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Faculty of Applied Physics and Mathematics
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Abstract

We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =
γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the
k-path vertex cover number and the distance (k − 1)-domination number,
respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs
for k ≥ 2. Moreover, we provide a complete characterisation of (ψ2 − γ1)-
perfect graphs describing the set of its forbidden induced subgraphs and
providing the explicit characterisation of the structure of graphs belonging
to this family.
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1. Introduction

The graphs considered here are finite, undirected and simple, with n vertices. In
general we follow the terminology of [5].

Let G = (V,E) a graph. Let us denote the cardinality of V by n. The
neighbourhood of a vertex v ∈ V is the set NG(v) of all vertices adjacent to v
in G. The degree of a vertex v in G, denoted by dG(v), is the number of edges
incident with v. For a set X ⊆ V , the open neighbourhood NG(X) is defined to
be

⋃

v∈X NG(v) and the closed neighbourhood NG[X] = NG(X) ∪ X. If H is an
induced subgraph of G, then we write H 6 G.

A subset D of V is dominating in G if every vertex of V \ D has at least
one neighbour in D. Let γ(G) be the minimum cardinality among all dominating
sets in G. A set D ⊆ V of vertices is said to be a distance k-dominating set if
every vertex of V \ D is at distance at most k from D. Minimum cardinality
of a distance k-dominating set of G is the distance k-domination number of G,
denoted by γk(G) (see also [6, 7]). By definition, γ1(G) = γ(G).

A subset S of vertices of a graph G is called a k-path vertex cover if every
path of order k in G contains at least one vertex from S. Denote by ψk(G) the
minimum cardinality of a k-path vertex cover in G (for more details we refer the
reader to [3]).

Let σ and ρ be two types of graph theoretical parameters. We say that a
graph G is (σ−ρ)-perfect if σ(H) = ρ(H) for every connected induced subgraphH
of G. The most well-known example of (σ− ρ)-perfect graphs are perfect graphs
(see e.g. [1]) which can be obtained by replacing σ and ρ by the chromatic number
χ and the clique number ω.

In [9], for γc(G) the connected domination number of G, the (γ− γc)-perfect
graphs are called perfect connected dominant graphs. The author gives the fol-
lowing characterization.

Theorem 1 [9]. A connected graph G is a perfect connected dominant graph if
and only if G contains neither an induced path P5 nor an induced cycle C5.

In [4], (γ − γw)-perfect graphs were characterized, where γw is a weakly
connected domination number of a graph G. Here we consider (ψk−γk−1)-perfect
graphs for k ≥ 2.

Our study is partially motivated by the following real life situation concerning
availability of some important services in a town (e.g. installation of telephone in
the developing countries). One wants to guarantee that each service is available
at most at the distance k from every house or flat. We also can prefer that on
every path of given length you can find at least one instance of the considered
service. If we model this situation then it is quite easy to see that those two
goals can be measured by k-distance domination number γk and k-path vertex
cover ψk.
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Since ψk(G) = 0 for k > n, we consider k such that 2 ≤ k ≤ n. Obviously,
γk−1(G) ≤ ψk(G) for any graph G with no isolates and such that ψk(G) > 0.
Moreover, the difference between ψk and γk−1 can be arbitrarily large (see
Lemma 2). Nevertheless, we describe (ψk − γk−1)-perfect graphs defined below.

Definition. For a graph G without isolated vertices let Hk(G) = {H 6 G :
ψk(H) ≥ 1 and H has no isolates}. We say that a graph G is (ψk − γk−1)-perfect
if ψk(H) = γk−1(H) for every induced subgraph H ∈ Hk(G).

In the next section, we study (ψk − γk−1)-perfect paths, cycles and complete
graphs for k ≥ 2. In the last section, Theorems 10 and 11 give a full characteri-
zation of (ψk − γk−1)-perfect graphs for k = 2.

2. Characterization of (ψk − γk−1)-Perfect Graphs

We begin with the following lemma.

Lemma 2. For any positive integer p there exists a graph G such that ψk(G)−
γk−1(G) = p.

Proof. Let p be a positive integer. We construct the graph G such that ψk(G)−
γk−1(G) = p. We start with the star K1,p+1 with central vertex v and end vertices
v1, v2, . . . , vp+1. Then to every vertex vi we add a cycle of the length k − 1 by
identifying any vertex of the cycle with the vertex vi (1 ≤ i ≤ p + 1). In such
a graph G vertex v forms a minimum distance k-dominating set of G and all
neighbours of the vertex v form a minimum k-path vertex cover of G. Hence,
ψk−1(G) = p+ 1 and γk(G) = 1.

It is easy to determine the values of ψk and γk−1 for paths and cycles.

Remark 3. Let n be a positive integer. Then

(i) ψk(Pn) =
⌊

n
k

⌋

and γk(Pn) =
⌈

n
2k+1

⌉

,

(ii) ψk(Cn) =
⌈

n
k

⌉

and γk(Cn) =
⌈

n
2k+1

⌉

.

From Remark 3 we obtain Tables 1 and 2 which allow us to compare the behaviour
of ψk and γk−1 for paths and cycles.

By Table 1, if k ≤ n < 3k, then ψk(Pn) = γk−1(Pn). Moreover, if n = 3k,
then 3 = ψk(P3k) 6= γk−1(P3k) = 2. Since P3k 6 Pn for n > 3k, we have the
following theorem.

Theorem 4. The graph Pn is (ψk − γk−1)-perfect if and only if k ≤ n < 3k.

We have a similar theorem for cycles.
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Table 1. ψk(Pn) and γk−1(Pn).

s ψk(Pn) γk−1(Pn)

1 k ≤ n < 2k k ≤ n < 2k

2 2k ≤ n < 3k 2k ≤ n ≤ 4k − 2

3 3k ≤ n < 4k 4k − 1 ≤ n ≤ 6k − 3

s ≥ 4 sk ≤ n < (s+ 1)k 2k(s− 1)− (s− 2) ≤ n ≤ (2k − 1)s

Table 2. ψk(Cn) and γk−1(Cn).

s ψk(Cn) γk−1(Cn)

1 n ≤ k k ≤ n ≤ 2k − 1

2 k < n ≤ 2k 2k − 1 < n ≤ 4k − 2

s ≥ 3 (s− 1)k < n ≤ sk (s− 1)(2k − 1) < n ≤ (2k − 1)s

Theorem 5. The graph Cn is (ψk−γk−1)-perfect if and only if n = k or n = 2k.

Proof. • For n ≥ 3k + 1, P3k 6 Cn; by the above theorem the cycle Cn is not a
(ψk − γk−1)-perfect graph.

• If 2k < n ≤ 3k, then from Table 2, 3 = ψk(Cn) 6= γk−1(Cn) = 2. Hence, Cn is
not a (ψk − γk−1)-perfect graph.

• If k < n < 2k, then from Table 2, 2 = ψk(Cn) 6= γk−1(Cn) = 1. Hence, Cn is
not (ψk − γk−1)-perfect.

• If n = k, then from Table 2, ψk(Cn) = 1 = γk−1(Cn) and Cn is the only induced
subgraph H ∈ Hk(Cn), so Cn is (ψk − γk−1)-perfect.

• If n = 2k, then from Table 2, ψk(Cn) = 2 = γk−1(Cn). Moreover, every induced
subgraph H ∈ Hk(Cn) is either Cn or Pl, where k ≤ l ≤ 2k − 1. By the above
theorem, ψk(Pl) = γk−1(Pl) and Cn is (ψk − γk−1)-perfect.

A chord is an edge joining two non-adjacent vertices in a cycle. Let F be a
set of chords of a graph G. For any F ′ ⊆ F by G∪F ′ we denote a graph obtained
from G by adding edges from the set F ′.

Corollary 6. If k < n < 2k or n > 2k, then Cn ∪F
′ is not a (ψk − γk−1)-perfect

graph.

Proof. Since ψk(Cn) ≤ ψk(Cn∪F
′) and γk−1(Cn) ≥ γk−1(Cn∪F

′) for any subset
F ′ of chords of Cn, we obtain the desired result.

Theorem 7. For n ≥ 2 a complete graph Kn is (ψk − γk−1)-perfect if and only
if n = k.
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Proof. Since ψk(Kn) = n− k+ 1, γk−1(Kn) = 1 and every induced subgraph of
a complete graph is also a complete graph, we obtain the desired result.

3. Characterization of (ψ2 − γ)-Perfect Graphs

In [8] Volkmann characterized graphs G for which ψ2(G) = γ(G).We now provide
a complete characterization of (ψ2 − γ)-perfect graphs in terms of the family F
of forbidden subgraphs. The graphs belonging to F are depicted in Figure 1.

F1 = C3 F2 = C5 F3 = P6 F4 F5

F6 F7 = C6 F8 F9 F10

Figure 1. Family F of forbidden subgraphs.

Theorem 8. Graph G is (ψ2 − γ)-perfect if and only if G does not contain any
graph from the family F as an induced subgraph.

Proof. One can easily verify that for any graph Fi, i = 1, 2, . . . , 10, belonging
to F we have γ(Fi) < ψ2(Fi). It means that none of them is (ψ2 − γ)-perfect.
Moreover, each of their induced subgraphs, which is not an isolated vertex, is
(ψ2 − γ)-perfect.

Let us prove now the opposite implication. Suppose to the contrary that G
does not contain any graph from the family F as an induced subgraph andG is not
(ψ2 − γ)-perfect. Let G be the minimum counterexample. Thus γ(G) < ψ2(G).

Let D be a minimum dominating set of G and, without loss of generality,
chosen such that it has the minimum number of edges in G[V − D] among all
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minimum dominating sets of G. Since γ(G) < ψ2(G), D is not a (2-path) vertex
cover of G and there exists an edge ab such that a, b ∈ V −D.

If the vertices of the edge ab are dominated by the same vertex u belonging
to D, then we find an induced C3 in G, a contradiction. Therefore a, b must
be dominated by two different vertices u, v ∈ D. Without loss of generality, let
ua, vb ∈ E(G). Moreover, among all possible u and v choose such a pair that
their mutual distance in G is the smallest possible.

If one of u and v have degree one, say u, then D′ = D − {u} ∪ {a} is a
minimum dominating set of G with fewer edges in G[V − D′], a contradiction.
Hence we can suppose that both u and v have degree at least 2 and we have edges
uu′, vv′ for some vertices u′, v′. Observe that u′ 6= v′, otherwise C3 or C5 appears
in the graph, which is a contradiction.

Now we distinguish two cases.

Case 1. Assume uv /∈ E(G). Since there is no induced C3 in G, we have
u′a, v′b, va, ub /∈ E(G). Suppose u′v ∈ E(G). Since there is no induced C3 in
G, we obtain G[{u, u′, b, v, a}] = C5, a contradiction. So u′v /∈ E(G). By an
application of analogous arguments we obtain uv′ /∈ E(G).

Suppose now u′b ∈ E(G). If av′ /∈ E(G) and u′v′ /∈ E(G), then G[{u, u′, b,
v, a, v′}] = F5. If av′ /∈ E(G) and u′v′ ∈ E(G), then G[{u, u′, b, v, a, v′}] = F8.
It means that av′ must belong to E(G). Then if u′v′ ∈ E(G), then G[{u, u′, b, v,
a, v′}] = F9 and if u′v′ /∈ E(G), then G[{u, u′, b, v, a, v′}] = F8. Thus we can
conclude that u′b /∈ E(G) and because of symmetry v′a /∈ E(G).

It is easy to see that if u′v′ ∈ E(G), then G[{u, u′, b, v, a, v′}] = C6 and if
u′v′ /∈ E(G), then G[{u, u′, b, v, a, v′}] = P6. Hence in all subcases we have an
induced subgraph isomorphic to some graph from F , a contradiction.

Case 2. Assume uv ∈ E(G). Suppose now that dG(u) = 2. Then u′ = v and
D′ = D − {u} ∪ {a} is a minimum dominating set with less edges in G[V −D′],
a contradiction. Hence, dG(u) > 2. Similarly we can show that dG(v) > 2. Since
G has no induced C3, if none of the edges u′b, u′v′ and v′a are in E(G) we have
G[{u, u′, b, v, a, v′}] = F6. So at least one of these edges must be in E(G).

Evidently if u′v′ ∈ E(G), then G[{u, u′, b, v, a, v′}] is isomorphic either to F8,
F9 of F10 depending on the fact whether u′b, v′a are in E(G).

Hence we may suppose u′v′ /∈ E(G). Then the graph G[{u, u′, b, v, a, v′}] is
isomorphic either to F4 providing that exactly one of u′b, v′a is in E(G), or to
F9 whenever both edges u′b, v′a are in E(G).

Now we can describe the family of (ψ2−γ)-perfect graphs. From the previous
result it follows that this class is infinite but the structure of its members is
relatively simple.

Theorem 9. G is a connected (ψ2 − γ)-perfect graph if and only if it is one of
the graphs:
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(i) a tree with diameter at most 4;

(ii) a bipartite graph G = (A,B;E), where |A| = 2 and |B| ≥ 2.

Proof. It is easy to verify that if a graph satisfies condition (i) or (ii) of Theo-
rem 9, then it is (ψ2 − γ)-perfect.

Suppose now that G is a connected (γ− τ)-perfect graph. If G is a tree, then
since G is F3-free, it must be a tree with diameter at most 4. Suppose that G
has a cycle. It is known (cf. [2]), that C3-, C5-, C6-, P6-free graphs are chordal
bipartite graphs (each cycle of length at least 6 has a chord). Since a connected
(γ − τ)-perfect graph is (F1 − F3)- and (F7 − F10)-free, it contains only cycles
on 4 vertices. It implies that G is a bipartite graph with vertex partition into
sets A and B where |A| ≥ 2 and |B| ≥ 2. Assume that |A| ≥ 3 and |B| ≥ 3.
Let (u1, v1, u2, v2) be a cycle in G, where {u1, u2} ⊂ A and {v1, v2} ⊂ B. Since
G is connected, |A| ≥ 3 and |B| ≥ 3; without loss of generality we assume that
there is a vertex x ∈ A adjacent to v1 or to v2. Moreover, B − {v1, v2} 6= ∅ and
from this set we choose a vertex y such that the number dG(y, {x, u1, u2}) is the
smallest one from all possible values. Hence, y must be adjacent to at least one
vertex from the set {x, u1, u2}. We consider the following cases:

Case 1. xv1 ∈ E(G) and xv2 ∈ E(G).

Case 1.1. If y is adjacent to only one vertex from {x, u1, u2}, then F4 6 G,
a contradiction;

Case 1.2. if y is adjacent to exactly two vertices from {x, u1, u2}, then F9 6 G,
a contradiction;

Case 1.3. if y is adjacent to each vertex from {x, u1, u2}, then F10 6 G, a
contradiction.

Case 2. Without loss of generality, xv1 ∈ E(G) and xv2 6∈ E(G). Consider
the following subcases.

Case 2.1. If y is adjacent to only one vertex from {x, u1, u2}, then

• if yx ∈ E(G), then F5 6 G, a contradiction;

• if yu2 ∈ E(G), then F6 6 G, a contradiction;

• if yu2 ∈ E(G), then F6 6 G, a contradiction.

Case 2.2. If y is adjacent to exactly two vertices from {x, u1, u2}, then

• if yu1 ∈ E(G) and yu2 ∈ E(G), then F4 6 G, a contradiction;

• if yx ∈ E(G) and yu2 ∈ E(G), then F8 6 G, a contradiction;

• if yu1 ∈ E(G) and yx ∈ E(G), then F8 6 G, a contradiction.

Case 2.3. If y is adjacent to each vertex from {x, u1, u2}, then F9 6 G, a
contradiction.

In all cases we obtained a contradiction. Hence one partition has exactly two
vertices and the other one has at least two vertices.
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Discrete Appl. Math. 159 (2011) 1189–1195.
doi:10.1016/j.dam.2011.04.008

[4] G.S. Domke, J.H. Hattingh and L.R. Markus, On weakly connected domination in
graphs II, Discrete Math. 305 (2005) 112–122.
doi:10.1016/j.disc.2005.10.006

[5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs
(Marcel Dekker, 1998).

[6] M.A. Henning, O.R. Oellermann and H.C. Swart, Bounds on distance domination
parameters , J. Combin. Inform. System Sci. 16 (1991) 11–18.

[7] M.A. Henning, O.R. Oellermann and H.C. Swart, Relationships between distance
domination parameters , Math. Pannon. 5 (1994) 69–79.

[8] L. Volkmann, On graphs with equal domination and covering numbers , Discrete
Appl. Math. 51 (1994) 211–217.
doi:10.1016/0166-218X(94)90110-4

[9] I.E. Zverovich, Perfect-connected-dominant graphs , Discuss. Math. Graph Theory
23 (2003) 159–162.
doi:10.7151/dmgt.1192

Received 3 March 2015
Revised 23 September 2015
Accepted 9 October 2015

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1137/1.9780898719796
http://dx.doi.org/10.1016/j.dam.2011.04.008
http://dx.doi.org/10.1016/j.disc.2005.10.006
http://dx.doi.org/10.1016/0166-218X\(94\)90110-4
http://dx.doi.org/10.7151/dmgt.1192
http://www.tcpdf.org

