

View

Online


Export
Citation

RESEARCH ARTICLE |  JANUARY 14 2015

Solution of coupled integral equations for quantum
scattering in the presence of complex potentials 
Jan Franz

J. Math. Phys. 56, 012104 (2015)
https://doi.org/10.1063/1.4905734

 22 M
ay 2024 09:33:54

https://pubs.aip.org/aip/jmp/article/56/1/012104/985104/Solution-of-coupled-integral-equations-for-quantum
https://pubs.aip.org/aip/jmp/article/56/1/012104/985104/Solution-of-coupled-integral-equations-for-quantum?pdfCoverIconEvent=cite
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1063/1.4905734&domain=pdf&date_stamp=2015-01-14
https://doi.org/10.1063/1.4905734
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063253&setID=592934&channelID=0&CID=754915&banID=520996574&PID=0&textadID=0&tc=1&scheduleID=1989154&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjmp%22%5D&mt=1716370434136417&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjmp%2Farticle-pdf%2Fdoi%2F10.1063%2F1.4905734%2F15892166%2F012104_1_online.pdf&hc=7db9fc2970cbbd5e65970ab1fba5e1256dfcda50&location=


JOURNAL OF MATHEMATICAL PHYSICS 56, 012104 (2015)

Solution of coupled integral equations for quantum
scattering in the presence of complex potentials

Jan Franza)

Department of Atomic, Molecular and Optical Physics, Faculty of Applied Physics
and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233
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In this paper, we present a method to compute solutions of coupled integral equa-
tions for quantum scattering problems in the presence of a complex potential.
We show how the elastic and absorption cross sections can be obtained from
the numerical solution of these equations in the asymptotic region at large radial
distances. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905734]

I. INTRODUCTION

The formalism of non-Hermitian quantum mechanics offers some simplifications in the
formulation and computation of scattering processes, which might be difficult to solve within the
Hermitian quantum scattering theory (see, e.g., Moiseyev2 and Chapter 8 in the book by Moiseyev1).
The use of complex absorption potentials offers an efficient way to obtain cross section for reactive
and short-lived channels (see, e.g., Chapter 18 in the book by Calogero3). The use of complex
absorption potentials has been discussed for various solution methods for the time independent
Schrödinger equation for scattering problems. For example, Calogero3 shows how to extend the
variable phase approach and Huarte-Larranage et al.4 have generalized the R-matrix method, just to
name a few.

In this paper, we present a method to solve the time independent Schrödinger equation for
scattering equations in the presence of a complex absorbing potential via the numerical integration
of coupled Volterra integral equations. Sams and Kouri5–7 have shown that for real potentials, the
scattering cross section can be obtained by solving a system of coupled Volterra integral equations.
In matrix form, the integral equations can be written as (see, e.g., Chapter 5 in the book by
Gianturco13)

U(R) =
 R

R0

{J(R) ·N(x)
+ N(R) ·J(x)} ·V(x) ·U(x) dx . (1)

Here, J and N are diagonal matrices containing the spherical Riccati-Bessel and Riccati-Neumann
functions, respectively, V is the potential matrix, and U(R) is a matrix containing the radial
wavefunction. The formulation of Sams and Kouri via Volterra integral equations has a number
of advantages. The boundary conditions are automatically included. The equations can be solved
by non-iterative procedures.7 The method can be used for local and non-local potentials.7 The
formulation can be extended to obtain other scattering quantities directly, like the T and K matrix8,9

and to reactive scattering.10–12

Curik et al. have shown that the method can result in very efficient computer implementations to
obtain cross sections for electron molecule collisions14 and positron molecule collisions.15 Recently,
we have applied this method to positron scattering from biomolecules16–19 employing the recent
computer implementation of Sanna et al.20
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The good features of the integral equation method of Sams and Kouri motivate us to extend
it for complex potentials. The paper is organized as follows: in Sec. II, we show how to solve Eq.
(1) for real potentials and how to extract scattering cross sections, as discussed in the literature.
In Sec. III, we will show how Eq. (1) can be solved for complex potentials and how elastic and
absorption cross sections can be obtained from the asymptotic solutions of the wavefunction.

II. SOLUTION FOR REAL POTENTIALS

A. Integral equations

Equation (1) can be rewritten in the following equivalent form (see Chapter 5 in Gianturco13):

G(R)=V · (J ·Q+N ·P) , (2)

with the auxiliary matrices

P(R)=
 R

R0

J(x) ·G(x) dx (3)

and

Q(R)=
 R

R0

N(x) ·G(x) dx . (4)

B. Numerical solution

The Eqs. (2)–(4) can easily be solved numerically. As an example, we show explicitly the
one-step advancing procedure for the trapezoidal integration rule, given in Chapter 5 of Gianturco.13

The formulation using alternative integration rules can be done in a straightforward manner. If we
assume a constant step size h, we can define

Gt=G(R0+ th) , (5)

with t ∈ {0, 1, 2, . . ., N}. Quantities Vt, Jt,Nt,Pt, and Qt can be formulated in an equivalent way.
Here, the point R0 is chosen either at the origin or deep enough in the classically forbidden region.
The last radial grid point RN = R0+N · h is in the asymptotic region, where the influence of the
potential can be neglected. This procedure can easily be generalized to non-uniform radial grids.
The stepping procedure is given by (see Chapter 5 in Gianturco13)

Gt=Vt · (Jt ·Qt−1+Nt ·Pt−1) . (6)

The computation of Gt at the radial grid point t only requires the knowledge of the matrices Pt−1
and Qt−1 at the grid points t−1. The two auxiliary matrices can be computed as

Pt=Pt−1+h ·Jt ·Gt (7)

and

Qt=Qt−1+h ·Nt ·Gt. (8)

The initial conditions are given by

P0= 0 and Q0= 1 , (9)

where 0 and 1 are the zero matrix and the unit matrix, respectively.

C. Computation of the cross sections

At the final radial grid point R= N · h, which is in the asymptotical region, the K-matrix can be
obtained by

K=PN ·QN
−1 . (10)
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One should note that the matrices Pt and Qt can be parametrized in the following way:

Pt= sindt (11)

and

Qt= cosdt . (12)

This parametrization is never explicitly used in the procedure, however, it is instructive to see that
the K matrix can be expressed as

K= tandN , (13)

where the matrix d is a matrix containing the partial-wave phase shifts. This parametrization directly
motivates the initial conditions for P0 and Q0 given in Eq. (9).

From the K-matrix, we can obtain the S-matrix as

S = (1− iK) · (1+ iK)−1 . (14)

The elastic integral cross section is computed in terms of the S-matrix as

σel=
π

k2


mn

|δmn−Smn|2 , (15)

where k =
√

2E and E is the collision energy. The above sum runs over all S-matrix channels m
and n.

III. SOLUTION FOR COMPLEX POTENTIALS

A. Integral equations

In this section, we will explore the possibility of using a complex potential matrix

Vc=Vr+ i Vi , (16)

which can contain a real part Vr and an imaginary part Vi. For the above matrices G, P, and Q, we
are making the Ansatz

Gc = Gr+ i Gi, (17)

Pc = Pr+ i Pi, (18)

Qc = Qr+ i Qi. (19)

Inserting these equations into Eq. (2) and separating real and imaginary quantities, we obtain for the
G matrices

Gr = Vr · (J ·Qr+N ·Pr)
− Vi ·

�
J ·Qi+N ·Pi� (20)

and

Gi = Vr ·
�
J ·Qi+N ·Pi�

+ Vi · (J ·Qr+N ·Pr). (21)

For the real and imaginary parts of the P and Q matrices, we obtain

Pr(R) =
 R

R0

J(x) ·Gr(x) dx, (22)

Pi(R) =
 R

R0

J(x) ·Gi(x) dx (23)
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012104-4 Jan Franz J. Math. Phys. 56, 012104 (2015)

and

Qr(R) =
 R

R0

N(x) ·Gr(x) dx, (24)

Qi(R) =
 R

R0

N(x) ·Gi(x) dx . (25)

B. Numerical solution

The Eqs. (20)–(25) can be solved in a similar way as shown in the previous section for the case
of real potentials. As an example, we show the one-step advancing procedure for the trapezoidal
integration rule. The formulation using other integration rules is again straightforward. Let

Gr
t =Gr(R0+ th) , (26)

with t ∈ {0, 1, 2, . . ., N}. All other quantities with a subscript are defined equivalently. The stepping
procedure can now be formulated as

Gr
t = Vr

t ·
�
Jt ·Qr

t−1+Nt ·Pr
t−1

�

− Vi
t ·
�
Jt ·Qi

t−1+Nt ·Pi
t−1

�
(27)

and

Gi
t = Vr

t ·
�
Jt ·Qi

t−1+Nt ·Pi
t−1

�

+ Vi
t ·
�
Jt ·Qr

t−1+Nt ·Pr
t−1

�
, (28)

with

Pr
t = Pr

t−1+h ·Jt ·Gr
t , (29)

Pi
t = Pi

t−1+h ·Jt ·Gi
t, (30)

Qr
t = Qr

t−1+h ·Nt ·Gr
t , (31)

Qi
t = Qi

t−1+h ·Nt ·Gi
t . (32)

The initial conditions are

Pr
0= 0 and Pi

0= 0 (33)

and

Qr
0= 1 and Qi

0= 0 . (34)

C. Computation of the cross sections

In order to formulate an expression for the K-matrix in the asymptotic region, it is instructive to
introduce some parametrization of the matrices Pi and Qi. We choose the following parametrization
of the S-matrix (see, e.g., Chapter 18 in Calogero3):

S(R)=A(R) · e2id(R). (35)

Here, d(R) is the matrix containing the phase shifts, and the matrix A(R) can be parametrized as

A(R)= e−2b(R), (36)

where b(R) is a matrix of complex phase shifts. With this parametrization, the matrices Pc and Qc

in Eqs. (18) and (19) can be expressed in term of the matrices P and Q, given in Eqs. (11) and (12).

Pc = P ·cosib+Q · sinib
= sind ·cosib+cosd · sinib
= sind ·coshb+ icosd · sinhb (37)
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012104-5 Jan Franz J. Math. Phys. 56, 012104 (2015)

and

Qc = −P · sinib+Q ·cosib
= −sind · sinib+cosd ·cosib
= cosd ·coshb− isind · sinhb. (38)

For the real and imaginary parts of the matrices Pc and Qc, we get the following set of expressions:

Pr = sind ·coshb, (39)

Pi = cosd · sinhb, (40)
Qr = cosd ·coshb, (41)

Qi = −sind · sinhb . (42)

With the definition of the K-matrix,

K = tandN, (43)

we can express the K-matrix as either

K = Pr
N ·
�
Qr

N
�−1 (44)

or as

K = −Qi
N ·
�
Pi

N
�−1

. (45)

For the computation of the absorption cross section, we need the asymptotic value of the matrix A.
Using the relations between hyperbolic functions, we can derive the following identity:

A = e−2b (46)

= (coshb+sinhb) · (coshb−sinhb)−1. (47)

With the quantities given in Eqs. (39) – (42), the matrix A can be expressed as

A=
�
Qr+Pi� ·

�
Qr−Pi�−1

(48)

or alternatively as

A=
�
Pr−Qi� ·

�
Pr+Qi�−1

. (49)

From the K-matrix and the A-matrix, computed in the asymptotic region, we can obtain the
S-matrix as

S=A · (1− iK) · (1+ iK)−1 . (50)

The elastic integral cross section is computed in terms of the S-matrix as

σel=
π

k2


mn

|δmn−Smn|2 , (51)

with k =
√

2E and E being the collision energy. The absorption cross section is given by

σabs=
π

k2


mn


δmn− |Smn|2


. (52)

The total cross section is given by

σtotal=
2π
k2


mn

{δmn−Re(Smn)} , (53)

where Re(Smn) denotes the real part of Smn. The sums in Eqs. (51) – (53) run over all channels m
and n.
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IV. CONCLUSIONS

In this paper, we are presenting a method to solve the system of coupled Volterra integral
equations in the presence of a complex potential. Explicit equations are derived for the numerical
implementation. We have derived expressions for computing the elastic and absorption cross sections
from the solutions in the asymptotic region. The equations can be easily implemented into existing
computer program packages, like VOLSCAT.20

In the future, we plan to use this method to describe processes like the ionization of atoms
and molecules by electron or positron impact and the formation of Positronium, the bound
system of an electron and a positron, by positron collisions with atoms and molecules. Complex
absorption potentials have been utilized to describe these processes (see, e.g., for electron potentials
Staszewska21 and Blanco and Garcia22,23 and for positron potentials Reid and Wadehra24,25).
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