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Abstract

In the paper we describe the notion of Shannon capacity for evolving
channels. Furthermore, using a computer search together with some
theoretical results we establish some exact values of the measure.
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1 Introduction

There are many reasons to consider channels with a reliable transmission, i.e.
a transmission with exactly zero probability of error [2]. In 1956, Claude
Shannon introduced the notion of a capacity of a noisy channel for a reliable
transmission [3]. In the paper we discuss a generalization of the problem, i.e.
the Shannon capacity of evolving channels [1] and present some exact values
of the Shannon capacity of reducing channels.

2 Preliminary notes

In the following, we will need the following definition

Definition 2.1 A discrete channel Q = (AX , AY , MXY ) consists of three
parts: AX and AY are input and output alphabets, respectively, MXY is the
transition matrix with p(y|x) elements, which correspond to conditional prob-
abilities.

We say that a channel Q is noisy, if there are elements y1, y2 ∈ AY and an
element x ∈ AX such that p(y1|x)p(y2|x) > 0. Given a channel Q and element
x ∈ AX , we define

Sx = {y ∈ AY : p(y|x) > 0}. (1)
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Sx is the set of letters attainable on output, when there is x on input.
For a discrete channel Q, there exists the characteristic graph defined as

follows

Definition 2.2 The characteristic graph of a channel Q is a graph G =
(V, E) such that the vertex set V = AX and {x, y} ∈ E(G) iff Sx ∩ Sy �= ∅.

There are many operations acting on graphs. In the paper we will use the
following operation

Definition 2.3 Given two graphs G and H, the strong product G · H is
defined as follows. The vertices of G ·H are all pairs of the Cartesian product
V (G)×V (H). There is an edge between (x, x′) and (y, y′) iff {x, y} ∈ E(G) and
{x′, y′} ∈ E(H) or x = y and {x′, y′} ∈ E(H) or x′ = y′ and {x, y} ∈ E(G).

We write Gn to denote G · G · . . . · G, where G occurs n times.
Let G be a graph. A set of vertices S of G is said to be an independent set

of vertices if they are pairwise nonadjacent. The independence number of G,
denoted by α(G), is defined to be the size of a largest independent set of G.
For m arbitrary graphs G1, . . . , Gm, we have

α(G1 · . . . · Gm) ≥ α(G1) · . . . · α(Gm). (2)

The notion of reliable capacity was introduced by Shannon [3]

Definition 2.4 The Shannon capacity is defined as

C0 = supn
n

√
α(Gn). (3)

We derived a generalization of this measure in [1]

Definition 2.5 Given a sequence U1, U2, . . . of operations acting on graphs.
The Shannon capacity of evolving channel is defined as

C0 = supn
n

√
α(Un(G)). (4)

where Un(G) = Un(Un−1(. . . (U1(G)))).

Notice that U1, U2, . . . represent arbitrary operations on a channel, but some-
times the supremum does not exist, so the measure does not work. However,
we get the Shannon capacity, if Un(G) = Gn.

Let Q be a noisy channel, G be its characteristic graph and L = (v1, . . . , vl)
be a sequence of vertices of G such that vi �= vj, for i, j = 1, . . . , l and i �= j.
Then we denote a sequence of reductions as

Gk[L] = G − v1 ⊕ ({v1}, ∅) − v2 ⊕ ({v2}, ∅) − . . . − vk ⊕ ({vk}, ∅), (5)

where k ≤ l ≤ |V (G)| and the symbol − means a vertex deletion and the
symbol ⊕ means a graph join.

In the next section, we will show some exact values for a special case of the
Shannon capacity of evolving channel defined below
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Definition 2.6 Given a graph G with n vertices and a permutation π of
{1, . . . , n}. We define the Shannon capacity of reducing channels as

CR
0 = max

k∈[n]

k
√

α(Gk[π]), (6)

where Gk[π] = G0[π] · G1[π] · G2[π] · . . . · Gk−1[π] and G0[π] = G.

For more details of the section, see [1].

3 Some exact values

It is interesting that we could facilitate the problem of calculating the Shannon
capacity of reducing channels.

Lemma 3.1 Given graphs H and Kn − e, i.e. complete graph without an
edge, then

α
(
(Kn − e) · H

)
= 2α(H). (7)

Proof. Given a graph H with V (H) = {1′, 2′, . . . , l′} and an edge e = {v1, v2}
of Kn, with V (Kn) = {1, 2, . . . , n}, there are two copies H1, H2 of H in (Kn−e)·
H on vertex sets {(v1, i

′) : i′ ∈ V (H)} and {(v2, i
′) : i′ ∈ V (H)}, respectively,

which are not linked. Hence, 2α(H) ≤ α
(
(Kn − e) · H

)
. On the other hand,

let S be a largest independent set of (Kn − e) · H . If S ⊂ V (H1) ∪ V (H2),
then |S| ≤ 2α(H). Otherwise, for an vertex (s1, s2) ∈ S, which is outside
V (H1)∪V (H2), we can replace (s1, s2) to vertices (v1, s2) and (v2, s2), without

breaking the independent set condition. Therefore, α
(
(Kn − e) ·H

)
≤ 2α(H).

The reduction Shannon capacity has the following property

Theorem 3.2 Given a graph G and a permutation π = (p1, . . . , pn) of all
vertices of G. If Gi[π], . . . , Gn[π] are complete graphs, then:

CR
0 =

{
i + 1, if i = 0, 1

maxk∈[i−1]
k

√
α(Gk[π]), if 2 ≤ i < n

(8)

Proof. It is easy to see that the theorem is true for i = 0. If Gi[π], . . . , Gn[π]
are complete graphs for some i ∈ {1, . . . , n − 1}, then Gi−1[π] is a complete
graph without an edge. Using the well known formula α(H · Kj) = α(H),
where j is an integer number, we conclude that for k ≥ i

α
(
Gk[π]

)
= α

(
Gi[π]

)
. (9)

For i = 1, we have α(G1[π]) = α(Kn − e) = 2. For 2 ≤ i < n, from Lemma 3.1

α
(
Gi[π]

)
= α

(
Gi−1[π] · Gi−1[π]

)
= 2α

(
Gi−1[π]

)
. (10)
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In addition, from (2), we get α(Gi−1[π]) ≥ α(G0[π]) · . . . · α(Gi−2[π]). Because
G0[π] ⊂ . . . ⊂ Gn[π], hence α(G0[π]) ≥ . . . ≥ α(Gi−2[π]) ≥ α(Gi−1[π]) = 2.
So, we get α(Gi−1[π]) ≥ 2i−1 and therefore

i−1

√
α(Gi−1[π]) ≥ i

√
2α(Gi−1[π]). (11)

From these considerations, we get the thesis.

Using preceding results and a computer search we have established among
others that for all permutations

• CR
0 = 1, for Kn, n > 0,

• CR
0 = 2, for 2P2, K3 ∪ K1, P4, C4, K4 − e, W5, K5 − e,

• CR
0 = 3, for S4, K2 ∪ E2,

• CR
0 = 4, for E4.

These computations brought us to α(Gk[π]) = α(G0[π]) · . . . ·α(Gk−1[π]), for all
permutations π and graphs on n vertices, where 1 ≤ k ≤ n ≤ 4. Additionally,
we find that CR

0 = α(G), for all graphs on n ≤ 4.
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