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Abstract: Current Earth observation systems generate massive amounts of satellite image time se-

ries to keep track of geographical areas over time to monitor and identify environmental and climate 

change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classify-

ing land cover, utilizing SITS rather than one image might benefit differentiating across classes be-

cause of their varied temporal patterns. The aim was to forecast the land cover class of a group of 

pixels as a multi-class single-label classification problem given their time series gathered using sat-

ellite images. In this article, we exploit SITS to assess the capability of several spatial and temporal 

deep learning models with the proposed architecture. The models implemented are the bidirec-

tional gated recurrent unit (GRU), temporal convolutional neural networks (TCNN), GRU + TCNN, 

attention on TCNN, and attention of GRU + TCNN. The proposed architecture integrates univariate, 

multivariate, and pixel coordinates for the Reunion Island’s landcover classification (LCC). the eval-

uation of the proposed architecture with deep neural networks on the test dataset determined that 

blending univariate and multivariate with a recurrent neural network and pixel coordinates 

achieved increased accuracy with higher F1 scores for each class label. The results suggest that the 

models also performed exceptionally well when executed in a partitioned manner for the LCC task 

compared to the temporal models. This study demonstrates that using deep learning approaches 

paired with spatiotemporal SITS data addresses the difficult task of cost-effectively classifying land 

cover, contributing to a sustainable environment. 

Keywords: satellite image time series; landcover classification; attention; univariate; multivariate 

 

1. Introduction 

Over the years, progressive development in modern Earth observation programs has 

assisted in monitoring the surface of the Earth by continuously delivering enormous 

amounts of satellite data. The high revisit period has immensely contributed to the pro-

duction of SITS with an increased spatial resolution that represents an effective tool to 

monitor the transition on the surface of the Earth through time by providing enormous 

support in various applications. Satellite image time series (SITS) has been successfully 

applied in multiple applications such as ecology [1], farming and agricultural develop-

ment [2], risk analysis health and mobility [3], devising schemes for the effective 
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management of land [4], forest [5], and monitoring of natural habitat [6]. Our environment 

is frequently changing, necessitating constant improvements in land use and land cover 

(LULC) data to assist logical decision making. Land use defines the utilization of the land 

in a particular area, such as residential buildings, industrial sites, and agricultural regions. 

What physically exists on the surface of the Earth, such as water bodies, grasslands, and 

different kinds of forests, is called the land cover [7]. It is therefore critical to create highly 

effective and valuable strategies for obtaining LULC information in an automated and 

intelligent manner. There is a higher probability of land cover being present in land use, 

which becomes challenging to identify the land cover with remote sensing technology [8]. 

LULC data are crucial in multiple applications such as the administration of regional 

plans, urban development, monitoring, as well as the management of the environment in 

the domain of geospatial data analysis [9]. Climate change and disaster risk management 

are among the biggest challenges for environmental assessment and can be tackled 

through spatiotemporal properties exhibited by the LULC information [10]. In recent 

years, multitemporal images have been broadly used to construct SITS for LULC classifi-

cation and have gained tremendous success [11]. Multi-temporal remote sensing images 

contain more spatial features and a more comprehensive range of temporal profiles, al-

lowing them to meet the demands of more complicated tasks while maintaining a higher 

level of LULC stability than the single temporal image [12,13]. SITS can help differentiate 

across classes that display various temporal characteristics in LULC classification [14], i.e., 

addressing the findings that can be acquired using a single image. 

1.1. Traditional Techniques for SITS Classification 

According to the structure of SITS, classification techniques can be broadly catego-

rized into two major types. The first is stacking a set of multi-temporal images in terms of 

time sequence and performing classification using various machine learning techniques 

such as random forest (RF) and support vector machines (SVMs) [15]. The modeling of 

temporal correlations is not performed with this technique by ignoring temporal depend-

ency and utilizing features independently from each other [12]. The increase in the density 

of the time series with the incorporation of stacked images may lead to a rise in the curse 

of dimensionality and redundancy by impacting classification accuracy [16]. The second 

method is to construct SITS by generating fresh images from the original remote sensing 

images using specialized indexing techniques such as the normalized difference vegeta-

tion index (NDVI) and soil-adjusted vegetation index (SAVI) [17–19]. This method may 

build a curve representing the time-sequence of various objects, and other vegetations can 

be accurately classified. The number of time series, on the other hand, directly influences 

this strategy. If the quantity is too low, the temporal characteristics will have minimal 

impact on classification performance. Furthermore, this technique needs feature engineer-

ing incorporated manually based on existing knowledge and human expertise, which in-

creases the processing and computational complexity [20]. 

Precise land cover details are needed for environmental sustainability analysis. It is 

essential data supporting numerous ecological aspects and the assessment of land man-

agement at the local, regional, and global levels [21,22]. With the presence and the signif-

icance of information from land cover in sustainable environmental investigations and 

revolutionary change, numerous efforts have been made to emanate accurate LCC at mul-

tiple scales [23,24] with the use of remote sensing techniques. A key constraint is develop-

ing an efficient and precise image classification method that incorporates and exploits 

multi-spectral, multi-temporal, and spatial information available to extract land cover 

characteristics from remote sensing data. 

Traditional techniques for LCC include supervised/unsupervised machine learning 

techniques such as maximum likelihood estimators, K nearest neighbors, SVM, and RF. 

[25,26]. This mono-temporal technique takes advantage of the spectral nature of land 

cover data [11,27]. These techniques, however, are not usually intended to operate with 

SITS information nor to discover the pattern of land use [28,29]. The spatial and temporal 
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dependency is overlooked, which is considered necessary to retain the information to dif-

ferentiate the land covers. With rapid environmental monitoring advancements by en-

hancing Earth observation programs and computing technologies, deep learning algo-

rithms enable automated large-scale land cover assessment at increasingly detailed spatial 

and temporal dimensions [30,31]. 

1.2. Deep Learning Techniques for SITS Classification 

Deep learning offers good model complexity to discover and understand represen-

tations of features from the data in an end-to-end fashion without human intervention 

[32]. Deep learning, in particular, has achieved popularity for addressing temporal aspects 

in time series classification. The automatic discovery of intricate temporal and spatial pat-

terns in environmental data, such as SITS, can be achieved through deep learning. Unlike 

the conventional emphasis on spectral data in remote sensing images, the capacity to rec-

ord spatial-temporal patterns enables the identification and classification of LULC cate-

gories with near matching spectral characteristics [33]. 

Despite its effectiveness in extracting spatial-temporal and spectral features from re-

motely sensed data, machine learning and deep learning are not generally employed for 

large-scale satellite data analysis. However, significant findings for handling problems 

with small-scale applications for SITS classification, LULC mapping, and LULC change 

detection have been presented [34–36]. Extrapolating outcomes to a broad scale poses ad-

ditional challenges since models trained for small regions and tested over vast areas some-

times do not operate optimally [37]. For effective performance, the framework of the CNN 

models must be adequately constructed via several tests, resulting in bulky and expensive 

models. When adopting a deep learning architecture to identify temporal dependencies, 

the lower layers often record small-scale temporal variations while the higher layers ex-

tract the overall patterns. On the other hand, deep architecture has minimal influence on 

classification results when the time series is scarce, or there is sparse density. 

Deep learning SITS classification presently relies on obtaining significant features 

from temporal patterns [38]. Given the known situations of remote sensing classification, 

building a suitable classifier is also critical to improving accuracy [39]. Thus, various effi-

cient classification enhancement methods are used based on the characteristics employed 

by deep learning algorithms, such as utilizing sophisticated neural networks and devel-

oping classifiers [40]. CNNs approaches are considered the best models for identifying 

patterns or trends in the 2-dimensional domain. They also achieved remarkable classifi-

cation accuracy in the 1D field, incorporating time-series and spectral data [41,42]. Since 

SITS’ temporal relationships are extensive and complicated, modeling the deep learning 

architecture to assess remote sensing time series continues to be an open challenge [43]. 

Recent advances in ecotechnology and deep learning techniques hold great potential for 

the large-scale assessment of the land cover. 

The design of innovative approaches that merge spatiotemporal information from 

SITS with deep learning techniques is highly recommended. As a result, we evaluate the 

capability of multiple deep learning algorithms for predicting land cover using time series 

data. The following three goals are specifically addressed: 

1. The performance of several deep learning architectures with the proposed frame-

work is assessed for the land cover classification to exploit spatiotemporal properties 

from SITS using a test dataset. 

2. Accuracy assessment for the classification performance of every model is done by 

building a feature extractor to identify spatial and temporal properties. Depending 

on the features, various classifiers are trained and experimented on the land cover 

classification dataset. 

3. The proposed approach extracted the best land cover from the multi-temporal re-

mote sensing images achieving higher F1 scores than the GRU, TCNN, and attention-

based models. 
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2. Materials and Study Area 

The dataset (TiseLac) comprises satellite images from an annual Landsat8 time series 

(https://sites.google.com/site/dinoienco/tiselac-time-series-land-cover-classification-chal-

lenge, accessed on 17 September 2022) of 23 high-resolution images of dimensions of 2866 

× 2633 pixels of the Reunion Island at level 2A processing recorded in 2014. A dataset is 

made up of pixels: 230 columns, 10 features, and 23 dates. Amongst the training and test 

datasets, 99,687 time series at a 30 m spatial resolution are presented by the pixels from 

the 23 satellite images. The training set contains 81,714 instances, whereas the testing set 

contains 17,973 pixels taken from the 23 landsat8 images. Each pixel has ten features at 

each timestamp: seven surface reflectances, one for each independent multi-spectral band 

(OLI): ultra-blue, blue, green, red, near-infrared (NIR), short-wave infrared (SWIR1), and 

SWIR2 and 3 indices computed from these surface reflectance values, normalized differ-

ence vegetation index (NDVI), normalized difference water index (NDWI), and brightness 

index (BI). Each sample in the time-series dataset is arranged in temporal order, with fea-

tures from 1 to 10 representing the initial timestamp and features from 220 to 230 repre-

senting the final timestamp. Table 1 shows the distribution of classes in the TiSeLaC da-

taset. Figure 1 depicts the details of the study region. This categorization addresses three 

significant difficulties that might be exploited and linked to land cover data. Each sample 

is assigned to one of nine distinct classes. The essential perspective classes are retained, 

and spatial processing is used, supported by photo interpretation. The dataset was ran-

domly sampled using pixels to create the fairest and most accurate ground truth possible. 

This classification aspired to accomplish two fundamental exploitable challenges associ-

ated with the land cover data for the time-series images. 

1. The rich band information comprises ten features with a description of each pixel. 

2. Temporal data are showcased with the 23 time-points, amongst which band features 

are considered. The spatial information is associated with each pixel in the form of 

coordinates. 

 

Figure 1. Reunion Island showcasing all the surrounding land areas. (The arrows Piton des Neiges 

(southwestern) and piton de la Fournaise (eastern side) represents shield volcanoes of the reunion 

island in the Indian ocean). 
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Table 1. Overview of class distributions in the training and testing datasets for the TiSeLaC dataset. 

Class ID Class Name Instances Train Instances Test 

1 Urban areas 16,000 4000 

2 Other built-up surfaces 3236 647 

3 Forests 16,000 4000 

4 Sparse vegetation 16,000 3398 

5 Rocks and bare soil 12,942 2599 

6 Grassland 5681 1136 

7 Sugarcane crops 7656 1531 

8 Other crops 1600 154 

9 Water 2599 519 

The table shows that class proportions are equivalent between train and test splits 

and are a little unbalanced regarding minority classes such as other crops and water. The 

various land cover classes are 1. urban areas (UAs); 2. other built-up surfaces (OBAs); 3. 

forests (Fr); 4. sparse vegetation (SV); 5. rocks and bare soil (RBS); 6. grassland (GL); 7. 

sugarcane crops (SCs); 8. other crops (OCs); and 9. water (Wr). Figure 2 depicts the spe-

cifics of the dataset with the indices. The number of satellite platforms that collect re-

motely sensed data is constantly expanding. However, only a few labeled data are avail-

able due to the high cost in terms of money and human resources for labeling data through 

field campaigns or through expert knowledge. The lack of reference data, or labeled data, 

as well as the current availability of time series with high spatial resolutions, becomes a 

challenging task for assessing the validity of the proposed approaches. A fixed train and 

test sets are coming from the same satellite images. Therefore, they cover the same time 

period, and the training and testing data have the same distribution. Both vegetation clas-

ses (such as forests) and non-vegetation classes (e.g., urban areas) are included in the 

TiSeLaC dataset. Most land cover classes have a significant level of intra-class variability 

in terms of time and space. The choice of the dataset was motivated due to the following 

properties exhibited by various land use patterns occurring in the dataset. 

The specificities of the different classes are listed below: 

1. Urban Areas: cities on the Reunion Island are not as dense as those in Europe. Addi-

tionally, cities have a lot of green spaces, such as tree rows that offer shade and cooler 

locations. Its greenness density may influence a pixel’s associated NDVI values. 

2. Other built-up surfaces: these are possibly related to greenhouses, although this is an 

assumption. Indeed, greenhouses are frequently built-in green spaces, which could 

account for more intra-class variation than in urban areas. 

3. Forests: the NDVI values of the forests are stable because of the tropical climate. Thus, 

the time series that reflects the forests exhibits high but consistent NDVI values. 

4. Sparse vegetation: pixels that do not fit into any of the other classes are grouped to-

gether. Thus, a range of profiles with intermediate NDVI values are included under 

this class. 

5. Rocks and bare soil: this class has low NDVI values (close to or below 0). The NDVI 

value is predicted to vary only slightly for a given pixel. 

6. Grassland: this class assembles grasslands that were mowed and grazed. The re-

growth rate may vary depending on irrigation, resulting in various time series pro-

files. 

7. Sugarcane crops: since the NDVI values decrease following harvest, this time series 

has the most easily distinguishable characteristics. On Reunion Island, sugarcane 

fields occupy approximately 60% of the farmed land, and their harvesting season 

lasts for approximately a month. 

8. Other crops: orchards and a variety of crops, such as (pineapple and bananas), make 

up this class (e.g., lychees and mangos). Due to the variety of crops, this class has 

considerable intra-class variability. 
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9. Water: the considerable intra-class variability in this class can be attributed to the 

water’s turbidity. Water clarity is measured by its turbidity, which can affect NDVI 

results. 

 

Figure 2. Timeseries landcover dataset with 23 images with the indices. 

3. Models Implemented 

Our fundamental premise is that selecting the exemplary model architecture is criti-

cal for improving LCC performance. 

Although most of the architectures implemented are well-developed techniques in 

remote sensing applications, we are the first to combine this set of models in the remote 

sensing community to experiment with and combine them for large-scale time series anal-

ysis of land cover data. Traditionally, algorithms such as SVM and RF have been used. 

However, some problems faced by these algorithms are: they are oblivious to the temporal 

dimension, insensitive to image-order, and little inductive bias for images. Some of the 

traditional solutions offered to solve these problems are: 

1. Pre-calculating temporal features (has little effect and requires low-level feature en-

gineering); 

2. Using the nearest neighbor algorithm with temporal similarity features (computa-

tionally expensive). 

With the rising popularity of neural networks, convolutional neural networks 

(CNNs) came to be used for the task. Generally, 2D convolutions were applied across the 

spatial dimension, 1D convolutions across spectral dimension, and 3D convolutions 

across spatial and spectral dimensions (but no temporal dimension). Additionally, 3D-

CNNs were also used in videos, with 2D convolutions in the spatial dimension and 1D 

convolutions in the temporal dimension. In remote-sensing tasks, 1D convolution in tem-

poral dimension or 3D convolution in temporal and spatial dimensions are known to per-

form much better than machine learning algorithms. Recurrent neural networks (RNNs) 

such as LSTMs, GRUs, and bidirectional RNNs have also been used for this task. Combi-

nations of RNNs and 2D-CNNs were also used by merging representations learned by the 

two types of networks or by feeding a CNN model with the representation learned by an 

RNN model. They have been used for land cover change detection tasks between multi-

spectral images. Disadvantages of using RNNs are the vanishing gradients problem and 

long training time. The authors in [20] suggested using temporal CNNs for SITS classifi-

cation for improved accuracy and a shortened training time. It presents an experimental 
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study of temporal CNNs in order to give general guidelines about how they might be 

used and parameterized. 

In this article, we performed the LCC of SITS data. We focus on deep neural network 

architectures that account for spatial, temporal, and spatiotemporal information: the de-

vised models are gated recurrent unit (GRU); temporal convolutional neural networks 

(TCNN); GRU+ TCNN; and the attention model on TCNN and GRU. The proposed model 

is also tested in a partitioned manner with the following three possible combinations, 

namely univariate + multivariate (U + M), univariate + multivariate+ pixel coordinates (U 

+ M + C), and univariate + multivariate (LSTM) + coordinates. The TiSeLac dataset was 

trained using the following models: 

3.1. Gated Recurrent Unit 

Gated recurrent unit traditional recurrent neural networks (RNN) can only cope with 

forward-to-backward sequences. Because they are unable to learn future information, 

they may lose it. As a result, the bidirectional recurrent neural network (Bi-RNN), which 

incorporates an RNN to deal with future input, was introduced by [44]. Bi-RNN is built 

by dividing a regular RNN into two directions, one moving clockwise and the other with 

reverse time. The same output layer is linked to both RNNs, as shown in Figure 3. This 

architecture can provide detailed background data for the output layer intake sequence. 

The historical input data must penetrate both a forward and a reverse GRU, gathering the 

contextual data of a complete time series to simulate sequence-level LCC analysis using 

Bi-GRU. 

 

Figure 3. Bidirectional Gated Recurrent Unit. 

3.2. Temporal CNN 

The temporal CNN belongs to the category of RNNs, which aims to focus on the 

temporal dimension of the time series data with the consideration of the spatial data by 

combining 1D fully convolutional networks and causal convolutions [45]. In this model, 

1D convolutions are applied across the temporal dimension. Each dataset sample is re-

shaped to (the number of channels x number of days). A width filter equal to the number 

of channels moves across the dimension of days. The land cover analysis for the SITS is 

performed by explicitly managing the data flow through time. This model gives far better 

accuracy than the previous model, with a much shorter training time. 

3.3. GRU + Temporal CNN 

In this model, both GRU and temporal CNNs are used separately on the dataset. The 

outputs of these are concatenated together and this concatenated tensor is passed through 

a few fully connected layers, terminating with a nine-way SoftMax. The accuracy of this 
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model is slightly higher than the temporal CNN model, however, the training time per 

epoch is higher. Increasing the number of GRUs that are stacked together in this model 

does not help in improving the accuracy but does increase the training time. Hence, it 

should be avoided. 

3.4. Attention on Temporal CNN and GRU 

Attention models are neural network input processing methods that let the network 

concentrate on individual components of a complicated input one at a time until the entire 

dataset is classified. The idea is to divide challenging activities into manageable atten-

tional sequentially processed chunks. A function called attention is used to translate a 

query to an output from an “s set” of key-value pairs. In this scenario, the end output, the 

fundamental values, and the query are all vectors. The weights assigned to each value are 

then stated by the query’s compatibility function with the associated key value. The result 

is then computed as a weighted sum of the values. The intuition behind using attention 

for our task is that the time series data of some days may be more crucial than others to 

predict land cover, and attention enables us to capture this [46]. Figure 4 provides the 

architecture of temporal CNN with an attention mechanism. Attention was applied to the 

temporal CNN model and the GRU + temporal CNN model. 

 

Figure 4. Attention on temporal CNN. 

3.5. Proposed Framework 

The architecture proposed in Figure 5 integrates three different models: the multivar-

iate model on the left, ten univariate models in the center, and a model for aggregation to 

position the information on the right. The description is as given below: 

• Multivariate model: uses a 1D convolution on the actual data. It consists of three con-

volutional layers with no presence of pooling layers in between with a filter size of 3 

and a RELU activation function. 

• Univariate model: this model makes use of 10 univariate models, uses 1D convolu-

tions individually for each feature and concatenates the results. It comprises two con-

volution layers, including max-pooling and flatten layers at both levels. Both layers’ 

outcomes are concatenated to engineer the features at different levels. 

• Pixel coordinates: this model is utilized to pass through the preprocessed and scaled 

pixel coordinates to the final set of fully connected layers. Then, each of these feature 

extraction model outputs is concatenated to be classified with the usual fully con-

nected layers. 

The concatenation of these models is performed for the task of LCC on the Tiselac 

dataset. The variants of the proposed framework are implemented using the univariate + 

multivariate + coordinates component, univariate + multivariate component, and univari-

ate + multivariate (LSTM) + coordinates component. 
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Figure 5. Proposed framework of univariate + multivariate + pixel coordinates for land cover clas-

sification. 

4. Experiments and Results 

4.1. Evaluation Metrics 

The performance of the various models for the land cover classification is evaluated 

using a test set described in Section 2. The metrics for evaluation are the accuracy, class 

wise F1 scores, and macro and weighted average of F1 scores. The F1 score is the mean of 

precision and recall, given as F1 = 2(P × R)/(P + R). The precision P = TP/(TP + FP) measures 

the relevancy of the results. The recall R = TP/(TP + FN) measures the return of the number 

of relevant results. The terms TP, FP, and FN denote the number of true positives, false 

positives, and false negatives, respectively, for each forecasted land cover class. The capa-

bility of each model is computed by calculating the F1 score of every class for the LCC. 

The macro-average is used to determine the general classification capacity of each model. 

The macro-average of the F1 scores is the average of all class-wise F1 scores, and it covers 

the class imbalance problem, providing attention to the rare essential classes. The 

weighted-average F1 score for the LCC is generated by computing the mean of all per-

class F1 scores while considering each class’s support. The dataset’s number of actual class 

instances is referred to as support. The ’weight’ is effectively the fraction of each class’s 

support relative to the total of all support values. This section showcases the classification 

results using existing and proposed models. The LCC classification results are of temporal 

and spatiotemporal models. Tables 2 and 3 shows the per-class accuracy, overall accuracy, 
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per class F1 score, macro average, and weighted average F1 score for the eight deep learn-

ing models. 

Table 2. Precision, recall, and F1 score values for the GRU, temporal CNN and attention models on 

temporal CNN. 

 GRU 
Temporal 

CNN 
GRU + Temporal CNN 

Attention on Temporal 

CNN 

Class ID P R F1 S P R F1 S P R F1 S P R F1 S 

1 (UA) 0.59 0.92 0.72 4000 0.90 0.92 0.91 4000 0.93 0.92 0.92 4000 0.91 0.92 0.92 4000 

2 (OBS) 0.21 0.09 0.12 647 0.70 0.64 0.67 647 0.73 0.66 0.69 647 0.68 0.64 0.66 647 

3 (Fr) 0.90 0.71 0.79 4000 0.87 0.92 0.89 4000 0.88 0.92 0.90 4000 0.91 0.91 0.91 4000 

4 (SV) 0.87 0.63 0.73 3398 0.91 0.91 0.91 3398 0.92 0.93 0.92 3398 0.94 0.94 0.94 3398 

5 (RBS) 0.73 0.80 0.76 2588 0.93 0.95 0.94 2588 0.95 0.95 0.95 2588 0.95 0.96 0.95 2588 

6 (GL) 0.39 0.64 0.48 1136 0.84 0.81 0.82 1136 0.88 0.81 0.84 1136 0.84 0.84 0.84 1136 

7 (SC) 0.88 0.48 0.62 1531 0.97 0.89 0.93 1531 0.93 0.96 0.94 1531 0.94 0.94 0.94 1531 

8 (OC) 0.00 0.00 0.00 154 0.43 0.33 0.37 154 0.43 0.34 0.38 154 0.56 0.40 0.47 154 

9 (Wr) 0.70 0.37 0.48 519 0.92 0.75 0.83 519 0.85 0.84 0.84 519 0.87 0.85 0.86 519 

Accuracy   0.69 17,973   0.89 17,973   0.91 17,973   0.91 17,973 

Macro avg 0.58 0.52 0.52 17,973 0.83 0.79 0.81 17,973 0.83 0.81 0.82 17,973 0.84 0.82 0.83 17,973 

Weighted avg 0.73 0.69 0.69 17,973 0.89 0.89 0.89 17,973 0.90 0.91 0.90 17,973 0.91 0.91 0.91 17,973 

Table 3. Precision, recall and F1 score values for the Attn. On temporal CNN and the univariate + 

multivariate + pixel coordinates. 

 
Attention on Temporal 

CNN + GRU 

Univariate + Multivariate+ 

Coordinates 
Univariate + Multivariate 

Univariate + Multivariate 

(LSTM) + Coordinates 

Class ID P R F1 S P R F1 S P R F1 S P R F1 S 

1 (UA) 0.91 0.91 0.91 4000 0.93 0.93 0.93 4000 0.95 0.92 0.93 4000 0.93 0.92 0.93 4000 

2 (OBS) 0.65 0.60 0.63 647 0.78 0.76 0.77 647 0.78 0.82 0.80 647 0.78 0.74 0.76 647 

3 (Fr) 0.91 0.91 0.91 4000 0.94 0.92 0.93 4000 0.93 0.93 0.93 4000 0.94 0.92 0.93 4000 

4 (SV) 0.92 0.93 0.93 3398 0.96 0.96 0.96 3398 0.95 0.95 0.95 3398 0.95 0.96 0.95 3398 

5 (RBS) 0.95 0.95 0.95 2588 0.97 0.98 0.97 2588 0.96 0.98 0.97 2588 0.96 0.97 0.97 2588 

6 (GL) 0.79 0.84 0.82 1136 0.88 0.91 0.90 1136 0.90 0.91 0.90 1136 0.89 0.91 0.90 1136 

7 (SC) 0.94 0.95 0.94 1531 0.95 0.95 0.95 1531 0.96 0.95 0.96 1531 0.94 0.96 0.95 1531 

8 (OC) 0.55 0.35 0.43 154 0.52 0.63 0.57 154 0.47 0.63 0.54 154 0.46 0.63 0.53 154 

9 (Wr) 0.85 0.83 0.84 519 0.87 0.89 0.88 519 0.88 0.89 0.89 519 0.88 0.87 0.88 519 

Accuracy   0.90 17,973   0.93 17,973   0.93 17,973   0.93 17,973 

Macro avg 0.83 0.81 0.82 17,973 0.87 0.88 0.87 17,973 0.87 0.89 0.87 17,973 0.86 0.88 0.87 17,973 

Weighted avg 0.90 0.90 0.90 17,973 0.93 0.93 0.93 17,973 0.93 0.93 0.93 17,973 0.93 0.93 0.93 17,973 

As we can see from Table 2, the basic models with spatial and temporal capability 

obtained comparable accuracy levels. The proposed architecture achieves higher accuracy 

levels than the spatiotemporal models, as shown in the last three columns of Table 3. The 

proposed framework achieves an overall accuracy of 93% with macro-average F1 scores 

of 87% and weighted average score of 93% with the overall support of 17,973 for the clas-

sification task. As we can see from the results, the proposed architecture has achieved 

similar accuracy and F1 scores, showcasing the model’s effectiveness for classifying the 

land cover in the time series data. The proposed framework’s precision, recall, and F1 

scores are comparatively higher during the analysis process. 

4.2. Bidirectional GRU 

In the bidirectional GRU model, the prediction of samples is shown in the confusion 

matrix of Figure 6a. As can be seen in the figure, the correct prediction shows the samples 

showcasing a higher recall rate for the UA and Fr class and an average recall rate for the 

SV and RBS class, and the forecast is slightly lower for the OBS, GL, SC, OC, and Wr clas-

ses. The F1 score is also calculated as shown in Figure 7a, and it is zero for the other crops 
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class, stating no prediction for this label. The overall accuracy for the bidirectional GRU 

model is 69%. The macro-average F1-score is 52% and the weighted average F1 score is 

69%. As we can infer from the tables and the matrix, the land cover prediction is not so 

accurate, and lower on the recall rate for each class showing average performance. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 
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(g) (h) 

Figure 6. Confusion matrix depicting the correctly and falsely predicted LCC for Reunion Island for 

all the deep learning models: (a) bidirectional GRU; (b) temporal CNN; (c) GRU + temporal CNN; 

(d) attention on temporal CNN; (e) attention on temporal CNN + GRU; (f) univariate + multivariate 

+ coordinates; (g) univariate + multivariate; and (h) univariate + multivariate (LSTM) + coordinates. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 
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(g) (h) 

Figure 7. F1 scores of land cover classification for the time series dataset using the deep learning 

model: (a) bidirectional GRU; (b) temporal CNN; (c) GRU + temporal CNN; (d) attention on tem-

poral CNN; (e) attention on temporal CNN + GRU; (f) univariate + multivariate + coordinates; (g) 

univariate + multivariate; (h) univariate + multivariate (LSTM) + coordinates. 

4.3. Temporal CNN 

The temporal CNN model uses 1D convolutions, and the prediction of samples is 

shown in the confusion matrix of Figure 6b. The correct prediction, as seen in Figure, 

shows that the samples showcase a higher recall rate for UA, Fr, SV, RBS, GL, SC, and Wr, 

and the average recall rate for OBS, and the prediction is slightly lower for the OC class. 

The F1 score is also calculated for each category, as shown in Figure 7b. The overall accu-

racy for the temporal CNN model is 69%. The macro-average F1 score is 81%, and the 

weighted average F1 score is 89%. As we can infer from the tables and the matrix, the land 

cover prediction is slightly higher on the recall rate for almost seven classes for the deep 

learning model. 

4.4. GRU + Temporal CNN 

The integration of GRU and the temporal CNN model prediction of samples is shown 

in the confusion matrix of Figure 6c. As seen in figure, the correct prediction shows that 

the samples showcase a higher recall rate for UA, Fr, SV, RBS, GL, SC, and Wr average 

recall rate for OBS, and the forecast is slightly lower for the OC class. The F1 score is also 

calculated for each category, as shown in Figure 7c. The overall accuracy for the GRU + 

temporal CNN model is 91%. The macro-average F1-score is 82%, and the weighted aver-

age F1 score is 90%. As we can infer from the tables and the matrix, the integration of both 

models for the land cover prediction accuracy increased by 1% only, with the recall rate 

being slightly higher for almost seven classes for the deep learning model. 

4.5. Attention on Temporal CNN 

The attention to the temporal CNN model using self-attention and the prediction of 

samples are shown in the confusion matrix of Figure 6d. The correct forecast, as seen in 

figure, shows that the samples showcase a higher recall rate for UA, Fr, SV, RBS, GL, SC, 

and Wr, and an average recall rate for OBS, and the prediction is slightly lower for the OC 

class. The F1 score is also calculated for each category, as shown in Figure 7d. The overall 

accuracy for the attention on the temporal CNN model is 91%. The macro-average F1-

score is 83%, and the weighted average F1 score is 91%. As we can infer from the tables 

and the matrix, the integration of both models for the land cover prediction accuracy has 

increased by 1% only, with the recall rate being slightly higher for almost seven classes 

for the deep learning model. 
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4.6. Attention on Temporal CNN + GRU 

The attention to the temporal CNN with the GRU model and the prediction of sam-

ples are shown in the confusion matrix of Figure 6e. The correct prediction, as seen in 

figure, is that the samples showcase a higher recall rate for UA, Fr, SV, RBS, GL, SC, and 

Wr, average recall rate for OBS, and the prediction is slightly lower for the OC class. The 

F1 score is also calculated for each class, as shown in Figure 7e. The overall accuracy for 

the attention on the temporal CNN with the GRU model is 90%. The macro-average F1-

score is 82% and the weighted average F1 score is 90%. As we can infer from the tables 

and the matrix, the integration of both models for the land cover prediction accuracy de-

creased by 1% only, with the recall rate being slightly higher for almost seven classes for 

the deep learning model. 

4.7. Univariate + Multivariate + Coordinates 

In the univariate + multivariate + coordinates model, the prediction of samples is 

shown in the confusion matrix of Figure 6f. As seen in the figure, the correct prediction 

shows that the samples showcase higher recall rates for UA, Fr, SV, RBS, GL, SC, and Wr, 

and average recall rates for the OBS and OC classes. The F1 score is also calculated for 

each category, as shown in Figure 7f. The overall accuracy for the attention on this model 

is 93%. The macro-average F1 score is 87%, and the weighted average F1 score is 93%. As 

we can infer from the tables and the matrix, the integration of the three models for the 

prediction of the land cover accuracy only increased by 3%, with the recall rate being 

higher for almost seven classes for the deep learning model. 

4.8. Univariate + Multivariate 

The univariate + multivariate model without the pixel coordinates performs the pre-

diction of samples, as shown in the confusion matrix of Figure 6g. As seen in the figure, 

the correct prediction shows the samples showcasing higher recall rates for UA, OBS, Fr, 

SV, RBS, GL, SC, and Wr and slightly average recall rates for the OC class. The F1 score is 

also calculated for each category, as shown in Figure 7g. The overall accuracy for the at-

tention on univariate + multivariate model is 93%. The macro-average F1 score is 87% and 

the weighted average F1 score is 93%. As we can infer from the tables and the matrix, the 

integration of the two models for the prediction of the land cover and the accuracy are 

almost the same as in the previous model, except for showing a higher recall rate on the 

OBS class and with the recall rate being higher for almost eight classes for the deep learn-

ing model. 

4.9. Univariate + Multivariate (LSTM) + Coordinates 

In the univariate + multivariate (LSTM) + coordinates model with the inclusion of 

LSTM (RNN), the prediction of samples is shown in the confusion matrix of Figure 6h. As 

seen in the figure, the correct prediction shows the samples showcasing higher recall rates 

for UA, Fr, SV, RBS, GL, SC, and Wr, with slightly average recall rates for the OBS and 

OC classes. The F1 score is also calculated for each class, as shown in Figure 7h. The overall 

accuracy for the attention on the univariate + multivariate (LSTM) + coordinates model is 

93%. The macro-average F1 score is 87%, and the weighted average F1 score is 93%. As 

we can infer from the tables and the matrix, the integration of the two models for the 

prediction of the land cover and the accuracy are almost the same as in the previous 

model, except for showing a higher recall rate on the OBS class and with the recall rate 

being higher for almost eight classes for the deep learning model. 

4.10. Qualitative Comparisons 

As observed in Tables 1 and 2, the accuracies of various models are being calculated 

to validate each deep learning model. As the number of training epochs increases, the 

accuracy of the validation set continues to improve and eventually tends to converge. The 
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accuracy of the GRU model may exhibit high-level properties for extracting features from 

sequential data. Nonetheless, in this case, it is very low due to the longer training time 

and the occurrence of the vanishing gradient problem. For the temporal CNN model, as 

the convolutions are causal (i.e., no leakage of information) from the future to the past, 

they could not achieve higher accuracy for the LCC task even if they consisted of a longer 

memory. Due to the greater memory requirement during evaluation leading to effective 

data storage, the temporal CNN may perform low due to not having a larger receptive 

field. For the GRU + temporal CNN, increasing the number of GRUs that are stacked to-

gether does not help improve the accuracy but does increase the training time, achieving 

a lower accuracy for this model. The intuition behind using attention for our task is that 

the time series data of some days may be more critical than others to predict land cover, 

and attention enables us to capture this. In the case of the attention mechanisms on the 

temporal CNN and GRU, however, it uses an effective convolutional structure of TCNN 

for the extraction of temporal dependencies. The accuracy of this model is approximately 

higher but not above the proposed framework due to the identification of essential time 

steps recognized by the attention mechanism. Nevertheless, it may not be relevant to the 

classification task and its covariates for improving the interpretability of the land cover 

classes. The proposed framework achieved the highest accuracy for all models providing 

a higher F1 score for all the land cover classes and showcasing the extraordinary features 

of convolutions, and pooling layers on the univariate, multivariate, and pixel coordinates 

data for the effective prediction and classification of the LCC task. 

5. Discussion 

This study aimed to evaluate the effectiveness of various spatiotemporal deep learn-

ing models for determining land cover on a broad scale in the Reunion Island. Large-scale 

experiments and analyses are conducted using a real dataset derived from freely available 

SITS data (2000–2005) and test data supplied with the dataset. Our research findings indi-

cate that, for the study of LCC, models that can rely on spectral or temporal information 

(GRU) perform lower than those that consider spatial and temporal patterns in model 

design decisions [47]. The proposed framework achieves higher accuracy levels to demon-

strate that the LCC capabilities of CNN (spatial) and LSTM (temporal) algorithms are ra-

ther limited. When analyzing the challenge of LCC at the regional level, the research 

demonstrates that spatial land cover patterns are more valuable for land cover character-

ization than temporal patterns. This might imply more significant heterogeneity in the 

temporal patterns that define each land cover, presumably due to regional variances in 

seasonality and land cover activities. 

Regarding the study, goals presented the performance of several deep learning ar-

chitectures were compared for exploiting the properties of SITS. The designed and imple-

mented models for the LCC task provided a good level of accuracy, showcasing how each 

model can be effectively utilized for this task. As observed in Table 2, the accuracies and 

the F1 score have shown an average performance for the GRU, temporal CNN, and the 

combination of both the models, showing an accuracy of 91%. Concerning the attention 

models in Tables 2 and 3 on temporal CNN and GRU, the accuracy and F1 scores are 

almost similar in performance, with an accuracy of 91% and 90% showcasing a higher 

accuracy and F1 score in comparison to the GRU and temporal CNN models. For the pro-

posed models, as seen in Table 3 for the classification of land covers, the combination of 

univariate, multivariate, and pixel coordinates exhibited an excellent performance show-

ing an accuracy of 93% for all the models implemented. 

Similar studies also exploited the time series for the LCC task in various countries 

such as Great Britain (Southampton and Manchester) with multilayer perceptron (MLP), 

CNN, with iterative updating through the Markov process [47]. The extension to this work 

in [47] with object-based CNN and MLP was carried out for southern England (Bourne-

mouth and Southampton) and in northwest England (Manchester) [48]. Using a combina-

tion of deep learning and multiple classifier systems such as 1D-CNN, TCNN, and LSTM, 
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time series classification is performed for the Sutter and Kings in California, United States 

[49]. LCC from multi-temporal and multispectral remotely sensed imagery for the Florida 

Everglades ecosystem was performed using a patch-based RNN framework [50]. Ensem-

ble CNN, including VGGNET, and NASNET, were incorporated in a fused manner for 

the land use classification of crop images for the Thailand region [51]. A variety of seg-

mentation models and the proposed deep learning model called atrous spatial pyramid 

pooling U-Net (ASPP-U-Net) were utilized for LCC for the center-south of China [52]. 

Multispectral LCC using a deep belief network was carried out for the Dadukou District 

of Chongqing, northern Negev, and the Changping region of Beijing [53]. The assessment 

of deep learning techniques for land use–land cover classification in southern New Cale-

donia was performed using AlexNet, ResNet, Segnet, and Deeplab architectures in [54]. 

Our approach is fully automated, requires very little feature engineering and inte-

grates into a single deep architecture with both CNNs and fully connected layers to lev-

erage the spatiotemporal nature of the data. Our method takes advantage of the data’s 

spatiotemporal characteristics by combining CNNs and pixel coordinates into a single 

deep architecture with complete automation and a minimal need for feature engineering. 

Our model exploits the spatial information of each pixel. The three main components of 

our architecture consist of parameters that are trained jointly. The basic building blocks 

are one-dimensional convolutional layers, dense layers, etc. In our approach, the time se-

ries data being sequential exploits local and sparse connections with the weight-sharing 

features, which convolve a vector mask along the kernel with one input dimension. Ad-

ditionally, the employment of parameter-free layers such as max pooling, activations with 

subsampling, the regularization of training with dropout, the flattening of the layers, and 

efficiently concatenating the representations of the task of LCC. Our model’s first element 

deals with learning representations by utilizing the dependencies and independencies be-

tween single bands. The second part models time series data by concurrently learning full-

convolutional layer representations for each band. The third and final one uses an MLP to 

learn spatial representations over the extracted neighborhood data. 

Compared to other land cover classes, the performance of all models in classifying 

other built-up surfaces and other crops in Reunion Island is comparatively lower, imply-

ing an additional heterogeneous spatiotemporal pattern in these occurrences. The rest of 

the seven land cover classes, namely urban areas, forest, sparse vegetation, rocks and bare 

spoil, grassland, sugarcane crops, and water, outperform the average performance with 

higher F1 scores, and are considered as among the majority classes which are linked with 

more uniform spatial patterns for the study region. Concerning the classification of sam-

ples for the proposed deep learning models in comparison with the existing models, we 

can observe that the predictions of urban areas, forests, sparse vegetation, rocks, and bare 

soil for the GRU and temporal CNN models are correctly classified at an average level. As 

we can observe from the confusion matrix of all models, the misclassification is only ob-

served in the GRU model. Other models including the temporal CNN and their integra-

tion with attention were averaged. 

The classification performed by the proposed framework provides a higher accuracy 

for almost all the land cover classes, with only other built-up surfaces and other crops 

being classified with an average F1 score and recall rate compared to the rest of the seven 

categories. Overall, the proposed framework with the inclusion of LSTM outperformed 

the GRU, temporal CNN, and variations on these models with the integration of attention 

mechanisms in the tropical environment. The findings from our approach suggest that 

explicitly accounting for both spatial and temporal patterns in data improves the general-

ization performance, which becomes higher for the proposed framework which is con-

sistent with the findings of [18], who proposed a multi-temporal deep neural network for 

an LULC classification task, and [47], who utilized an MLP and CNN for LULC classifica-

tion. Overall, the univariate, multivariate, and pixel coordinate models produced the best 

results in the study area considered, driving the use of these models for determining the 
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landcover in the tropical setting as more encouraging by decreasing the work of employ-

ing human interpreters in identifying LULC over large areas. 

With the possibility of a large amount of data being available from various satellite 

sensors contributing toward the production of medium and high-resolution time-series 

data, these proposed methods can be applied for the monitoring and assessment of the 

environment in terms of land use–land cover utilization. Since it is completely dependent 

on standard deep learning approaches such as 2D CNN, LSTM, etc., there is a higher de-

mand for architecture designs in the deep learning domain for the classification and pre-

diction of LULC patterns for a given area. Furthermore, this study validates that large-

scale LCC tasks, can be completed without the need for spatiotemporal attributes which 

are manually handcrafted with the knowledge of the experts from the environmental en-

gineering field to account for spatiotemporal land cover dependencies, which generally 

occurs in traditional machine learning models such as RF or SVM [55,56]. The design of 

models may be less interpretable during the data analysis, majorly because of the absence 

of a causal association between the inputs and outputs., i.e., the premier identification of 

the most relevant and valuable variable to be utilized for the LULC classification problem. 

Despite its effectiveness, technical obstacles still exist in LCC tasks for remote sensing 

data, such as: 

1. Constrained model interpretability due to the absence of a direct causal relationship 

between inputs and outputs, i.e., the difficulty in determining the most significant 

and helpful variable for the classification task. 

2. High computational demands were brought on by an increase in data volume result-

ing from an increase in the number of features and dimensions that the models could 

extract during the computational stage, leading to a greater need for training time 

and memory. 

3. High demand for reference data brought on by intraclass variability (heterogeneity) 

in most of the LCC datasets. 

Deep learning models exhibit the requirements of efficient processing units for exe-

cuting higher computations in training the model. This may allow the models to extract 

more features and achieve an optimized system performance with a higher training time 

and the efficient use of memory resources. The necessity of test data in higher demand 

can occur due to heterogeneous data showcasing heterogeneity. Despite these obstacles, 

the deep learning area continually expands and has achieved higher classification accu-

racy than other standard models. Rapid advances in remote sensing are expected shortly, 

mainly through transfer learning and self-supervised learning for large-scale LCC tasks. 

In the future, we want to extend our research to anticipate, validate, and monitor changes 

in LULC at a broader scale using meta-learning and pan-tropical time-series data [57]. 

6. Conclusions 

In this article, utilizing the inherent properties of SITS, we investigated the feasibility 

of using spatiotemporal deep learning models for LCC. This research considered eight 

deep learning models: GRU, temporal CNN, GRU + temporal CNN, attention on temporal 

CNN, attention on temporal CNN + GRU, multivariate + univariate + pixel coordinate 

with its three variants and the inclusion of LSTM for multivariate data. The spatiotem-

poral and temporal models were assessed for the Reunion Island dataset. In comparison 

to the GRU and temporal CNN, which are only made to concentrate on temporal features, 

we discovered that, for the majority of land cover classes, the complementary spatiotem-

poral information extracted by the proposed model (univariate + multivariate + pixel co-

ordinates) from the SITS significantly increased the accuracy of the model in the classifi-

cation of the land cover classes. 

Despite this, the regional heterogeneity and fluctuation in the spatiotemporal prop-

erties of the land cover class during substantial evaluations make it challenging to classify 

the land cover using satellite images. Clouds and shadows often dominate Reunion Island 
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tropical regions, significantly contributing to classification difficulties during the learning 

process. However, the examined spatiotemporal models, exceptionally trained on re-

gional data, could effectively identify the land cover classes. The magnitude and scope of 

this study make it potentially valuable for monitoring large-scale changes in land cover 

classes and forest areas in the context of the global assessment and future agenda for Sus-

tainable Development Goals. We discuss the difficulties with large-scale land cover eval-

uations on the tropical island in this work, including the variability of land covers and 

defining land cover rather than merely land use. 

Our proposed approach can assist a more in-depth examination of where forests are 

lost over time and the related land cover activities. This will enable the respective envi-

ronmental monitoring agencies to mitigate efforts to be focused on a few critical proximal 

ecological factors to have a more significant impact. Our method may be adjusted using 

local or national data, employs open-source platforms and data, and might be used for 

national environment monitoring systems. Our approach might be improved to monitor 

land cover all the time to find hotspots and regional trends of land use–land cover change. 

Further data sources may be used, such as information on recent forest losses and satellite 

sources (such as synthetic aperture radar images and high-resolution data). 

The visualization plots of all the models implemented for the classification of land 

cover are shown in Appendix A from Figures A1 to A8 for the reference. 
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Appendix A 

 

Figure A1. Bidirectional gated recurrent unit. 

 

Figure A2. Temporal CNN. 
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Figure A3. GRU + temporal CNN. 

 

Figure A4. Attention on temporal CNN. 
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Figure A5. Attention on GRU + temporal CNN.
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Figure A6. Univariate + multivariate. 

 

Figure A7. Univariate + multivariate + coordinates. 
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Figure A8. Univariate + multivariate (LSTM) + coordinates. 
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