequate (e.g., due
to the dominance of the diffuse scattering). In any of these
situations, using the parsimonious model with k¥ = 1 might
lead to better estimation accuracy than keeping the number of
sources at k = 2 — as a general rule, the number of parameters
in the model should be kept at a minimum level (Claeskens and
Hjort [2008].

Unfortunately, the “right” model structure is typically un-
known a priori. The standard way to cope with this difficulty
involves simultaneously running several estimators of the
form (@)-(@), each assuming a model M, with k sources,
k€ {1,2,..., K}. Based on the outputs of all K estimators,
one may attempt to determine the optimal choice of k using
a suitably designed criterion. To this end, one can use several
model selection approaches, which include the hypothesis
testing IN1ickel| [1998]], [Wirth| [2013]], methods developed using
the random matrix theory |[Kritchman and Nadler [2009]], Rissa-
nen’s minimum description length principle |Rissanen| [1978]],
or one of so-called information criteria (Claeskens and Hjort
[2008]]. We will discuss the last approach in more details.

The most widely adopted information criteria are the
Akaike’s information statistic (also known as Akaike infor-
mation criterion) |Akaike| [1974]]

AIC, = —2log L(®y,, 52) + 2n, (k) (6)

and the Schwarz criterion (often referred to as the Bayesian
information criterion) |Schwarz| [1978|]

BIC), = —2log L(®y, 62) + log(no)ny (k) . (7)

In the above formulas, I, = logL(dgk,0Al|k,...,énm,&%)
denotes the log-likelihood of the maximum-likelihood estimate
(@)-(@) obtained for the model My, equal to

1ogL(slA5k,él‘k,... —-NM [log&k+1+log7r] ,

(3)
np(k) is the number of real-valued parameters of the model,
and n, = 2N M is the number of real valued observations.
Note that one should not confuse the number of model

parameters with the number of sources{ﬂ The parameters in

7) ~2
a0n|k7ak,) =

ITo avoid the ambiguity with the traditional notation, which counts the
number of model parameters using the symbol k, we denote the number of
model parameters as np (k).

Bank of ML, QSIIIH%OI‘S
For k=1,2,...,

N
@), = argmin Z ySQn‘k(Qk)yn

k

N
Z Qn|k (q)k yn

[log ak + 1+ log 7r]

Model selection

ko = argmin ICy
k=1,2,....K
where
—2ly, + 2np (k) for AIC
1C, = —2ly, + log(no)np (k) for BIC
np (k) [np (k) +1] AICc

—2l, + 2np (k) + QW for

Final estimate of target DoA

P1K = Pliko

Table T
SUMMARY OF COMPETITIVE MAXIMUM LIKELIHOOD ADAPTIVE FAMILY
OF ADAPTIVE ESTIMATORS. DEPENDING ON VARIANT, DECISION
STATISTIC IC;, SHOULD BE EITHER AIC, BIC, or AICc.

the model M, are the source DOAS @1k, Dok, - - - Pr|k» the
amplitudes Ay, A2 njky -5 Agnes » = 1,2,..., N, and
the variance oj. Moreover, since all amplitudes are complex
quantities, they should be treated as two real parameters, and
counted twice.

Many authors also recommend the so-called corrected AIC
criterion, which takes the form |Claeskens and Hjort| [2008],
Hurvich et al.| [1998]]

np (F) [np (k) +1]
no —np(k) —1

i.e., it penalizes models complexity stronger than AIC, partic-
ularly for a small number of observations.

The resultant family of adaptive estimators, further referred
to as the competitive ML approach, is summarized in Table[l]
Note that, since in each model all DoAs except the first one
are interpreted as multipath, they are discarded irrespective of
the choice of the model, and only the first DoA is included in
the final estimate.

AlCcy, = AIC, + 2 ©))

C. Collaborative solution

The competitive approach discussed in the preceding sub-
section may be criticized for neglecting two facts. First, that
there is an unavoidable element of uncertainty in the model
selection process. Model selection decision statistics, such as
AIC, AICc, or BIC, are random variables, which means that
erroneous choices are bound to occur from time to time.
The presence of such mistakes inflates the mean squared
error of the estimator |(Claeskens and Hjort| [2008]]. Second, in
estimating the elevation at low grazing angles, there is really
no need to establish the number of sources, because only the
first source corresponds to the actual target. It follows that
one can “get away” with a wrong choice of k, as long as the
accuracy of the target DoA estimate does not suffer.
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Bank of ML, estimators

Fork=1,2,...,

N
@), = argmin Z nyIQn‘k(dsk)yn
n=1

k

N
1 A
~2 H P
Ok NM n§:1ynQn|k( k)y’!l

Iy = —NM [log62 + 1+ log ]

Final DoA estimate using averaging

Prir = D HkPik

k=1
where 1
e = exp (—5ICk)
Sk exp (—31Ck)
—2ly, + 2np (k) for AIC
10, = —2ly, + log(no)np (k) for BIC

_ np (k) [np (k)+1]
2l + 2np(k) + QW for
Table 11
SUMMARY OF PROPOSED COLLABORATIVE MAXIMUM LIKELIHOOD
ADAPTIVE ESTIMATION APPROACH. DEPENDING ON VARIANT, ICy
REFERS TO EITHER AIC, BIC, or AICc.

AICc

One may avoid making the decision about the number
sources using the Bayesian framework. In this approach,
the parameters are treated as random variables and assigned
prior distributions. Consider one more time the bank of K
estimators of the form (EII)-@, each delivering its own estimate
of target DoA ¢y, under the assumption that the model My,
k=1,2,..., K is correct. The Bayesian estimate of /g can
be obtained from the following convex combination van Trees
et al.| [2013]]

K
Bk = Y P1ikbi
k=1

(10)

where pp = p(Mgly1,y2,...,yn), k=1,2,..., K, denotes
the a posteriori probability of the model M.

The difficulty in implementing Eq. (I0) stems from the fact
that computation of the a posteriori probabilities is compu-
tationally exhaustive. Akaike has shown that, under uniform
priors, one can approximate p using the following formula
Akaike| [1978]

1
g X €XP (—2A1Ck) , (11)
where AICy, is defined in ().

One may obtain similar approximations using AICc

g X exp <;AICCk> (12)

or BIC

1
g X €Xp <—2BICk) . (13)
The resultant three schemes, which avoid the estimation
of k using the soft-decision approach, will be referred to
as collaborative maximum likelihood estimators. They are
summarized in Table

D. Computer simulations

While the collaborative approach can be, rather safely, ex-
pected to overperform the competitive one, the choice between
AIC, AICc, and BIC is not an obvious one. First, both AIC
and BIC are large sample approximations, so it is unclear how
they will perform with small sample, which is typical situation
in radar. Second, even though theses criteria seem to differ
only in the term that penalizes the model complexity, they
are, in fact, based on different principles and assumptions,
and therefore exhibit different properties. BIC employs the
assumption that the true model lies in the considered model
set {My, May,..., Mg}, which can be regarded somewhat
unrealistic. AIC, on the other hand, is free of such restriction —
this statistic attempts to measure the proximity to an unknown
truth |Akaike| [1974]], Wit et al.| [2012]. Unfortunately, this
feature makes AIC an inconsistent estimator of k£ — even when
the actual mechanism that generated the observations happens
to be included in the model set, the probability of selecting
M}, does not approach one as the number of observations
increases to infinity. This behavior, however, is not necessarily
a problem. While AIC is well known to overestimate k
frequently, it is an efficient criterion, which means that it tends
to minimize the mean square error — see |Claeskens and Hjort
[2008]] for more details. Moreover, since in the collaborative
approach we completely avoid selecting k, the inconsistency
of AIC might become even less problematic.

One can investigate the properties of the collaborative aver-
aging schemes using real-world datasets or carefully designed
simulation experiments. Since generating synthetic datasets
is considerably cheaper than collecting real-world ones, and
it allows one to reach more general conclusions, the com-
puter simulations are the preferred approach. Concordantly,
we performed the several Monte Carlo experiments, where
we simulated radar systems equipped with standard uniform
linear arrays of lengths M € {4,816} and using snapshot
sizes N € {1,2,3}. For each pair (N, M), we generated
a dataset consisting of 5000 realizations of model (I) using
the following procedure. For each data sample generated,
the number of sources of was established first, by drawing
randomly from the set {1, 2}, with equal probabilities of each
choice. If £ = 1 was drawn, which corresponds to the absence
of the multipath, the source magnitudes were set to 10 for
all snapshots, |A1,n|k| = 10, n = 1,2,...,N. The source
phases were generated as realizations of independent random
variables, uniformly distributed in [0, 27]. For k = 2, which
corresponds to the presence of the multipath, the complex
amplitudes of the direct signal were chosen in the same
way as for £k = 1. To ensure richness of the dataset, the
complex amplitudes of the specular reflection were obtained as
A pik = aelP Aj k> Where avis a random variable, uniformly
distributed in the interval [1, 10], and ( is another random
variable, uniformly distributed in the interval [0, 27]. For the
same reasons, the source angle ¢; was drawn randomly from
the interval 2° - 5°. The angle o was computed from the
flat earth model, assuming antenna height 4 = 4 meters and
target range R = 5 kilometers. In all cases, the variance of
the measurement noise was equal to 02 = 1.
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Nonadaptive Competitive Collaborative Clairvoyant

NI M| k=1 k=2 AIC AlCc BIC AIC AlCc BIC estimator
4 6.37 6.76 5.41 6.37 5.37 4.76 6.37 4.72 391

1 8 2.780 0.464 0.386 0.338 0.360 0.358 0.317 0.338 0.290
16 | 0.5892  0.0105 | 0.0095 0.0090 0.0088 | 0.0091 0.0088  0.0087 0.0084
4 6.71 4.64 3.55 4.56 3.14 3.20 425 2.84 2.51

2 8 2.707 0.228 0.183 0.172 0.171 0.174 0.165 0.164 0.146
16 | 0.6293 0.0051 | 0.0043 0.0042 0.0041 | 0.0042 0.0041 0.0040 0.0040
4 6.18 371 2.79 3.11 2.30 2.53 2.95 2.13 1.97

3 8 2.830 0.164 0.132 0.129 0.131 0.127 0.124 0.127 0.112
16 | 0.6219 0.0040 | 0.0034 0.0033 0.0032 | 0.0034 0.0033 0.0032 0.0032

Table IIT

COMPARISON OF MEAN SQUARED ESTIMATION ERRORS YIELDED BY NONADAPTIVE ESTIMATORS ASSUMING k = 1 AND k = 2, THREE COMPETITIVE
MAXIMUM LIKELIHOOD SCHEMES BASED ON AIC, AIC., AND BIC CRITERIA, THREE CORRESPONDING COLLABORATIVE MAXIMUM LIKELIHOOD
SCHEMES BASED ON SAME CRITERIA, AND CLAIRVOYANT ESTIMATOR, OBTAINED FOR THREE STANDARD UNIFORM ARRAYS, USING 5000 MONTE

CARLO TRIALS FOR EACH CONFIGURATION. UNITS ARE DEGREES SQUARED.

We compared the accuracy of nonadaptive estimators em-
ploying the single-source model (k = 1) and the two-source
model (kK = 2), three adaptive estimators employing the
competitive model selection approach, and three adaptive es-
timators based on the collaborative approach. Additionally, to
establish baseline performance, we implemented a “clairvoy-
ant” estimator, i.e., the estimator that has the unfair advantage
of knowing the true value of k.

All estimators employing the two-source model took ad-
vantage of the fact that ¢; ~ —¢, (c.f. Fig. [I), by forcing
that

D212 = —P1j2 - (14)

This substitution reduces the estimator’s computational com-
plexity greatly, because the underlying minimization of a
function of two variables (p1)2, @g2)2) is replaced with a
minimization of a function of one variable. Additionally, this
trick reduces the number of parameters in the model by one,
which means that

np(k) = 2Nk + 2
N =2MN ,

where the formula for n, (k) stems from the fact that one is es-
timating Nk complex amplitudes (Ay |, A2 njkr - - - s Akn|ks
n = 1,2,...,N), one angle (v1)x) and one noise variance
parameter (0,3).

The results, in the form of mean squared errors of the
elevation estimates, are summarized in Table Not unexpect-
edly, the nonadaptive estimator that assumes k£ = 1 performs
poorly for all values of N and M. Such high values of
estimation errors are caused by the fact that half of the dataset
contains the specular multipath, which cannot be appropriately
captured by the model that assumes one source. Observe,
however, that the performance of the nonadaptive estimator
that employs the model with & = 2 sources, while significantly
better, can be improved further using any of the adaptive
approaches considered here. Moreover, the results obtained
using the collaborative approach are uniformly better than
those obtained using the competitive approach, regardless of
the information criterion employed. It is also revealed that the
beneficial effects of model averaging are more apparent for
the smaller values of M, and that the best results are obtained
using BIC and AICc criteria, except M = 4 where AICc

works poorly. Finally, observe that the performance of the best
collaborative estimators is rather impressively close (5%-10%
loss) to the performance of the clairvoyant solution.

III. COLLABORATIVE APPROACH — ROBUSTIFIED
MAXIMUM LIKELIHOOD ESTIMATOR

A. Robustified maximum likelihood estimator

We now switch our attention from the conventional max-
imum likelihood estimator, given by Eq. @)-(), to its ro-
bustified version, proposed in Meller and Stawiarski. The
introduction of the robustified estimator was motivated by the
observation that, when implemented in an actual radar system,
the conventional solution exhibits an instability that results
in occasional gross errors. The analysis of the phenomenon
resulted in the hypothesis that this behavior is related to the
modeling uncertainty, i.e., an unknown discrepancy between
the assumed (nominal) steering vectors and the actual ones.
Consequently, the robustified estimator includes the assump-
tion that the steering vectors, i.e., the columns of ¥, ;(P)
in (T)), are subject to unknown deterministic perturbations with
bounded norms.

The robustified estimator deals with this situation by em-
ploying a minimax-type extension of formula (@), which takes
the form

N
&), = arg min Z lek(@k) , (15)
P n=1
where
T (®r) = minmax||y, — W,y 6,
Onlk B,
‘I’n|k = [dl,n|k' dZ,n|k‘ cee dk‘,n\k] (16)
and the “max” subproblem is subject to the constraints
1501k — an(@s)ll* < €
i=12....K
n=12...,N, a7
where €;, j = 1,2,..., K, denote the perturbation bounds.

Note that, under ¢; = 0 Vj, estimators @) and are
equivalent.

The fact that one can assign the bounds of perturbations
individually to each source is an important feature of the
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proposed robustification approach. In the classical-style so-
lution, one would lump all uncertainty into a single matrix
perturbation with bounded norm (typically, the largest singular
value) — see, e.g., (Ghaoui and Lebret| [1997]

||‘i’n|k(¢k) - ‘I’n|k(¢k)||2 < 62 .

Our approach is motivated by the fact that, for a suffi-
ciently well-calibrated array, one may expect that the steering
vectors that correspond to the direct signal, i.e., @n(1)x),
n = 1,2,..., N, exhibit a significantly smaller distortion
than the steering vectors that correspond to the multipath. It
is straightforward to express this a priori knowledge using
(I7), by setting €; to a much smaller value than remaining
perturbation bounds.

The minimax problem appearing in Eq. (I6) is convex.
Following [Meller and Stawiarski, it can be solved efficiently
using the following recursion

Fori=0,1,...
~ 5 -1
Or i1k = [‘I’Ew@k)‘l’n\k@k) + Ai,n\k} U (Br)yn
Unitilk = [Yn = o ()0, ipr |
Un,i Un,i
Ai+1,n|k = dlag €1 —=— ami N aaiLl )
|Al,n,i+l|k| |Ak:,n7i+1\k‘

(18)

where

~ - T
Oniv1k = [ Al mivik Aotk }

Ak,n,i+1\k
denotes the estimates of the source amplitudes for the n-
th snapshot in the ¢ + 1-th iteration of the algorithm. One
may obtain the estimates of Jfll (@) corresponding to each
iteration using

2

K
Ji,mm(%) = | Uni+1)k + Z €5 ‘Aj,n,lmxlk’ 19)

j=1

The recursion can be initialized using v, ojx = 0, Agpnx =
0, Vn, and should be iterated until its convergence. In most
cases, three to five iterations are sufficient to reach the opti-
mum with practically required accuracy. Such a low number
of iterations means that the resultant increase of the compu-
tational cost over the conventional estimator (@)-(3) is modest
(2-3 times), provided that one implements the recursion (I8)
with appropriate attention to optimization opportunities Meller
and Stawiarskil

Table presents the detailed summary of the robustified
estimator.

B. Collaborative solution

In light of the advantages of the collaborative approach
demonstrated in Section 2, it is natural to attempt to extend
the robustified estimator using this technique. To obtain a
collaborative solution, we will employ the approach similar to
the one adopted for the maximum-likelihood estimator, i.e.,
we will combine several estimates @1, k = 1,2,..., K.
Note, however, that the robustified estimator is no longer the

Top-level DoA search

N
&, = arg min Z Jfl‘k(d«"k) ,
P n=1

Lower-Ievel iterative minimax solving procedure
Forn=1,2,..., N execute:

1. Set ’Un,O‘k = O, AO,n‘k =0
2.Fori=0,1,2,..,Imax — 1

1
O it1)ke = [‘I’S\k(‘f’k)‘l’n\k(‘f’k) + Ai,n|k:| ‘I’Ew(’Pk)yn

Vnyitile = [|Yn — ‘I’n|k(qsk)én,i\k”
. Un,i+1lk Un it+1lk
Aif1ne =diag | e B Y LA L
[A1,ni41] [Ak,n,it1]
3. Set

2
K
T (Pr) = (vn,fmaxlk + ¢ ’Aj,n,fmaxlko
j=1

Table IV
SUMMARY OF ROBUSTIFIED ESTIMATOR PROPOSED IN|MELLER AND
STAWIARSKIL

maximum-likelihood estimator, which means that the AIC/BIC
frameworks need certain adjustments.

We will consider two approaches, summarized below.

Scheme 1: In the first proposed approach, we will employ the
robustified estimator to find the DoA of the echo, and then
fall back to the conventional approach to find the likelihood
of the model. That is, we use (T3)) to find the DoA estimate
&,,, plug this estimate into (5) and (8) to obtain the likelihood,
and eventually, compute AIC/AICc/BIC which may be used
for model selection or averaging. The approach, in the collabo-
rative variant, is summarized in Table [V] The rationale behind
such a scheme lies in the fact that, in the majority of cases,
the behaviors of the conventional and the robustified estimators
are practically identical. Consequently, most of the time, the
corresponding averaged estimates will be computed using a
reasonable set of weights. In the remaining, relatively small,
fraction of events, when the the robustified estimator yields
significantly different estimates of DoA than the conventional
approach, we “place our bets” that the likelihoods and weights
obtained using this procedure will not be corrupted to the point
that the scheme breaks down.
Scheme 2: The second approach employs the fact that esti-
mator (I3) belongs to the class of M-estimators. For such
estimators, a suitable generalization of AIC was proposed
by Ronchetti in [Rochetti [1997]. When applied to (15),
Ronchetti’s robust AIC takes the form

AICR = 2V, (®y,) + 2tr(J; ' Ky) | (20)
where
Vi (D)) =
2
N ~ K ~
S {9 = Caip @00 il + D 5 [ A it
n=1 j=1

tr(-) denotes the matrix trace, and Ji and K}, are estimators
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DoA estimation using robustified algorithm

DoA estimation using robustified algorithm

Fork=1,2,...,K
1. Find @}, using algorithm from table
2. Compute

op = —— Z Yn Qn (k) yn

l,.=—-NM [logﬁk +1 +log7r]

Final DoA estimate using averaging

k=1
where
~ exp (—%IC;J
i = "
SF | exp ( §ICk)
—2li + 2np (k) for AIC
Icy, = —2l), + log(no)np (k) for BIC
—9l, np (k) [np (k)+1]
&+ 2np(k) +2 for AICc

ne—mnp(k)—1

Table V
SUMMARY OF THE COLLABORATIVE ROBUSTIFIED ESTIMATOR
EMPLOYING AIC/AICc/BIC.

of the matrices

RIAC
s 2]
00! ||, .
OV (®y,) OV (®y,)
K, =E
g { b,  0Bf )
¢k=¢k

Following the standard practice, we propose to compute the
estimates Jy, K}, using the following formulas |Claeskens and
Hjort [[2008]]

T
= 84%845 Sy
. OV (D) OVi(Py)
K, = 21
kzwk owT |, 1)
=Pk

and to compute the derivatives using the numerical approach.
One may use Ronchetti’s AIC to compute averaging weights
by a straightforward modification of (II). The resultant col-
laborative scheme is summarized in Table [V1l
Remark: : In principle, Ji and K}, above should include
the derivatives over the real and the imaginary parts of the
source amplitude vector én Imax |- HOWever, by construction
of the robustified estimator, the sample partial derivatives of
Vi.(®) over the source amplitudes are zero at the optimum,
which means that one cannot estimated their ensemble means
reliably. Unfortunately, this property means that the penalty
computed using (2I)) is likely to be smaller than its correct
amount, which may affect the performance of this approach
adversely.

C. Computer simulations

We compared the performance of the nonadaptive robusti-
fied estimators assuming £ = 1 and k¥ = 2 and their adaptive —
competitive and collaborative — counterparts by repeating the

Fork=1,2,... K
1. Find @}, using algorithm from table
2. Compute AICR

AICR = 2Vj(By,) + 2tr(J, ' Ky,)

N
jk _ Z 82Vk(¢'k))

T
= 0w0e] |, g
N
K=Y Vi (Pr) OVi(Pr)
- T
= o el |, 4

Vi(Pr) =
N
2

Final DoA estimate using averaging

K 2
1 = W (B 1]l + D5 \Aj,n,fmko
=1

A

where

Table VI
SUMMARY OF THE COLLABORATIVE ROBUSTIFIED ESTIMATOR
EMPLOYING AICR.

experiment performed in Section 2 (we used exactly the same
data). Table shows the mean squared estimation errors of
all algorithms obtained under small uncertainty of both model
steering vectors (e; = 0.01||ay(¢1)|| and ez = 0.01]|az(¢2)|])-

Observe that the results follow the pattern that occurred in
Table The nonadaptive estimators are the poorest ones,
and the collaborative approach works best. AICc and BIC
demonstrate the best performance, and are closely followed by
AIC. AICR works poorly, which is not unexpected given the
previously discussed difficulties in estimating the penalty term
reliably. What is quite remarkable, however, is the fact that
the application of the basic (nonadaptive) robustified estimator
improves the accuracy of the estimates over the conventional
maximum likelihood approach considerably, which becomes
apparent when one compares the fourth columns of Tables
and V1

This, rather unexpected, effect is actually a combination of
two factors, which are related to how the robustified estimator
reacts to different kind modeling errors. Table shows a
breakdown of mean squared errors achieved by algorithms
and @[), both using £ = 2 sources, for the subsets of data
where the multipath was absent and present, respectively.

Observe that the robustified estimator works better than the
maximum likelihood approach for both subsets. To explain
why, let us first recall that, while all estimators employed the
simplification (I4), the data was generated from a more elabo-
rate model that accounted for the nonzero antenna height. That
is, for the subset of data that includes multipath, the model
used in the estimator is slightly erroneous, which hurts the
accuracy of the maximum likelihood solution. The robustified
estimator, on the other hand, proves much more robust to such
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Nonadaptive Competitive Collaborative Clairvoyant

NI M| k=1 k=2 AIC AlCc BIC AICR AIC AlCc BIC AICR estimator
4 6.37 3.56 3.34 6.37 3.34 3.58 3.01 6.37 3.00 3.12 2.40

1 8 2.780 0.250 0.220 0.218 0.214 0.253 0.208 0.205 0.202 0.228 0.174
16 | 0.5892  0.0097 | 0.0089 0.0085 0.0084 0.0097 | 0.0086 0.0083 0.0082 0.0092 0.0079
4 6.71 2.44 222 4.71 2.11 2.44 2.05 4.35 1.99 2.30 1.71

2 8 2.707 0.134 0.113 0.119 0.115 0.134 0.109 0.113 0.110 0.126 0.096
16 | 0.6293  0.0049 | 0.0042 0.0041 0.0040 0.0049 | 0.0042 0.0041 0.0040 0.0047 0.0040
4 6.18 1.83 1.66 291 1.63 1.83 1.55 2.79 1.52 1.78 1.26

3 8 2.830 0.104 0.088 0.094 0.098 0.104 0.086 0.091 0.094 0.102 0.078
16 | 0.6219 0.0036 | 0.0031  0.0030  0.0030 0.0036 | 0.0031 0.0030 0.0030 0.0035 0.0030

Table VII

COMPARISON OF MEAN SQUARED ESTIMATION ERRORS YIELDED BY NONADAPTIVE ROBUSTIFIED ESTIMATORS ASSUMING k = 1 AND k = 2
(e1 = 0.01|la1(é1)]|, €2 = 0.01||a2(p2)]|]), COMPETITIVE AND COLLABORATIVE VERSIONS OF ROBUSTIFIED ESTIMATOR, AND CLAIRVOYANT
ESTIMATOR, OBTAINED FOR THREE STANDARD UNIFORM ARRAYS, USING 5000 MONTE CARLO TRIALS FOR EACH CONFIGURATION. UNITS ARE
DEGREES SQUARED.

Multipath absent Multipath present
N | M ML Robustified ML Robustified
4 6.39 2.75 7.07 4.17
1 8 0.401 0.195 0.536 0.270
16 | 0.0092 0.0085 0.0120 0.0101
4 4.50 1.62 5.02 3.08
2 8 0.180 0.095 0.262 0.170
16 | 0.0046 0.0042 0.0068 0.0060
4 3.50 1.17 3.98 2.57
3 8 0.121 0.066 0.211 0.128
16 | 0.0031 0.0029 0.0046 0.0042
Table VIII

COMPARISON OF MEAN SQUARED ESTIMATION ERRORS OF ALGORITHMS
AND (T3)), BOTH USING THE MODEL THAT ASSUMES k = 2 SOURCES,
UNDER THE ABSENCE AND THE PRESENCE OF THE MULTIPATH FOR
€1 = 0.01]|a1(¢1)]], e2 = 0.01||a2(¢2)||. THE UNITS ARE DEGREES
SQUARED.

modeling errors. Second, the robustified estimator includes its
own soft-decision mechanism that can recognize the absence
of multipath efficiently. The mechanism is the consequence of
the form of loading matrix A;,,; in recursion . If there
is no multipath, the elements of the loading matrix A;
corresponding to the absent specular reflections will tend to
inflate in consecutive iterations @ In this way, the estimation
of these components will softly “shut down”.

The strength of this mechanism increases with eg, €3, ...
until it makes the application of the collaborative extensions
practically irrelevant — see Table for the results of an
additional simulation experiment, this time performed with €5
increased to 0.1|laz(¢#2)]|- Since, in our experience [Meller and
Stawiarski, such levels of e work well with real-world data,
we recommend to use the robustified estimator without any
extensions, unless one decides to employ smaller levels of
uncertainty.

IV. ADDITIONAL SIMULATION EXPERIMENTS

To gain more trust in our preliminary conclusions, we
repeated our simulation experiments using a more realistic
model, adopted from Barton| [1974], which includes both the
specular and the diffuse components of the multipath. In this
model, the main parameters influencing the amount of both
components are the surface roughness factor, defined as the
ratio of the average height variation of the ground to the

wavelength, o, /A, the maximum ground surface slope /3y, and
the vegetation attenuation factor py.

As previously, the simulated target was placed 5 km away
from the radar, the targets’s elevation angle was drawn ran-
domly from the interval 2°-5°, and the SNR of its direct echo
signal was fixed at 20 dB. The ground roughness factor was
drawn randomly from the interval [1, 20], where 1 corresponds
to smooth ground, in which case the primary component of
the multipath is the specular reflection, and 20 — to rough
ground, when the diffuse scattering is the dominant one and the
specular component hardly exists. The vegetation attenuation
factor was also randomized, and drawn uniformly from the
interval [6,30] in the dB scale. Finally, following Barton
[1974], we set By = 0.1.

We simulated a system using one snapshot, N = 1, and
16-element standard uniform array elevated to height h, = 4
meters. To reduce the amount of of the diffuse component
in the data, we preprocessed the raw array response using a
beamformer and a whitening transformation.

The beamformer synthesized four beams: two sum beams,
placed at 4° and 8°, and two corresponding difference beams.
The sum beams employed the Chebyshev taper with -30
dB sidelobes, which resulted in the 3 dB beamwidth of
approximately 8°. The difference beams employed the Bayliss
taper, also with sidelobes at -30 dB.

The role of the whitening transformation was to decor-
relate the measurement noise in the beamformer output, so
as to make the data concordant with (I) which assumes
uncorrelated components in the noise vector wv,;. Let x,
W = [w; wy wz wy] and b = Wz denote the beamformer
input (unprocessed array output), the matrix of beamformer
weights, and the beamformer output, respectively. The whiten-
ing transformation reads

y= (WHW)_1/2b ,

where (WHW)~1/2 denotes the matrix square root of
(WHW)~L. The size of the observation vector resultant from
the combination of beamforming and whitening is M = 4.
We compared the performance of the following algorithms:
maximum likelihood estimators assuming k¥ = 1 and k = 2,
collaborative maximum likelihood estimators employing AIC
and BIC (AICc was not included due to its poor performance
for small M), and the vanilla robustified estimator with


http://mostwiedzy.pl

A\ MOST

k = 2, ¢ = 0.01 and e = 0.1. The results are shown in
Table Observe that, the application of the collaborative
estimation brought an improvement over the conventional
maximum likelihood estimator, but a smaller one than in
our previous experiments. Moreover, there is no significant
difference between AIC and BIC. On the other hand, the
robustified estimator outperformed the remaining approaches
by a rather safe margin (17% improvement over the ML
estimator), which suggest that it is the best solution among
the soft-decision approaches discussed in the paper.

V. RESULTS FROM A REAL-WORLD RADAR SYSTEM

In this section, we illustrate the application of the soft-
decision algorithms to the processing of data obtained from
a real-world radar system. The data, which is the same as
used in |[Meller and Stawiarski, was collected at an airport in
northern Poland using a C-band radar. Similar to the simulated
system is the previous section, this radar also employs the
beamspace processing |van Trees et al.| [2002], and synthesizes
two pairs of low-sidelobe sum-difference beams (M = 4),
which were treated with the whitening transformation prior to
the estimation.

The data was collected by observing a cooperative target,
which was flying at a constant height at ranges from eight
to thirteen kilometers. Overall, the target was illuminated by
the radar beam 241 times. However, to avoid ambiguities in
interpreting the results, we decided to remove one point of
data that causes the maximum likelihood estimator particularly
large problems (see Meller and Stawiarskil for more details),
which reduces the size of the dataset to 240 scans.

During each such “scan” the radar transmitted three bursts
of pulses. Echo signals collected from of each burst were
processed using a bank of Doppler filters, so that three
(N = 3) snapshots were collected per scan.

We compared the behavior of three solutions: the conven-
tional maximum likelihood estimator using the model with
two sources, the collaborative solution employing the combi-
nation of the conventional maximum likelihood estimator (@)
and weighting using AIC (I3)), and the robustified estimator
(T6). Fig. 2] shows the comparison of the estimates of target
elevation obtained using the compared methods. Note that the
results were normalized by the 3 dB beamwidth of the radar,
which is in the order of a few degrees.

On the qualitative level, the estimates obtained using all
approaches are similar. The quantitative results, summarized in
Table agree with our previous simulations — the nonadap-
tive estimator has the worst performance, the application of
the averaging technique improves the results, but only slightly,
and, once again, best performance was obtained using the
robustified estimator.

VI. CONCLUSIONS

In this paper, we studied the application of novel estima-
tors that involve soft-decision mechanisms, to the problem
of estimating the elevation under specular multipath. In the
context of the maximum likelihood framwork, we developed
such schemes by averaging the partial estimates obtained
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0 60 120 180 240
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g
<
2
>
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g
<
=
>
0.2 . . .
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Figure 2. Comparison of estimates of target elevation, normalized by 3 dB
beamwidth of the radar, obtained using three approaches. The dashed lines
shows the true elevation of the target.

using the models with different number of sources. We also
studied the, recently introduced, robustified estimator, and
found that it includes a soft-decision mechanism of its own
kind. The behavior of the proposed algorithms was verified
using several computer simulations and a real-world dataset.
While all proposed solutions improve the estimation accuracy
over the basic maximum likelihood estimator, best results were
obtained using the robustified solution.
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