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Abstract: Remote sensing object detection plays a major role in satellite imaging and is required in 

various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide 

efficient performance in remote sensing object detection. The existing techniques have the limita-

tions of data imbalance, overfitting, and lower efficiency in detecting small objects. This research 

proposes the spiral search grasshopper (SSG) optimization technique to increase the exploitation in 

feature selection. Augmentation is applied in input images to generate more images, and this helps 

to train the model and reduces data imbalance problems. The VGG-19 and ResNet50 model is ap-

plied for feature extraction, and this helps to extract deep features to represent objects. The SSG 

feature selection technique increases the exploitation and select unique features for object detection 

that helps to overcome the data imbalance and overfitting problem. The SSG feature selection model 

helps to balance the exploration and exploitation that escape from the local optima trap. The SSG 

model has 82.45% mAP, the SSD model has 52.6% mAP, and the MPFP-Net model has 80.43% mAP. 
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1. Introduction 

Remote sensing object detection has a wide range of applications in civilian and mil-

itary fields, and is used in various scenarios such as transportation, forestry, and the 

ocean. Remote sensing images are obtained from satellite sensors, and these have a dif-

ferent angle view compared to natural imagery. They consists of various complex land-

scapes and are less susceptible to spatial details, lighting differences, background clutter 

and the atmosphere. Additionally, remote sensing images are also larger in terms of area 

coverage and data size. Object detection is an attractive research field for academia and 

industry regaridng remote sensing images of higher spatial resolution and images con-

sisting of rich information [1,2]. Deep learning techniques of convolutional neural net-

works (CNNs) were applied for remote sensing due to their efficiency in handling images. 

CNN models have lower efficiency in extracting the information of remote sensing images 

and detection results of post-processing that result in high false alarm rates and missed 

detection rates for dense targets and complex images [3]. Automatic classification of aerial 

images was widely carried out using multi-class object detection and this is important for 

a wide range of applications such as precision agriculture, urban planning, and intelligent 

monitoring [4]. Locating specific objects and classifying the categories in aerial images 
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present some challenging problems such as wide multi-scale distribution, larger back-

ground, complicated scenery, variations, and huge orientation [5]. 

Recently, deep learning methods have shown significantly high performance in var-

ious fields including image classification, segmentation, and feature extraction, etc. [6–13]. 

Deep learning rapid progress involves the development of several advanced CNN models 

such as ResNet, GoogLeNet, VGGNet, and AlexNet in computer vision fields. The deep 

learning CNN automatically extracts high-dimensional features. The CNN models are ap-

plied in aircraft feature extraction and increase the efficiency of the model [14]. The remote 

sensing object detection scale properties and orientation have been widely used in deep 

learning-based object detection methods [15]. Remote sensing images of high resolution 

with different resolutions and swathes are often combined and applied for more accurate 

and faster object classification [16,17]. There have been significant efforts applied to de-

veloping methods for remote sensing object detection. Many methods provide lower effi-

ciency in detecting a small object in remote sensing images. Many types of research on 

object detection using scene classification share the limitation of the object categories of 

small objects being higher than those of large-sized objects. Many methods lack diversity, 

and this affects the small object detection performance in remote sensing images [18]. The 

objectives and contribution of this research are given as follows: 

1. The SSG method uses the spiral search technique to increase the exploitation in fea-

ture selection for object detection. The SSG method selects unique features that help 

to overcome data imbalance and overfitting problems. 

2. The VGG-19 and ResNet50 model is applied for feature extraction for a better repre-

sentation of the object in the images. The SSG method selects the relevant features 

that help to classify small objects in the dataset. 

3. The SSG method is evaluated in two datasets and compared with various feature 

selection and deep learning techniques. The SSG method demonstrates higher per-

formance than existing methods in remote sensing object classification. 

The organization of the paper is as follows: the literature survey is given in Section 

2, and the explanation of SSG, VGG19, and ResNet50 is given in Section 3. The implemen-

tation details are given in Section 4 and the results of SSG are given in Section 5. The con-

clusion of this research paper is given in Section 6. 

2. Literature Survey 

Object detection in remote sensing images is required in many applications such as 

urban planning and traffic monitoring. Deep learning techniques were applied for object 

detection and achieved significant performance in detection. Some of the recent tech-

niques in object detection were reviewed in this section. 

Sun et al. [19] applied a unified part-based CNN model named as PBNet for object 

detection in satellite images. PBNet considered objects as a parts group, and part infor-

mation was applied in the contextual information to improve object detection. Correct 

part information helps to predict composite objects and solve problems of various shapes 

and sizes. A part localization module is learned for classification and the generation of 

accurate part information. The PBNet model has considerable performance in object de-

tection in satellite images. The PBNet model fails to identify the small objects in the images 

and imbalanced dataset problems affect the performance. 

Ming et al. [20] applied a discriminative features role in an object detection model 

named CFCNet to improve the classification accuracy. The CFCNet model consists of 

three aspects: optimizing label assignment, refining preset anchors, and building power-

ful feature representation. The classification and regression features are decoupled and 

the polarization attention module (PAM) technique was applied for constructing robust 

critical features. The CFCNet model has a data imbalance problem and lower efficiency in 

detecting a small object. Xu et al. [21] applied the Swin transformer based on CNNs and 

transformer to design a local perception of Swin transformer (LPSW) for object detection 
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in satellite images. The Cascade framework was applied to help to improve the segmen-

tation accuracy and combine it with a new network for classification. The LPSW technique 

can classify small objects and the overfitting problem affects the classification perfor-

mance. 

Huang et al. [22] applied a lightweight oriented object detector (LO-Det) for object 

detection in satellite images to improve the accuracy. Stacked separable convolutions 

(SConvs) were applied to replace the conventional CNN model and this involves preci-

sion losses. A channel separation aggregation (CSA) structure was applied to reduce the 

dynamic receptive field (DRF) and SConvs complexity to improve the accuracy of the 

model. The LO-Det model performance was affected by data imbalance problems and 

lower efficiency in detecting small objects. Huang et al. [23] applied a cross-scale feature 

fusion pyramid network (CF2PN) for object detection in satellite images. A cross-scale 

fusion module (CSFM) was applied to extract semantic information from features to per-

form fusion on multi-scale. The U-shaped module was applied for target detection using 

a feature pyramid and extracting features on multi-level fusion. A focal loss was applied 

to reduce the negative samples generated in the feature fusion process. The overfitting 

and data imbalance problem affects the performance of the classification in object detec-

tion. 

Cheng et al. [24] applied an anchor-free oriented proposal generator (AOPG) for ob-

ject detection in satellite images. The coarse location module was applied to produce 

coarse-oriented boxes for the detection. A fast R-CNN model was applied for the detection 

process and improved the performance in classification. The AOPG model has lower effi-

ciency in data imbalance problems and the detection of small objects in the datasets. Sham-

solmoali et al. [25] applied a pyramid network of rotation equivariant features named RE-

FIPN for object detection in satellite images. The single shot detector was adopted in the 

model for a lightweight image pyramid module to extract feature representation and an 

optimization technique was used to generate the region of interest. The convolution filters 

were applied to extract features in a wide range of orientations and scales. Features were 

used to determine the angle and weight of orientation and generate vector fields for spa-

tial locations. The developed model shows considerably good performance in small-scale 

detection. The data imbalance problem affects the performance of the classification in sat-

ellite images. 

Ming et al. [26] applied representation invariance loss (RIL) to optimize the regres-

sion for object detection in satellite images. The RIL model represents an oriented object 

for multiple local minima equivalents and transforms regression with adaptive matching. 

The optimal regression strategy is adopted by the Hungarian matching algorithm. A nor-

malized rotation loss is applied to the weak correlation between unbalanced loss and dif-

ferent variables in representation. The developed model performance was affected by an 

imbalanced dataset and lower efficiency in small object detection. Shamsolmoali et al. [27] 

applied a multiple patch feature pyramid network (MPFP-Net) for object detection in sat-

ellite images. The MPFPNet model patches are divided into class-affiliated subsets that 

are based on related patches and primary loss functions. A smooth loss functions sequence 

was measured for a subset to improve the object detection in satellite images. The 

MPFPNet model performance was affected by the overfitting problem and data imbalance 

problem. 

Lu et al. [28] applied end-to-end networks with feature fusion and attention SSD for 

object detection. The semantic information was enhanced from shallow features using the 

structure of multi-layer feature fusion. The feature information was screened using the 

dual path attention model in SSD. Channel attention and spatial attention were used in 

the model to reduce background noise and focus on key features. The network ability of 

feature representation was improved using the module of multi-scale receptive field. The 

loss function was applied to balance positive and negative samples on the imbalanced 

dataset. The end-to-end model had an overfitting problem that degrades the performance 
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of classification. Ming et al. [29] applied a sparse label assignment (SLA) for remote sens-

ing object detection to select high-quality sparse anchors. The balanced training was ap-

plied for better performance and to alleviate the inconsistency between regression and 

classification. A feature pyramid network was applied to detect small and densely ar-

ranged objects. The model performance was affected by an imbalance of data and an over-

fitting problem. 

According to the literature, several deep learning algorithms were used for object 

detection and produced notable performance in detection. The development of techniques 

for detecting objects using remote sensing has received significant efforts. Many tech-

niques are less effective in finding small objects in distant sensing photos. There are re-

strictions on object categories of little items that are higher than large-sized objects in 

many sorts of research on object identification using scene categorization. The efficiency 

of small item detection in remote sensing images is negatively impacted by the lack of 

diversity in many methods. Additionally, an overfitting issue and a data imbalance had 

an impact on the model’s performance. To solve those concerns, the SSG approach is used 

to increase the feature exploitation, which supports in the detection of small objects and 

minimizes overfitting issues. 

3. Proposed Method 

The images from the datasets are augmented to increase the number of images and 

to help increase the learning rate in training. Two CNN models, VGG19 and ResNet50 

architectures, are used for extracting features. The SSG technique is applied to increase 

the exploitation in the feature selection which helps to detect small objects and reduce 

overfitting problems. The overview of the SSG method in remote sensing object detection 

is shown in Figure 1. 

 

Figure 1. The SSG model in remote sensing object detection. 
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3.1. Data Pre-Processing 

Testing and training samples are resized to 224 pixels of interpolation. Data augmen-

tation is applied in the training phase using random flipping (left-right and up-down), 

and images are randomly rotated for various sets of angles (e.g., 0°, 90°, 180°, and 270°). 

3.2. CNN Models in Feature Extraction 

The way that humans understand images is a fascinating process, and this is a simple 

task for us. There are a lot of hidden complexities in the ways that a machine understands 

an image. CNN model is a deep learning algorithm that is inspired by the visual cortex of 

the brain [30] and this aims to imitate animals’ visual machinery. CNNs represents a quan-

tum leap in the image processing field that involves detection, localization, segmentation, 

and classification, etc. The CNN efficiency in image classification is high and this is the 

main reason for the model’s high usage. The CNN model involves applying the convolu-

tional layer of learnable weights and biases similar to animal neurons. The CNN model’s 

core building blocks are fully-connected layers, activation functions, and convolutional 

layers, as shown in Figure 2. The brief introduction to the CNN model is explained in this 

study and a detailed discussion of CNN can be found elsewhere [31,32]. 

 

Figure 2. CNN model architecture. 

Convolutional layer: animal brain neuronal cells of the visual cortex are involved in 

extracting the features of the images. Various features are extracted by each neuronal cell, 

which helps to understand an image. Neuronal cells are modeled as convolutional layers 

and this can extract features such as gradient orientation, texture, colors, and edges. Con-

volutional filters or kernels are learnable filters in convolutional layers and the size is 

� × � × �, where the image depth is �. The kernels are convolved during the forward 

pass across the height and width of the input volume and the dot product is measured for 

filter entries and input. Filters are learned by CNN to activate across texture, colors, and 

edge, etc. The convolution layer output is applied as an activation function layer. 

Activation function: activation functions of non-linear transformation of data are 

used since real-world data are mostly non-linear. This ensures input space representation 

that is mapped to different output space as per requirements. 

This requires � to be a real-value number, and it must be converted into a range of 

0 and 1. Large negative and positive inputs in particular are placed near 0 and unity, re-

spectively. This is expressed in Equation (1). 

�(�) =
1

1 + ���
 (1)
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A real-value number � is considered in non-linear function and converts � to 0 if � 

is negative. The ReLU activation function is a commonly used non-linear function that 

requires less computation time and is faster than the sigmoid and tanh functions, as 

shown in Equation (2). 

�(�) = max (0, �) (2)

Pooling: convolving the features of a non-linear down sampling is carried out by the 

pooling layer. This reduces the computational power of data processing using dimen-

sional reduction. Data are aggregated over feature type or space to reduce the spatial size, 

while the rotational variance of images overcomes translation and control overfitting. In-

puts are partitioned using a pooling operation into a rectangle patch set. A single value is 

calculated based on the type of pooling process to replace each patch. The most commonly 

used pooling types are maximum pooling and average pooling. 

Fully connected layer: fully connected layer is similar to an artificial neural network, 

where inputs are connected to each node in the next layer and weight values are associ-

ated with each node. The sum of inputs multiplied by corresponding weights is the output 

of the model. The sigmoid activation function is connected to a fully connected layer to 

perform the classification job. The fully connected layer in CNN is shown in Figure 3. 

 

Figure 3. Fully connected layer in CNN model. 

3.2.1. VGG19 

The Oxford Robotics Institute developed a type of CNN model which is named Vis-

ual Geometry Group Network (VGG) [33–35]. VGGNet provides good performance in the 

data cluster of ImageNet data. Five building blocks are present in VGG19. Two convolu-

tional layers and one pooling layer are present in the first and second building blocks, 

followed by four convolutional layers and one pooling layer, which are present in the 

third and fourth blocks. Four convolutional layers are present in the final block and small 

filters 3 × 3 are used. The VGG19 architecture in feature extraction is shown in Figure 4. 
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Figure 4. VGG19 architecture for feature extraction. 

3.2.2. ResNet 

Residual networks consist of 50 layers in their architecture, named ResNet50 [36–38]. 

An additional identity is present in ResNet50 compared to VGG-16, and the ResNet model 

predicts the delta that is required in the final prediction from one layer to the next. The 

alternate path is provided by ResNet50 which allows the gradient to flow, and this helps 

to solve the vanishing gradient problem. Identity mapping is used by the ResNet model 

that helps to bypass the CNN weight layer if the current layer is not required. This model 

solves the overfitting problem in the training set and 50 layers are present in feature ex-

traction in ResNet50. The ResNet model in feature extraction is shown in Figure 5. 
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Figure 5. ResNet50 model for feature extraction. 

VGG19 is one of the popular algorithms used in image classification. However, if it 

is also used for feature extraction, it provides the following advantages.  

Initially, the features of VGG19 are flat and capable of achieving optimal values. Ad-

ditionally, it is a pre-trained model which is trained on a large dataset and fine-tuned to 

fit the image with ease. Similarly, ResNet50 is much deeper than VGG19 and its architec-

ture size is substantially smaller due to the usage of fully connected layers which reduces 

the architecture size. In ResNet50, networks with a large number of layers are trained eas-

ily without increasing the training error percentage. 

However, the subspace value is wider in VGG19 when compared to ResNet50 which 

creates more error in the architecture. While considering the ResNet50, the subspace value 

is optimal, but there may be a chance of overlapping in the feature subspace. While those 

features in the training and testing stage were deliberate, the subspace error value of some 

classes is affected. Further, ResNet50 usually requires an increased time period for train-

ing, therefore, it is practically unfeasible in real-world applications. 

In order to obtain more informative features, optimal values from both the VGG19 

and ResNet50 models are collected. Then, the output from VGG19 and ResNet50 are com-

bined and applied in feature extraction for a better representation of the object. 
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3.3. Spiral Search Grasshopper Optimization 

Saremi et al. [39] developed a grasshopper optimization technique based on grass-

hopper swarm behaviors. A design solution for a grasshopper position �� in a flock or 

population. The grasshopper position updates are influenced by wind advection, gravity, 

and social interaction [40,41]. The grasshopper position update is carried out by this pro-

cess and expressed in Equation (3): 

��
� = �(� �

�

���

��� − ���

2
�����

� − ��
���(�� − ��)/(���)) + ��� (3)

where a social force function is represented as �(�) as in Equation (4). 

�(�) = ���
�
� − ��� (4)

��� = ���
� − ��

�� = � is a distance between solutions i and j. 

The ��� grasshopper position is defined as ��(� + 1) at � + 1 iteration. The grass-

hopper attraction strength is denoted as variable � and � is the attractive length. Grass-

hopper positions or solutions with lower and upper limits are ��� and ���, respectively. 

The target position vector of a �-dimension is defined as ��� and a shrinking factor � de-

notes comfort zone decreases, as in Equation (5). 

� = ���� − � �
���� − ����

����
� (5)

The � minimum and maximum values are denoted as ���� and ����. The ���� a 

variable provides a particular run of maximum iterations. 

The GOA search process starts with the grasshopper’s population or flock and this 

position is analogous to design vectors. The grasshopper positions are updated using 

Equations (3)–(5) to identify the best grasshopper. This reproduction function of the 

swarm is carried out until the termination condition of optimization is achieved for the 

best grasshopper at the final iteration which is considered an optimum solution. 

The GOA second state is involved in randomly generating a position in space. This 

blind operation slows the algorithm convergence speed. In order to address this issue, the 

spiral search approach is utilized. In order to boost the grasshopper’s capabilities and to 

identify global solutions in the optimization process, more options are given to the grass-

hopper using the spiral search technique. The search space’s spiral structure trajectory is 

utilized to calculate the separation between the grasshopper’s ideal position and its start-

ing point. Equation (6) provides the updated mathematical expression. 

���� = �. exp(� × �) . cos(2��) + ����� (6)

where the distance of ���  grasshopper and current best position is denoted as � =

|����� − ��
�|, logarithmic spiral shape is denoted as � and a random number � is in the 

range of [−1, 1]. 

In this method, the basic GOA updates its search agent based on the current position 

and biological habits of the grasshopper. By contrasting the spiral solution with the orig-

inal solution, we are able to maintain the best solution for grasshopper space. The original 

GOA’s search efficiency and optimization capability are enhanced by the spiral motion 

method by choosing a better search and exploitation scheme. At this point, introducing 

the spiral movement strategy will successfully boost population variety and prevent a 

descent towards the local optimum. Additionally, it contributes to balanced exploration 

and exploitation. While considering the hyper-parameters, the proposed model is tested 

with 3 constant learning rates: 0.1, 0.01, and 0.001. From that analysis, 0.1 is too large, 0.001 

is too small, and therefore, 0.01 tends to be better for the tested networks used in this 

research. 
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3.4. Multi-Class Support Vector Machine 

Classification is the final stage in image processing, and this is based on the selected 

features. Various machine learning techniques are present, such as Bayesian classifier, K-

nearest neighbor (KNN), neural networks, SVM, and decision tree [42,43]. This study uses 

multi-class SVM due to its efficiency in handling high-dimensional data. The SSG selected 

features are applied to the multi-class SVM model for training and testing the model. The 

SVM model is capable of handling pattern classification, reducing overfitting, and is ro-

bust to noise. The SVM uses appropriate kernel functions to provide good discriminative 

classification. Kernels are students independent of the learning algorithm, due to the sep-

aration of kernel functions and learning algorithm. Different kernel functions are used to 

design and experiment without the need for a learning algorithm. The Gaussian RBF or 

polynomial kernels are used in various applications based on data types. 

4. Simulation Setup 

The SSG model implementation details of parameter settings, metrics, system re-

quirements and datasets are discussed in this Section. 

Dataset: DOTA [44] is a remote sensing object detection and publicly available da-

taset. This dataset has 188,282 annotated instances and 2806 aerial images. The 15 catego-

ries of images are present, the original image size is 800 × 800. 

The DIOR [45] is a remote sensing object detection dataset, which consists of 190,288 

object examples and 23,463 images. The image resolution ranges from 0.5 m to 30 m and 

the image size is 800 × 800. 

Parameter settings: For VGG-19 and ResNet50 [46], the learning rate is set as 0.01, 

the dropout is set as 0.1, and some epochs are 8. For the SSG technique [47], the population 

size is set as 50 and the total iteration is set as 50. 

Metrics: The mean average precision (mAP) is a common metric to measure the per-

formance of remote sensing object detection and its formula is given in Equations (7)–(9). 

��������� =
��

�� + ��
× 100 (7)

������ =
��

�� + ��
× 100 (8)

��� =
1

�
� ���������(�������)

�������

 (9)

System Requirement: The SSG technique is implemented on an Intel i9 processor, 22 

GB graphics card, windows 10 OS, and 128 GB RAM. The five-fold cross validation is 

applied to test the performance of the model. 

5. Results 

The SSG technique is applied to two datasets and evaluated the performance to com-

pare with existing techniques. The grey wolf optimization (GWO), firefly (FF), whale op-

timization algorithm (WOA), and grasshopper optimization (GO) techniques were com-

pared with SSG in feature selection. 

5.1. DOTA Dataset 

The SSG feature selection technique with VGG-19 and ResNet50 feature extraction 

was tested on the DOTA dataset. Various deep learning architecture is tested with SSG 

feature selection and various features selection technique is applied with VGG-19 and 

ResNet50 for object detection classification. The deep learning techniques of ResNet, 

VGG-19, GoogleNet, AlexNet, Yolo V4, Efficient-Det and Faster R CNN were compared 

with VGG-19 and ResNet50 feature extraction techniques, as shown in Table 1 and Figure 

6. 
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Table 1. Deep learning model feature extraction performance on DOTA dataset. 

Methods mAP (%) 

AlexNet 78.09 

GoogleNet 78.2 

VGG-19 78.41 

ResNet 79.97 

Yolo V4 80.27 

Efficient-Det 80.93 

Faster R CNN 81.47 

VGG-19 and ResNet 82.45 

 

Figure 6. The mAP of deep learning techniques on DOTA dataset. 

The VGG-19 and ResNet50 model provides a better feature representation of the 

model that helps to detect the small objects and the SSG technique solves the overfitting 

problem using spiral search to increase the exploitation. The existing feature selection 

techniques have lower efficiency in providing feature representation. The VGG-19 and 

ResNet50 model has 82.45% mAP, ResNet50 model has 79.97 mAP, and VGG-19 has 

78.41% mAP.  

Figure 7 shows the graphical analysis of various feature selection techniques on the 

DOTA dataset in terms of mAP, precision and recall. Various feature selection techniques 

were applied with VGG-19 and ResNet50 model feature extraction for object detection, as 

shown in Figure 7 and Table 2. The SSG method has the advantage of using the spiral 

search technique to increase the exploitation of the feature selection process. The increase 

in the exploitation of feature selection helps to classify small objects in the remote sensing 

images. The SSG technique tradeoff the balance between exploration and exploitation to 

select the relevant features. The GWO, FF, and WOA techniques have lower convergence 

in feature selection and the GO technique has trap into local optima. The SSG model has 

82.45% mAP, GO method has 77.95% mAP, and WOA method has 71.57 mAP. Further-

more, the proposed SSG technique achieves better precision (81.88%) and recall (80.87%) 

when compared with other feature selection techniques. 
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Figure 7. Performance of feature selection techniques on DOTA dataset. 

Table 2. Feature selection techniques performance on DOTA dataset. 

Methods Precision (%) Recall (%) mAP (%) 

GWO 66.33 61.52 70.6 

FF 69.12 64.94 70.62 

WOA 73.31 68.28 71.57 

GO 77.64 73.14 77.95 

SSG 81.88 80.77 82.45 

5.2. DIOR Dataset 

Various deep learning techniques and feature selection techniques were applied on 

DIOR dataset to test the performance. The VGG-19 and ResNet50 feature extraction model 

is compared with various deep learning architectures in feature extraction, as shown in 

Table 3 and Figure 8.  

Table 3. Deep learning model feature extraction performance on DIOR dataset. 

Methods mAP (%) 

AlexNet 68.91 

GoogleNet 71.33 

VGG-19 73.81 

ResNet 74.29 

Yolo V4 75.71 

Efficient-Det 76.13 

Faster R CNN 76.99 

VGG-19 and ResNet 78.42 
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Figure 8. The mAP of deep learning techniques on DIOR dataset. 

The SSG technique in VGG-19 and ResNet50 helps to overcome the overfitting prob-

lem. The VGG-19 and ResNet50 technique extracts the relevant features to detect the small 

objects in the dataset. The existing deep learning techniques have lower efficiency in de-

tecting small objects. Figure 9 shows the graphical analysis of various feature selection 

techniques on DIOR dataset in terms of mAP, precision and recall. 

 

Figure 9. Performances of feature selection techniques on the DIOR dataset. 

The SSG feature selection technique is compared with other feature selection tech-

niques, as shown in Table 4 and Figure 9. The SSG model applies the spiral search tech-

nique to increase the exploitation of the feature selection. This helps to select the relevant 

features for classifying small objects in the images. The GWO, FF, and WOA techniques 

have lower convergence, and the GO technique has lower exploitation in feature selection. 
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The SSG model has 78.42% mAP, the GO technique has 71.33% mAP, and the WOA tech-

nique has 70.3% mAP. Furthermore, the proposed SSG technique achieves better precision 

(77.98%) and recall (77.74%) when compared with other feature selection techniques. 

Table 4. Feature selection techniques performance on DIOR dataset. 

Methods Precision (%) Recall (%) mAP (%) 

GWO 67.91 65.08 68.49 

FF 70.22 68.44 70.25 

WOA 72.93 70.23 70.3 

GO 75.82 74.85 71.33 

SSG 77.98 77.74 78.42 

5.3. Comparative Analysis 

Various deep learning models were applied for remote sensing object detection and 

some of recent techniques were compared.  

The SSG feature selection technique is compared with existing techniques in remote 

sensing object detection, as shown in Table 5 and Figure 10. The existing techniques have 

the limitations of the data imbalance problem, overfitting and lower efficiency in detecting 

small object. The SSG technique applies spiral search to increase the exploitation in feature 

selection that helps to select more relevant features. The increase in exploitation helps to 

overcome data imbalance and overfitting. The VGG-19 and ResNet50 feature extraction 

and SSG feature selection helps to detect small objects effectively. The SSG model has 

82.45% mAP, the SSD [28] has 52.6% mAP, and the MPFP-Net [27] model has 80.43% mAP.  

Table 5. Existing model comparison on DOTA dataset. 

Methods mAP (%) 

CFCNet [20] 73.5 

LO-Det [22] 66.17 

REFIPN [25] 79.54 

RIL [26] 77.62 

MPFP-Net [27] 80.43 

SSD [28] 52.6 

SSG 82.45 

 

Figure 10. Existing methods comparison on DOTA dataset. 
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The SSG technique is tested on the DIOR dataset and compared with existing tech-

niques, as shown in Table 6 and Figure 11. The SSG technique has applied the spiral search 

technique to increase the exploitation of the feature selection. The spiral search model 

helps to give priority to exploitation that in turn helps to escape the local optima trap. This 

selects more relevant features for small object detection and helps to solve imbalance and 

overfitting problems. The existing techniques have an overfitting problem due to the gen-

eration of more features and imbalance of data. The SSG model has 78.42% mAP, SLA [29] 

model has 76.36% mAP, and AOPG [24] model has 64.41% mAP. 

Table 6. Existing model comparison on DIOR dataset. 

Methods mAP (%) 

LO-Det [22] 65.85 

CF2PN [23] 67.25 

AOPG [24] 64.41 

SLA [29] 76.36 

SSG 78.42 

 

Figure 11. Existing methods comparison on DIOR dataset. 
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The SSG model is used in this study to select the features more effectively and en-

hance the object detection. The SSG keeps the balance between exploration and exploita-

tion, which aids in the selection of the relevant features, and helps to increase the exploi-

tation of the feature selection. For better object representation in the images, the VGG-19 

and ResNet50 model extracts the features. The SSG technique improves object classifica-

tion performance by choosing the relevant features from extracted features. The SSG 

model has 78.42% and 82.45% mAP on the DIOR and DOTA datasets, respectively, ac-

cording to the result analysis. This proposed SSG model is better than the existing LO-Det 

[22], CF2PN [23], AOPG [24], and SLA [29] models in both DOTA and DIOR datasets. 

The first 10 categories in the DOTA dataset are common. The remaining 10 categories 

are difficult to detect for each architecture when split into large ones (harbor, bridge, large 

vehicle, helicopter, roundabout) and small ones (tennis court, basketball court, ground track field, 

soccer ball field), because there is obvious difference between these two sub-categories in 

aerial images. While in the DIOR dataset, some images, i.e., harbour, ship, stadium, train 
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station, expressway toll station contain noise and targets in motion would be blurred. There-

fore, it has a high degree of inter-class similarity and intra-class diversity. These charac-

teristics greatly increase the difficulty of detection. 

6. Conclusions 

Remote sensing object detection is an important application in satellite images and is 

required in many applications such as transportation, forest region monitoring, and urban 

planning, etc. CNN-based models were widely applied in remote sensing object detection 

due to their efficiency in feature extraction and classification. Deep learning techniques in 

remote sensing object detection have the limitations of data imbalance, overfitting prob-

lem and lower efficiency in small object detection. The deep learning model extracts more 

features from input images, and this creates an overfitting problem. The feature selection 

technique is required to select relevant features and overcome overfitting problems in ob-

ject detection. This research applies the SSG model for effective feature selection and to 

improve the performance of object detection. The spiral search technique in SSG helps to 

increase the exploitation of the feature selection. The SSG maintains the balance between 

exploration and exploitation that helps to select the relevant features. The existing feature 

selection techniques have the limitation of the trap into local optima and have lower con-

vergence. The VGG-19 and ResNet50 model extract the features for the better representa-

tion of object in the images. The SSG technique selects the relevant features from extracted 

features to improve object classification performance. In the DIOR dataset, the SSG model 

has 78.42% mAP, SLA model has 76.36% mAP, and AOPG model has 64.41% mAP. The 

future work of this model involves the application of new deep learning architecture such 

as Dense Net, ResNet 101, Squeezenet for feature extraction and selection to analyze the 

classification performance. 
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