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Abstract: The spatial correlation between different sta-
tions for individual components in the regional GNSS net-
works seems to be significant. The mismodelling in satel-
lite orbits, the Earth orientation parameters (EOP), large-
scale atmospheric effects or satellite antenna phase cen-
tre corrections can all cause the regionally correlated er-
rors. This kind of GPS time series errors are referred to as
common mode errors (CMEs). They are usually estimated
with the regional spatial filtering, such as the "stacking".
In this paper, we show the stacking approach for the set
of ASG-EUPOS permanent stations, assuming that spatial
distribution of the CME is uniform over the whole region
of Poland (more than 600 km extent). The ASG-EUPOS
is a multifunctional precise positioning system based on
the reference network designed for Poland. We used a 5-
year span time series (2008-2012) of daily solutions in the
ITRF2008 from Bernese 5.0 processed by the Military Uni-
versity of Technology EPN Local Analysis Centre (MUT
LAC). At the beginning of our analyses concerning spatial
dependencies, the correlation coefficients between each
pair of the stations in the GNSS network were calculated.
This analysis shows that spatio-temporal behaviour of the
GPS-derived time series is not purely random, but there is
the evident uniform spatial response. In order to quantify
the influence of filtering using CME, the norms L1 and L2
were determined. The values of these norms were calcu-
lated for the North, East and Up components twice: before
performing the filtration and after stacking. The observed
reduction of the L1 and L2 norms was up to 30% depend-
ing on the dimension of the network. However, the ques-
tion how to define an optimal size of CME-analysed sub-
network remains unanswered in this research, due to the
fact that our network is not extended enough.
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1 Introduction
The vast majority of measurements using the Global Po-
sitioning System (GPS) necessitate the existence of thou-
sands of permanently operating stations that form the
regional and global networks of reference stations. The
ASG-EUPOS (Active Geodetic Network – European Posi-
tion Determination System) is a multifunctional precise
positioning system based on the reference network de-
signed for Poland [1]. At present, approximately 130 ref-
erence stations operate together and automatically collect
signals from GNSS satellites (GPS and GLONASS). Contin-
uous GNSS measurements are used to precisely estimate
the station’s positions and their velocities, and also for
ionosphere and troposphere studies [2]. The GNSS data
is needed to implement the kinematic reference frames
in geodesy [3] and interpret changes of dynamic char-
acter. The main reason for defining and maintaining of
the kinematic reference frames are the continental plate
movements. Providing an accurate, stable, homogeneous
and maintainable terrestrial reference frame is essential
for precise determination of an object’s position [4]. The
GNSS time series that are obtained in the standard pro-
cessing contain both signal and noise. The noises in the
time domain have already been described by a number
of authors, e.g. [5–8] for global or continental networks
or [9] for ASG-EUPOS. Besides temporal, the spatial cor-
relation of data for permanent stations located up to sev-
eral thousand kilometres from each other has also been
noticed [10]. The mismodelling of satellite orbits, Earth
orientation parameters (EOP), large-scale atmospheric ef-
fects, or satellite antenna phase centre corrections, can
all cause regionally correlated errors. This kind of GPS
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time series errors are referred to as common mode errors
(CMEs) [11–13]. They are usually estimated with regional
spatial filtering, such as "stacking". This type of analy-
sis was first used to study the Earth’s crustal movements
caused by seismic deformations [13], as well as filtering
of daily GPS solutions [12]. Stacking was also successfully
used to subtract the common mode error [14–16], through
analysis of subnets consisting of a limited number of per-
manent stations (3 to 10). An improvement of continuous
daily GPS solutions was shown in [14] by estimating the
weighted root-mean-square (WRMS) of raw and filtered
residual coordinate time series twice. The successful us-
age of simple thermoelastic strain model and the local at-
mospheric temperature to improve the signal-to-noise ra-
tio (SNR) in GPS data was demonstrated in [16]. The afore-
mentioned authors estimated CMEs using weighted stack-
ing formula, but some useful techniques for extracting
the CMEs with varying spatial responses can also be ap-
plied [11]. These authors indicated threemajor regional fil-
tering approaches: stacking, principal component analy-
sis (PCA) based on the empirical orthogonal function [17]
and the Karhunen-Loeve expansion [18]. They examined
five-year data automatically collected on 148 permanent
stations incorporated into the Southern California Inte-
grated GPS Network (SCIGN). Nowadays, it is confirmed
that common mode errors are not random in networks of
up to 500-600 kilometres. The analysis of results leads to
the conclusion that stacking could be the optimal method
for CMEs subtraction in terms of its low complexity and
comparable results to theproducts ofmore advancedfilter-
ingmethods. Themain limitation of spatio-temporal filter-
ing is the network size. In the case of a globally distributed
set of stations, the baseline distances are generally so large
that the stations are considered to be uncorrelated with
each other [19]. The question of whether the size of the net-
work affects the accuracy of a station’s position and veloc-
ity still remains unanswered. Previously published results
did not give clearly any relationship between these two is-
sues [20]. The maximum area for which computed CME is
of sufficient quality also remains unspecified.

2 Data and regional filtering
approach

We used a 5-year span time series (2008-2012) of daily so-
lutions in the ITRF2008 [21] from Bernese 5.0 [22] pro-
cessed by the Military University of Technology EPN Lo-
cal Analysis Centre (MUT LAC) [23]. The linear trend and
seasonal components (annual and semiannual periodic-

ities widely observed in the analysed time series [24])
were first removed from the XYZ geocentric time series us-
ing least squares estimation (LSE). Secondly, the outliers
and offsets were removed with median absolute deviation
(MAD) [25–27] criterion, assumed to be optimal for GPS-
derived coordinates [9] and STARS algorithm (sequential
t-test analysis of regime shifts) [28, 29], respectively. Then,
the LSE model was restored and the transformation into
North-East-Up (NEU) components was completed (in the
text we will call this the "raw time series"). The LSE was
performed again for NEU components, having subtracted
the trend and seasonal changes. The time series obtained
in this way will be referred to as the "unfiltered" time se-
ries for the rest of thepaper. Theunfiltereddaily time series
were characterized by gaps no longer than a few days (and
representing no more than 8-10% of data). We assumed
that several days gaps (that were present in ASG-EUPOS
time series) can be filled in by linear interpolation with no
influence on the results. The stacking approach requires
us to create an observation matrix, and thus it is neces-
sary to trim the input data to an equal number of epochs.
Therefore, the time series have to start and end at the same
epochwith the longest common time range possible for all
stations. Beyond excluding the time series that were not
long enough or that had many gaps from further analy-
ses, we also excluded the ones with strong local effects, as
recommended [11]. To meet these requirements, the ASG-
EUPOS networkwas reduced frommore than 130 available
stations down to 83with the same time span recorded (Fig-
ure 1). The distance between the sub-network barycentre
and the farthest permanent station, named GOLE (Gole-
niow, Poland), is 366 km with more than half of the anal-
ysed stations situated no farther than 230 km from the
barycentre.
For the set of n permanent stations with time series of m
epochs, we construct anm×n sizedmatrixX separately for
each of three unfiltered components (N, E, U). The extrac-
tion of CME can be applied using non-weighted stacking
formula [13] or the weighted approach applied here [12]:

CME(ti) =

n∑︀
j=1

X(ti , j)
σ2i,j

n∑︀
j=1

1
σ2i,j

(1)

where: CME(ti) is the common mode error value for each
of ti epochs, X(ti , j) is the i−th row and j−th column ele-
ment of matrix X, σi,j is the RMS of j−th individual station
position in the i−th epoch taken from the least-squares ad-
justment of GNSSdata usingBernese software (as stored in
the SINEX files).
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Figure 1: The analysed ASG-EUPOS sub-network consisted of 83
permanent stations distributed all over Poland and one located in
Slovakia. The sub-network barycentre is marked with a blue triangle
located North-East of the station named LODZ (Lodz, Poland).

Since CME values are assumed to be spatially uniform, the
estimated CME value is equal at the corresponding epochs
for the analysed component. The computed CME was re-
moved from the unfiltered component value X(ti , j) by:

x(ti , j) = X(ti , j) − CME(ti), i = 1, . . . ,m, j = 1, . . . , n
(2)

The filtered component values x(ti , j) are obtained as the
result of the procedure described. The chosen unfiltered
and newly formed (stacked) time series are presented in
Figure 2 for KUTN station, where the reduction of RMS
value was the greatest and quite significant: 7.2% for the
North, 6.8% for the East and 13.9% for the Up component.
The decrease in the RMS value was also noticed for other
stations, but decreased as the distance from the barycentre
increased, to only a few percent for stations on the perime-
ter of the area analysed.

3 The experimental results and
analysis

The spatial correlation between different stations for indi-
vidual components in the regional GNSS networks seems
to be significant [11]. One way to measure this correlation
is to compute the empirical semivariogram model on the

basis of the data points. The distance between data points
for which the semivariogram reaches the 95% confidence
level is treated as spatial correlation distance. In this re-
search, we computed the correlation coefficient between
two selected stations of the sub-network according to the
formula:

corr
[︀
X(t, j), X(t, k)

]︀
= cov[X(t, j), X(t, k)]

σX(t,j) · σX(t,k)
, j ≠ k (3)

where X(t, j) is a chosen component from a single station
and X(t, k) is the same component from another station of
the network for all of the available epochs. It was noticed
here, that the correlation coefficient for the raw time series
from two chosen GNSS stations inmany cases reaches val-
ues higher than 0.95. The causes of high correlation coef-
ficient for the raw time series are largely homogeneous for
all regional stations including seasonal terms and linear
trends generated by tectonic (Eurasian) plate motion. Be-
sides these obvious correlations, the raw time series also
contain some random errors, unmodelled or mismodelled
signals, local effects and noise. On the basis of the results
presented in Figure 3 for the unfiltered data, the size of
station-specific errors in relation to the regionally corre-
lated errors may be estimated. This figure presents the cor-
relation coefficient between each pair in the considered
GNSS network.
These correlation coefficients are relatively low for the
North and East components. The Up component is char-
acterized by slightly larger correlation coefficient, which
reaches values of more than 0.5 for a few of the nearest
stations. The low correlation coefficient value can be ex-
plained by properly performed time series modelling, re-
sulting in good subtraction of uniform spatial response at
all stations. Improvements in estimation of various param-
eters like tropospheric delays and gradients, orbits and
Earth orientation parameters made within the last years
is another reason for the small correlation coefficients. It
also appears to be important that the correlation coeffi-
cient decreases with the increasing distance between sta-
tions. This confirms that the commonmode error becomes
smaller when the sub-network is extended over larger ar-
eas. This analysis shows that spatio-temporal behaviour of
the GPS-derived time series is not purely random, but that
there is evident uniform spatial response, as we assumed
at the beginning of this research.
In order to quantify the influence of filtering using CME,
the norms L1 and L2 were determined. The values of these
norms were calculated for the North, East and Up com-
ponents twice: before performing the filtration and after
stacking. These values should represent how the size of the
network affects the CME values, andwhat results in the re-
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Figure 2: The unfiltered (blue) and stacked (red) time series from KUTN (Kutno, Poland) station.

Figure 3: The correlation coeflcients for each pair of stations (unfiltered data) in the sub-network in relation to the distance between them.
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Figure 4: The changes in mean L1 norm derived from the unfiltered
(solid line) and the regionally filtered time series through the stack-
ing approach (dashed line), for several sub-network configurations.

duction of scatter inGPSdaily solutions. The L1 normcom-
puted for the daily sampling interval is defined by the sum
of the absolute values of individual components (North,
East or Up) divided by the number of stations [11]:

L1(ti) =

n∑︀
j=1

|X(ti , j)|

n (4)

The daily-sampled L2 norm is the square root of the sum
of squared values of individual components divided by the
number of stations [11]:

L2(ti) =

n∑︀
j=1
X(ti , j)2

n (5)

It is important to compare the L1 and L2 norms determined
using unfiltered and stacked time series. On the basis of
this analysis, we can answer the questions about the na-
ture of the CME. One of them is what the optimal value
of the CME is, for which the greatest reduction in scatter
can be observed.Whether temporal and spatial uniformity
in distribution of CME is assumed for ASG-EUPOS perma-
nent stations is also important. The common mode error
was computed as the dailyweightedmean of the unfiltered
data from a set of permanent stations using form (1), and
then removed from all stations using form (2). At this stage
of the research, we calculated the L1 and L2 norms for
each of time epochs: first for the sub-network consisting of
three stations lying nearest to the barycentre, then in each
step we consecutively constructed a new sub-network by
adding the next nearest station to the barycentre until ob-

Figure 5: The changes in mean L2 norm derived from the unfiltered
(solid line) and the regionally filtered time series through the stack-
ing approach (dashed line), for several sub-network configurations.

taining the full 83-permanent station sub-network. Fig-
ure 4 and Figure 5 show the comparison of the norms cal-
culated from the unfiltered and stacked data for several
sub-network configurations. They present changes of av-
eraged values of L1 and L2 norms over the entire range of
observation time calculated in relation to the number of
stations in the sub-network. They also prove how the re-
moval of CME causes the averages of individual compo-
nents to decrease – with direct influence on RMS values,
even for a set of more than 80 stations.
Figure 4 and Figure 5 show that the proposed application
of stacking approach for ASG-EUPOS stations reduces the
norms. The enlargement of the network by adding the sub-
sequent permanent stations resulted in slow convergence
of mean L1 and L2 norms as a function of the size of the
constructed sub-network. Table 1 shows how the stacking
approach reduces scatter represented by both themean L1
and L2 norms. Each of the columns show how the corre-
sponding norm estimated after stacking decreased for ex-
tensive sub-networks.
Based on the analysis presented in Figure 4, Figure 5 and
Table 1, it can be concluded that the size of the sub-
network plays a significant role in the case of extracting
CMEs. The question of how to define an optimal size of
CME-analysed sub-network in this research remains unan-
swered, due to the fact that our network is not extended
enough. It is obvious, though, that the selected permanent
stations should be representative of the whole network
and also should not contain any local effects that can pro-
duce poor correlation between two stations. This purely
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Table 1: The comparison of the reduction of the mean L1 and L2 norms.

Number of stationsin the sub-network
[km]

Distance of the fartheststation to the
sub-network barycentre

Reduction in norms
North East Up

component
L1 L2 L1 L2 L1 L2
[%] [%] [%] [%] [%] [%]

5 70 18.8 19.8 19.1 19.7 31.8 31.3
10 103 11.0 11.0 10.9 10.9 22.3 20.7
20 139 8.1 7.6 7.3 6.6 18.0 16.4
30 188 6.5 5.8 6.3 5.5 15.5 13.8
40 220 6.3 5.5 5.5 5.0 13.9 12.4
50 244 5.8 5.1 5.2 4.7 12.2 10.9
60 272 5.4 4.7 4.9 4.5 10.6 9.4
70 305 5.2 4.6 4.6 4.3 9.6 8.5
80 330 4.7 4.2 4.0 3.6 8.3 7.3
83 366 4.6 4.1 4.0 3.5 8.0 7.1

correlated station gets an erroneous CME influence, so that
the filtered time series are distorted. The analysed sample
of data should be so large that the result of the filtration
has to be characterized by the highest precision and relia-
bility possible.
Figure 6 and Figure 7 present the daily changes in the L1
and L2 norms determined for the 83-station sub-network.
The red dots (stacked residuals) plotted with green lines
(unfiltered residuals) show a noticeable reduction in scat-
ter, this indicates the improvement of precision of daily so-
lution time series.
The scatter of L1 and L2 norms are larger during summer
than winter, despite the removal of annual and semian-
nual oscillations from the raw time series. This effect can
be explained by the temperature-dependent error source
in the GPS time series, for example: thermoelastic strain,
small-scale atmospheric perturbations and antenna ther-
mal noise. The assumption of spatially uniform distribu-
tion of CME is retained only for those regional networks
for which the permanent stations recorded more or less
similar weather conditions and continental water storage
during the whole year. Due to the distribution of ASG-
EUPOS permanent stations, which are located in the same
climatic conditions, the presence of temporally correlated
errors in the position time series is confirmed. Figure 8
presents the reduction of the standard deviation estimated
for each component of the 83 ASG-EUPOS permanent sta-
tions. They are sorted by the distance to the barycentre
of sub-network from the closest to the farthest. A posi-
tive value indicates a decrease in the standard deviation.
Isolated cases of negative growth prove the existence of
some local effects disrupting GPS observations at the sta-

Figure 6: The daily changes of the L1 norm for the unfiltered (green
line) and stacked (red dots) residuals.

tion that were unexplained and unnoticed in preliminary
analysis.
In this paper, we demonstrate the application of the stack-
ing approach for 83 ASG-EUPOS permanent stations, as-
suming that spatial distribution of the CME is uniformover
the whole region of Poland (more than 600 km extent). In
order to determine the reliability of extracting CME from
the North, East and Up components, we calculated the
standard deviations of the time series. The lower value of
the standard deviation indicates a higher precision of time
series (lower scatter). Figure 8 presents that the greatest re-
duction in scatter was observed for the Up component.
Figure 9 presents histogramplots of standard deviation for
the unfiltered and stacked components. The bars slightly

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


146 | J. Bogusz et al.

Figure 7: The daily changes of the L2 norm for the unfiltered (green
line) and stacked (red dots) residuals.

moved to the left of the graphs demonstrate that in this
case the stacking approach caused a reduction in scatter.
This improvement also appeared in themean values of the
correlation coefficients between LODZ (station closest to
the barycentre of the network) and the remaining stations,
which reached 0.007, 0.004 and 0.005 for the North, East
and Up filtered components, respectively.

4 Conclusions
The spatial correlations for the time series are quite ob-
vious for the horizontal topocentric components of the
GPS permanent stations situated hundreds of kilometres
from each other. These correlations for the permanent
stations are mainly the result of plate-related trend and
seasonal components. The spatial correlation values are
greater than 0.9 for the ASG-EUPOS stations, which indi-
cates the existence of almost the same signals for all of the
stations. The spatial correlation of the time series residua
(referred to as ‘unfiltered’ here) that are obtained after re-
moval of the deterministic part of the time series, in the
form of trend and seasonal components, has the value of
up to 0.5. This may arise from mismodelling of the satel-
lite orbits, the Earth orientation parameters (EOP), large-
scale atmospheric effects or satellite antenna phase cen-
tre corrections. On the one hand, the papers published so
far have described that the correlation of the ‘unfiltered’
GPS time series can be noticed up to hundreds of kilome-
tres both for global and regional networks [10]. However,
the largest area for which the CME value is still homoge-

Figure 8: The reduction [%] of the standard deviation through stack-
ing approach.

Figure 9: The histograms of standard deviation [mm] for the unfil-
tered (up) and stacked (down) components.
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neous has not been specified yet. In this research, we anal-
ysed whether the area of Poland (600 km) may be treated
as the one region for the CME estimation. We extended
our network starting with its barycentre and adding fur-
ther stations, widening it from a radius of 70 km to 360
km, and we noticed the deterioration of the L1 to L2 ratio
from 20 up to 4% and from 30 up to 8% for the values be-
fore spatial filtration and after it for the horizontal and ver-
tical components, respectively. This is clear evidence that
endlesslywidening the networkmay result in infinitesimal
improvement of the ratios, and thus indicates a nearly un-
detectable CME error. The correlation coefficient was also
estimated for the ‘stacked’ time series that were obtained
after spatial filtering. Its values did not exceed the 0.01 that
stands for the decrease in the correlation value of 300% in
comparison to correlation coefficients before spatial filter-
ing, and practically irrelevant spatial correlation of anal-
ysed network. The improvement (decrease) of the corre-
lation coefficient between the ASG-EUPOS permanent sta-
tions testifies to the fact that the CME can be treated as ho-
mogeneous for the area of Poland. Greater precision and
reliability of the spatial filtration results are expected after
implementing of the empirical orthogonal functions (EOF)
or the Karhunen-Loeve expansion (KLE), which we plan to
apply in the near future.

Acknowledgement: This research was financed by the
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tory research funds. Map was drawn in the Generic Map-
ping Tool [30].
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