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Abstract
This article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on
the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field
model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The
size-dependent effect of the nanobeam is captured by the nonlocal strain gradient theory (NSGT), and the governing
equations of the proposed model have been derived by implementing a variational principle. The critical buckling loads
have been calculated for the hinged–hinged boundary condition by incorporating the Navier approach and considering
other elasticity theories such as classical elasticity theory, Eringen nonlocal elasticity theory, and strain gradient theory
along with the NSGT. The present model is also validated with the pre-existing model in exceptional cases. Further, a
parametric investigation has been performed to report the influence of various scaling parameters like hygroscopic
environment, thermal environment, length-to-diameter ratio, small scale parameter, and length scale parameter on critical
buckling loads by considering both the linear and nonlinear temperature distributions.

Keywords: hygrothermal environment; stability analysis; nonlinear temperature distribution; Timoshenko beam
theory; nonlocal strain gradient model

1. Introduction

The advent of nanotechnology and the increasing demand for advanced equipment have led to the development of microelectrome-
chanical and nanoelectromechanical systems. Some industrial equipment requires tiny and precise nanoscale displacements. Given
that industrial actuators have a fast and accurate response and are highly durable, this can be a good solution to meet this need.
In many industries, mainly in the automotive and the medical industries (Ikeda et al., 1990; Fatikow & Rembold, 1997), industrial
actuators are commonly used in the form of nanobeams.

Structural designers are always aware of the fact that the loading, in terms of thermal loads applied to the structure, is more
complex than other forms of loads such as gravity and mechanical loads. Generally, when a structural element is affected by tem-
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2 Stability analysis of nanobeams in hygrothermal environment

perature changes, it tends to deform and, if it is restricted, it develops an internal force within the element. On the contrary, if the
element is allowed to deform freely, no internal force is created in the element. For example, when a beam with complete freedom
of movement is heated uniformly, its length will increase. If the same beam is heated with two-stranded ends, e.g. hinged–hinged
(HH) support, there will be a transverse deformation and compressive force. This compressive force can have a direct effect on the
mechanical deformation of the element. Therefore, nanobeams, as a vital part of NEMS, should be considered under both the linear
and nonlinear distributions of temperature. That is why the authors were motivated to work on this theoretical research. In the case
of nanobeams, we may found numerous published papers. For example, in terms of buckling or stability of nanobeams, researchers
and engineers have conducted lots of studies (Wang, Zhang, Ramesh, & Kitipornchai, 2006; Ansari, Sahmani, & Rouhi, 2011a,b; Prad-
han & Reddy, 2011; Roque, Ferreira, & Reddy, 2011; Pradhan, 2012; Akgöz & Civalek, 2017; She, Yuan, Ren, & Xiao, 2017; Eltaher, Kabeel,
Almitani, & Abdraboh, 2018; Jena & Chakraverty, 2019a; Jena, Chakraverty, Jena, & Tornabene, 2019; Jena, Chakraverty, & Malikan,
2019; Jena, Chakraverty, & Tornabene, 2019a; Malikan, 2019). Likewise, one can find some valuable existing literature (Zhen & Fang,
2010; Ebrahimi & Barati, 2017a,b; Malikan, Nguyen, & Tornabene, 2018; Barati, Faleh, & Zenkour, 2019; Jena, Chakraverty, Malikan, &
Tornabene, 2019; She, Jiang, & Karami, 2019; Karami, Janghorban, & Rabczuk, 2020) concerning thermal influences. Arefi and Zenkour
studied bending, and vibration of three-layered geometrically irregular (Arefi & Zenkour, 2017a) and straight (Arefi & Zenkour, 2017b)
nanoscale piezomagnetic beams, large deflections of a functionally graded (FG) laminated nanosize beam under thermomagnetic
field (Arefi & Zenkour, 2016) and developed static investigations on the curved nanobeams with respect to electromagnetic effects
(Arefi & Zenkour, 2019a). In their works, to gain shear deformations benefits, a sinusoidal shear deformation theory was utilized.
Moreover, Arefi and Soltan Arani (2018) conducted a thermoelastic analysis to capture the results for large deflections for a nonlocal
beam exposed in thermal, magnetic, and electric stress fields. Sometimes in the analysis of beam materials, there is no information
about mechanical properties or on the other side sometimes there are some imperfect characteristics that make the material prop-
erties of beams uncertain about using exactly at a constant value. It arises in observable physical measurements as some research
about nanobeams can be seen in this category (Vu-Bac, Lahmer, Zhuang, Nguyen-Thoi, & Rabczuk, 2016; Jena, Chakraverty, & Ma-
likan, 2020a). As most of the research work on the nanostructures is in the framework of differential equations, hence it is crucial to
understand a better concept to solve these equations (Anitescu, Atroshchenko, Alajlan, & Rabczuk, 2019; Rabczuk, Ren, & Zhuang,
2019; Samaniego et al., 2020). As per the limited knowledge of the authors, there is no recorded paper or a little work about the non-
linear distribution of temperature for the stability analysis nanobeam available. Some other works related to micro/nanostructures
can be found in different researches (Arefi & Zenkour, 2017c, 2018a, 2018b, 2019b; Arefi, Bidgoli, & Zenkour, 2018; Jena & Chakraverty,
2018; Jena, Chakraverty, & Jena, 2019; Jena & Chakraverty, 2019b,c; Jena, Chakraverty, & Tornabene, 2019b; Malikan, 2020; Malikan,
Krasheninnikov, & Eremeyev, 2020; Sedighi & Malikan, 2020; Sedighi, Ouakad, Dimitri, & Tornabene, 2020; Senthilkumar, 2020; Vinyas,
Harursampath, & Kattimani, 2020; Malikan & Eremeyev, 2020a).

For the sake of brevity, we have only considered the closest research to the ongoing work in detail. Ebrahimi and Salari (2015)
studied the dynamic characteristics of the functionally graded nanobeams by considering the thermal environment as a linear func-
tion and calculated the natural frequencies and stability capacity of the beam. Also, the stress nonlocality was adopted to model
the low-scale impacts. Mohammadi, Safarabadi, Rastgoo, and Farajpour (2016) investigated the vibration behavior of the rotating
viscoelastic nanobeam, which was embedded in a visco-Pasternak elastic foundation subjected to the effects of humidity as well
as the thermal environment. Moreover, the thermal environment was assumed as the nonlinear thermal stress field on the basis
of the Murnaghan assumption. The differential quadrature method was utilized to solve the equations that were derived based on
the Euler–Bernoulli beam. Jouneghani, Dimitri, and Tornabene (2018) proposed a model considering the porous functionally graded
nanobeams with hygroscopic and thermal loadings. They also used the Eringen nonlocal model in conjunction with the Timoshenko
beam theory. Navier’s solution technique helped them to solve the harvested mathematical relations.

Based on the Timoshenko beam theory, this paper explores the stability response of nanobeam subjected to hygrothermal condi-
tions. The temperature distribution is assumed to be changed nonlinearly along with the thickness following the Murnaghan model,
while the hygroscopic environment is assumed linearly. The size-dependent behavior of the nanobeam is examined by incorporating
the nonlocal strain gradient hypothesis. The required stability equations are derived based on the variational principle and nonlinear
Lagrangian strains. Navier’s approach is employed to compute the critical buckling loads of the nanobeam for the HH boundary con-
dition. As far as we have confronted with different size-dependent theories, this paper presents the results not only for NSGT but also
in a full comparison with other small-scale models, i.e. Eringen Nonlocal Elasticity Theory (ENET), and Strain Gradient Theory (SGT)
along with the NSGT. The current model is also verified with well-known literature. Consequently, a full parametric study is presented
based on the different key and vital parameters, e.g. nonlinear thermal surrounding, hygroscopic environment, length-to-diameter
ratio, small scale parameter, and strain gradient length scale parameter on critical buckling loads.

2. Proposed Model

In this study, a nanobeam of length L , and diameter d has been taken into the investigation, which is exposed to a linear hygro-
scopic environment and nonlinear thermal environment based on the Murnaghan model. The schematic diagram of this model is
illustrated in Fig. 1. In the forthcoming subsection, reviews of nonlocal strain gradient theory and hygrothermal environments have
been abridged, and the governing equations for the proposed model have been derived.

2.1. Review of the nonlocal strain gradient theory

Total stress field tensor, as per the nonlocal strain gradient theory (Lim, Zhang, & Reddy, 2015; Li & Hu, 2016; Lu, Guo, & Zhao, 2017;
Malikan & Nguyen, 2018; Malikan, Dimitri, & Tornabene, 2018; Jena, Chakraverty, & Tornabene, 2019c; Malikan & Eremeyev, 2020b),
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Figure 1: Schematic diagram of a nanobeam subjected to hygrothermal environments.

depends on not only classical nonlocal stress tensor but also higher order nonlocal stress tensor that is presented as

t = σ − ∇σ • , (1)

where σ = ∫ L
0 Eα(x, x′, e0a) ε′

xx(x′) dx′ and σ • = l2
∫ L

0 Eα∗(x, x′, e1a) ε′
xx,x(x′) dx′ are the classical nonlocal stress tensor and the higher order

nonlocal stress tensor, respectively. α(x, x′, e0a) and α∗(x, x′, e1a) represent the nonlocal kernels, εxx and εxx,x represent the component
of strain tensor and gradient of the strain tensor, L and l denote the external characteristics—length of the beam and material length
scale parameter, and e0a and e1a are the nonlocal parameters due to the lower order and higher order strain gradient stress fields.
Applying the nonlocal differential operator (�i = 1 − (ei a)2∇2 , i = 0, 1) on the stress field defined in Equation (1), we obtain(

1 − (e0a)2∇2
) (

1 − (e1a)2∇2
)

σxx = E
(
1 − (e1a)2∇2

)
εxx − El2

(
1 − (e0a)2∇2

)
∇2εxx (2)

in which Laplacian is denoted by ∇2, E presents elastic modulus, σxx exhibits nonlocal axial stress, and εxx demonstrates local axial
strain. Assuming e0a = e1a, the first-order nonlocal strain gradient model for 1D elastic material will be modified as(

1 − (e0a)2 ∂2

∂x2

)
σxx = E

(
1 − l2 ∂2

∂x2

)
εxx. (3)

2.2. Review of hygrothermal environment

Based on thermal elasticity theory, the axial force due to the thermal environment (NT ) can be given as (Jȩ kot, 1996; Mohammadi,
Safarabadi, Rastgoo, & Farajpour, 2016; Takahashi, 2018)

NT = −
∫

A
� (�T ) dA (4)

in which �(�T ) is the nonlinear elastic stress temperature coefficient, which may be defined as (Jȩ kot, 1996; Mohammadi, Safarabadi,
Rastgoo, & Farajpour, 2016; Takahashi, 2018)

� (�T ) = Eαx�T − ĥα2
x�T2 with ĥ = l1 (1 − 2υ) − 2m1

(
υ2 − 1

) + n1υ
2, (5)

where �T is the change in temperature, αx is the coefficient of thermal expansion, (l1, m1, n1) are Murnaghan’s third-order elastic
constants, and υ is Poisson’s ratio.

Substituting Equation (5) into Equation (4), we obtain

NT = −
∫

A
� (�T ) dA = −

∫
A

(
Eαx�T − ĥα2

x�T2
)

dA = −
(

E Aαx�T − Aĥα2
x�T2

)
. (6)

According to hygroscopic elasticity theory, the axial force due to the hygroscopic environment (NH ) can be presented as (Jȩ kot,
1996; Mohammadi, Safarabadi, Rastgoo, & Farajpour, 2016; Takahashi, 2018)

NH = −
∫

A
ϕ (�H) dA. (7)

Here, ϕ(�H) is the elastic stress due to hygroscopic environment, which is defined as

ϕ (�H) = Eβx�H (8)

in which βx denotes the hygroscopic expansion coefficient, and �H is the change in moisture concentration.
Plugging Equation (8) into Equation (7), we have

NH = −
∫

A
ϕ (�H) dA = −

∫
A

(Eβx�H) dA = −E Aβx�H. (9)
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4 Stability analysis of nanobeams in hygrothermal environment

2.3. A mathematical formulation of the proposed model

The displacement field, as per Timoshenko beam theory, is stated as (Wang, Zhang, Ramesh, & Kitipornchai, 2006; Reddy, 2007)

u1 (x, z, t) = u (x, t) + zϕ (x, t) (10.a)

u2 (x, z, t) = 0 (10.b)

u3 (x, z, t) = w (x, t) (10.c)

in which u(x, t) is the axial displacement of in-plane, w(x, t) is the transverse displacement of middle-plane, ui (i = 1, 3) are the axial
and transverse displacements of beam nodes, and ϕ(x, t) denotes the rotation of beam nodes.

Using von Kármán nonlinear strain–displacement relationship, the Lagrangian strain may be obtained as

εxx = ∂u
∂x

+ z
∂ϕ

∂x
, (11.a)

γxz = ϕ + ∂w

∂x
. (11.b)

Here, εxx represents the normal strain and γxz denotes the transverse shear strain. Considering the axial strain due to hygrothermal
environments, Equation (11) will be converted into

εxx = ∂u
∂x

+ z
∂ϕ

∂x
−

(
αx�T − ĥα2

x�T2

E

)
− βx�H. (12.a)

γxz = ϕ + ∂w

∂x
. (12.b)

To further clarify, Equation (12.a) is mechanical strain relation equaling to total strain minus both strains resulted from thermal

environment (αx�T − ĥα2
x�T2

E ) and strain originated from hygroscopic influence (βx�H). If we remove the hygrothermal effects, the
total strain would be equal to mechanical strain.

Taking variation in strain energy, the virtual strain energy δU is presented as

δU =
�

V

(
σxxδεxx + σ

(1)
xx ∇δεxx + σxzδγxz + σ

(1)
xz ∇δγxz

)
dV

=
�

V

[(
σxx − ∇σ

(1)
xx

)
δεxx +

(
σxz − ∇σ

(1)
xz

)
δγxz

]
dV

=
�

V

⎡
⎢⎢⎢⎣

(
σxx − ∇σ

(1)
xx

)
δ

(
∂u
∂x

+ z
∂ϕ

∂x
−

(
αx�T − ĥα2

x�T2

E

)
− βx�H

)

+
(
σxz − ∇σ

(1)
xz

)
δ

(
ϕ + ∂w

∂x

)
⎤
⎥⎥⎥⎦dV

=
∫ L

0

[
Nxx

∂δu
∂x

+ Mxx
∂δϕ

∂x
+ Qxz

(
δϕ + ∂δw

∂x

)]
dx

=
∫ L

0

[
− ∂Nxx

∂x
δu − ∂Mxx

∂x
δϕ + Qxzδϕ − ∂Qxz

∂x
δw

]
dx (13)

in which Mxx = ∫
A z(σxx − ∇σ

(1)
xx )dA, Nxx = ∫

A (σxx − ∇σ
(1)
xx )dA, and Qxz = ∫

A (σxz − ∇σ
(1)
xz )dA are the local stress resultants of the beam.

The virtual work done (δW) by external loads such as nonlinear thermal environment, and the hygroscopic environment as well
as mechanical compressive loads, is obtained as

δW = −
∫ L

0

[
− (E Aβx�H)

(
∂2w

∂x2

)
−

(
E Aαx�T − Aĥα2

x�T2
) (

∂2w

∂x2

)
− N0

xx

(
∂2w

∂x2

)]
δwdx, (14)

where N0
xx is the axial compressive force. Employing the variational principle and collecting the coefficients of δu, δw,δϕ, we have

∂Nxx

∂x
= 0, (15.a)

∂Qxz

∂x
− N0

xx
∂2w

∂x2
− (E Aβx�H)

(
∂2w

∂x2

)
−

(
E Aαx�T − Aĥα2

x�T2
) (

∂2w

∂x2

)
= 0, (15.b)

∂Mxx

∂x
− Qxz = 0. (15.c)

From the Hookean stress–strain elasticity relation for the Timoshenko beam theory based on Equation (12), we have

Mxx = E I
∂ϕ

∂x
, (16.a)

Qxz = ks AG
(

ϕ + ∂w

∂x

)
, (16.b)

where G is the shear modulus, A is the cross-section area, ks is the shear correction factor, and I = ∫
A

z2dA is the second area moment

of inertia.
From the nonlocal strain gradient theory, i.e. from Equation (3), we have(

1 − (e0a)2 ∂2

∂x2

)
σi j = Ci jkl

(
1 − l2 ∂2

∂x2

)
εkl (17)

in which σi j , εkl , and Ci jkl are stress tensor, strain tensor, and elastic modulus constant, respectively.
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In this study, the size-dependent effect has been incorporated into normal stress and strain, whereas no size-dependent effect is
injected into the constitutive relation of shear stress or strain. Therefore, from Equations (16) and (17), the nonlocal stress resultants
may be obtained as (

1 − (e0a)2 ∂2

∂x2

)
Mxx = E I

(
∂ϕ

∂x
− l2 ∂3ϕ

∂x3

)
, (18.a)

Qxz = ks AG
(

ϕ + ∂w

∂x

)
. (18.b)

Now, using Equations (15) and (18), the governing equations for the proposed model may be stated as

ks AG
(

∂ϕ

∂x
+ ∂2w

∂x2

)
− N0

xx
∂2w

∂x2
− (E Aβx�H)

(
∂2w

∂x2

)
−

(
E Aαx�T − Aĥα2

x�T2
) (

∂2w

∂x2

)
= 0, (19.a)

ks AG
(

ϕ + ∂w

∂x

)
+ (e0a)2 ∂

∂x

⎡
⎢⎣−N0

xx
∂2w
∂x2 − (E Aβx�H)

(
∂2w
∂x2

)
−(

E Aαx�T − Aĥα2
x�T2

) (
∂2w
∂x2

)
⎤
⎥⎦ − E I

∂

∂x

(
∂ϕ

∂x
− l2 ∂3ϕ

∂x3

)
= 0. (19.b)

Putting N0
xx = P in Equation (19), where P is the applied compressive force due to mechanical load, we will have

ks AG
(

ϕ + ∂w

∂x

)
+ (e0a)2

⎡
⎢⎣−P − (E Aβx�H) −(

E Aαx�T − Aĥα2
x�T2

)
⎤
⎥⎦(

∂3w

∂x3

)
− E I

(
∂2ϕ

∂x2
− l2 ∂4ϕ

∂x4

)
= 0, (20.a)

ks AG
(

∂ϕ

∂x
+ ∂2w

∂x2

)
− P

∂2w

∂x2
− (E Aβx�H)

(
∂2w

∂x2

)
−

(
E Aαx�T − Aĥα2

x�T2
) (

∂2w

∂x2

)
= 0. (20.b)

3. An Analytical Solution to the Proposed Model

In this study, Navier’s method has been employed to solve the hygromechanical stability equation of Timoshenko nanobeam for HH
boundary condition considering the nonlinear temperature distribution environment. The transverse displacement w(x, t) and the
rotation of cross-section ϕ(x, t) are given as (Malikan, Dimitri, & Tornabene, 2019; Jena, Chakraverty, Malikan, & Tornabene, 2020; Jena,
Chakraverty, Malikan, & Sedighi, 2020a, b; Jena, Chakraverty, & Malikan, 2020b,c)

w (x, t) =
∞∑

m=1

Wm sin
( nπ

L
x
)

, (21)

ϕ (x, t) =
∞∑

m=1

�m cos
( nπ

L
x
)

, (22)

in which Wm and �m are the amplitudes of transverse displacement and rotation of cross-section, respectively. Substituting Equations
(21) and (22) into Equation (20) yields⎡

⎢⎢⎢⎢⎢⎣
ks AG

( nπ
L

) − (e0a)2

[(
−P − E Aβx�H−
E Aαx�T + Aĥα2

x�T2

) ( nπ
L

)3

]
ks AG + E I

( nπ
L

)2
[
1 + l2

( nπ
L

)2
]

ks AG
( nπ

L

)2 +
[(

−P − E Aβx�H−
E Aαx�T + Aĥα2

x�T2

) ( nπ
L

)2

]
ks AG

( nπ
L

)

⎤
⎥⎥⎥⎥⎥⎦

[
Wm

�m

]
= 0. (23)

Taking determinant of the above matrix, the buckling loads of the proposed system can be found out. Substituting n = 1 yields
critical buckling loads (Pcr ) of the proposed model. From Equation (23), we may also get the critical buckling loads for the SGT, ENET,
and Classical Elasticity Theory (CET) by setting e0a = 0, l = 0, and both e0a = l = 0, respectively.

4. Results and Discussion

In the present investigation, critical buckling loads (P1) or (Pcr ) of the proposed model have been computed by exploiting the Navier
approach for HH boundary condition. The critical buckling loads are also calculated for different elasticity theories such as Nonlocal
Strain Gradient Theory (NSGT), SGT, ENET, and CET. For the computational purpose, we have considered different parameters from
different existing works of literature (Wang, Zhang, Ramesh, & Kitipornchai, 2006) such as E = 1 T Pa, G = E

2(1+υ) , υ = 0.19, d = 1 nm,

I = πd4

64 and unless mentioned L
d = 10, and the coefficients of hygrothermal expansion as αx = 2.1 × 10−6 K −1 (high-temperature envi-

ronment) and βx = 0.0026 (wt. % of H2O)−1 from Karami, Shahsavari, Janghorban, and Li (2019).

4.1. Validation

The present model is validated by ignoring the microstructure effect and effect of the hygrothermal environment and comparing
the critical buckling loads of the system for HH boundary condition with Wang, Zhang, Ramesh, and Kitipornchai (2006). For the
computation purpose, all the parameters of the mentioned paper have been retained, and the results exhibit very excellent agreement,
which can be observed in Table 1.
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6 Stability analysis of nanobeams in hygrothermal environment

Table 1: Validation of the present model with Wang, Zhang, Ramesh, and Kitipornchai (2006).

(e0a) in nm Pcr by present model Pcr by Wang, Zhang, Ramesh, and Kitipornchai (2006)

L
d = 10 12 14 16 L

d = 10 12 14 16

0 4.7670 3.3267 2.4514 1.8805 4.7670 3.3267 2.4514 1.8805
0.5 4.654 3.2713 2.4212 1.8626 4.654 3.2713 2.4212 1.8626
1 4.3450 3.1156 2.3348 1.8111 4.3450 3.1156 2.3348 1.8111
1.5 3.9121 2.8865 2.2038 1.7313 3.9121 2.8865 2.2038 1.7313
2 3.4333 2.6172 2.0432 1.6306 3.4333 2.6172 2.0432 1.6306

Table 2: Pcr in nN with �H = 1 (wt. % of H2O), and L
d = 10.

�T NSGT (e0a > l)
(e0a = 2 nm
l = 1 nm

)
NSGT (l > e0a)

(e0a = 1 nm
l = 2 nm

)
SGT (l = 1 nm) ENET (e0a = 1 nm) CET

(a) Linear temperature distribution
0 1.7258 3.9835 3.1871 2.3030 2.7249
150 1.4784 3.7361 2.9397 2.0556 2.4775
300 1.2310 3.4887 2.6923 1.8082 2.2301
450 0.9836 3.2413 2.4449 1.5608 1.9827
600 0.7362 2.9939 2.1975 1.3134 1.7353
750 0.4888 2.7465 1.9501 1.0660 1.4879
900 0.2414 2.4991 1.7027 0.8186 1.2405

(b) Nonlinear temperature distribution
0 1.7258 3.9835 3.1871 2.3030 2.7249
150 1.4783 3.7359 2.9396 2.0554 2.4774
300 1.2303 3.4880 2.6916 1.8075 2.2294
450 0.9820 3.2397 2.4433 1.5592 1.9811
600 0.7334 2.9911 2.1947 1.3105 1.7325
750 0.4844 2.7421 1.9457 1.0615 1.4835
900 0.2350 2.4927 1.6963 0.8121 1.2341

4.2. Effect of the thermal environment

This subsection is dedicated to studying the effect of the thermal environment on critical buckling loads of the HH boundary con-
dition. This study is progressed by analyzing the impact of both the linear and nonlinear temperature distributions for NSGT with
(e0a > l), NSGT with (l > e0a), SGT, ENET, and CET. Furthermore, the high thermal environment is only taken into account. Tabular re-
sults of critical buckling loads with linear and nonlinear temperature distributions have been demonstrated in Table 2a and Table 2b,
respectively. These results are calculated by considering the change in moisture concentration (�H) = 1 (wt. % of H2O) and all other
parameters as mentioned earlier by varying change in temperature from 0 to 900 K with an increment of 150 K. More importantly,
this paper ignores the buckling as a result of high temperature. That is why we choose this amplitude for temperature variations.
From the tabular results, it is observed that rise in �T results in decrease of critical buckling loads for both the linear and nonlinear
temperature distribution scenarios for all the elasticity theories. It is also evident that the critical buckling loads for nonlinear temper-
ature distribution are comparatively less than the linear one and this is more prominent in case of high temperatures. Furthermore, a
graphical result is also plotted by varying changes in temperature �T with χ�T , which is defined as the ratio of critical buckling loads
with �T �= 0 and critical buckling loads with �T = 0, which is illustrated in Fig. 2. It can be observed that the nanostructures are also
physically temperature-dependent and increase of external temperature leads to increase in discrepancy in results of all small-scale
theories.

4.3. Effect of hygroscopic environment

In this subsection, we are going to analyze the impact of moisture concentration (�H) on the critical buckling loads by taking into
account different elasticity theories such as NSGT with (e0a > l), NSGT with (l > e0a), SGT, ENET, and CET along with both the linear
and nonlinear temperature distribution scenarios. In this regard, tabular results of Pcr are presented in Table 3, where Table 3a is the
result for the linear case of temperature distribution. At the same time, Table 3b represents the results for the nonlinear distribution
of temperature. From these results, it is revealed that the critical buckling loads decrease as the moisture concentration (�H) gets
larger and it is valid for all the earlier mentioned elasticity theories and both the temperature distribution cases. Physically, it can
be interpreted that the moisture concentration into the material can be like some vacancies between molecules and atoms that
are filled with water molecules. Naturally, this would lead to weakening the stability and resistance of the structure. Furthermore,
nanobeam with linear temperature distribution possesses a higher critical buckling load with respect to the nonlinear case and this
is more visible with higher moisture concentration. Additionally, graphical results are also presented in Figs 3 and 4; Fig. 3 illustrates
the variation of critical buckling loads with moisture concentration (�H) for linear temperature distribution, which is varied from
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Figure 2: χ�T versus �T for both the linear and nonlinear temperature distributions.

Table 3: Pcr in nN with �T = 1000 K , and L
d = 10.

�H NSGT (e0a > l)
(e0a = 2 nm
l = 1 nm

)
NSGT(l > e0a)

(e0a = 1 nm
l = 2 nm

)
SGT (l = 1 nm) ENET (e0a = 1 nm) CET

(a) Linear temperature distribution
0 2.1185 4.3762 3.5798 2.6957 3.1176
0.25 1.6080 3.8657 3.0693 2.1852 2.6071
0.5 1.0975 3.3552 2.5588 1.6747 2.0966
0.75 0.5870 2.8447 2.0483 1.1642 1.5861
1 0.0765 2.3342 1.5378 0.6536 1.0756

(b) Nonlinear temperature distribution
0 2.1106 4.3683 3.5719 2.6877 3.1097
0.25 1.6001 3.8578 3.0614 2.1772 2.5992
0.5 1.0896 3.3473 2.5509 1.6667 2.0887
0.75 0.5791 2.8368 2.0404 1.1562 1.5782
1 0.0685 2.3262 1.5299 0.6457 1.0677

Figure 3: Pcr versus �H for linear temperature distribution.
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8 Stability analysis of nanobeams in hygrothermal environment

Figure 4: χ�H versus �H for nonlinear temperature distribution.

Table 4: Pcr in nN with �T = 500 K and �H = 0.5 (wt. % of H2O).

L/d NSGT(e0a > l)
(e0a = 2 nm
l = 1 nm

)
NSGT(l > e0a)

(e0a = 1 nm
l = 2 nm

)
SGT (l = 1 nm) ENET (e0a = 1 nm) CET

(a) Linear temperature distribution
5 8.2771 30.1304 22.9290 11.4272 16.3462
7.5 3.9864 10.1216 7.9446 5.3051 6.5244
10 1.9222 4.1799 3.3835 2.4993 2.9213
12.5 0.7628 1.7632 1.4146 1.0424 1.2229
15 0.0542 0.5593 0.3851 0.2028 0.2920

(b) Nonlinear temperature distribution
5 8.2752 30.1284 22.9270 11.4253 16.3442
7.5 3.9844 10.1196 7.9427 5.3031 6.5225
10 1.9202 4.1779 3.3815 2.4973 2.9193
12.5 0.7608 1.7612 1.4126 1.0404 1.2209
15 0.0523 0.5574 0.3831 0.2008 0.2900

0 (wt. % of H2O) to 1 (wt. % of H2O) with an increment of 0.25 (wt. % of H2O). Similarly, Fig. 4 is the graphical result that is plotted with
χ�H , which is defined as χ�H = Pcr with �H �=0

Pcr with �H=0 and moisture concentration �H for nonlinear temperature case.

4.4. Effect of length-to-diameter ratio

Through this subsection, the influence of length-to-diameter ratio (L/d) on critical buckling loads has been investigated by using
graphical as well as tabular results, as presented in Table 4 and Figs 5 and 6. Here, rise in temperature �T = 500 K and moisture
concentration �H = 0.5 (wt. % of H2O) have been taken into computation while the length-to-diameter ratio is varied from 5 to 15
with an increase of 2.5. Table 4a demonstrates the tabular results of critical buckling loads for various elasticity theories with linear
temperature distribution, whereas Table 4b represents the critical buckling loads for nonlinear temperature distribution. Likewise,
Fig. 5 is the variation of critical buckling loads with length-to-diameter ratio for linear temperature case, whereas Fig. 6 is the graphical
result plotted by varying χ L

d
, which is expressed as χ L

d
= Pcr with L/d �=0

Pcr with L/d=5 with L
d . From all these results, it is very apparent that the critical

buckling loads of the nanobeam decrease with increase in L
d and this reduction in critical buckling loads is more visible with the

lower value of L
d . Also, at a higher value of L

d , the difference between the buckling loads of all the elasticity theories becomes less as
compared to lower value of L

d and this is valid for both the linear and nonlinear temperature distributions. Likewise, at larger L
d ratio,

the nanoscale impact is comparatively unnoticeable for both the linear and nonlinear temperature distributions.
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Figure 5: Pcr versus L/d for linear temperature distribution.

Figure 6: χ�H versus L/d for nonlinear temperature distribution.

4.5. Effect of the small scale parameter

In this subsection, the impact of small scale parameters (e0a) on critical buckling loads has been examined, taking into account
different elasticity theories such as NSGT, SGT, ENET, and CET along with both the linear temperature distribution (LTD) and nonlinear
temperature distribution (NLTD). In this regard, the tabular result is present in Table 5, which are computed with �T = 500 K , �H =
0.5 (wt. % of H2O), and L

d = 10. From these results, it is found that Pcr decreases as the e0agets larger, which is applicable for all the
abovementioned elasticity theories except SGT, and CET as these two theories don’t incorporate nonlocal effects. The graphical results
are also presented in Figs 7 and 8, where Fig. 7 illustrates the variation of critical buckling with small scale parameter, which is varied
from 0 to 2 nm with an increment of 0.2 nm for linear temperature distribution. Likewise, Fig. 8 demonstrates the variation of χe0a (it
is defined as the ratio of critical buckling load with small scale effect to without small scale effect) with e0a.
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10 Stability analysis of nanobeams in hygrothermal environment

Table 5: Pcr in nN with �T = 500 K , �H = 0.5 (wt. % of H2O), and L
d = 10 for both the LTD and NLTD.

e0a NSGT (l = 1 nm) SGT (l = 1 nm) ENET CET

LTD NLTD LTD NLTD LTD NLTD LTD NLTD

0 3.3815 3.3815 3.3835 3.3815 2.9213 2.9193 2.9213 2.9193
0.25 3.3520 3.3500 3.3835 3.3815 2.8925 2.8905 2.9213 2.9193
0.5 3.2597 3.2577 3.3835 3.3815 2.8083 2.8063 2.9213 2.9193
0.75 3.1130 3.1111 3.3835 3.3815 2.6744 2.6724 2.9213 2.9193
1 2.9213 2.9193 3.3835 3.3815 2.4993 2.4973 2.9213 2.9193
1.25 2.6955 2.6935 3.3835 3.3815 2.2933 2.2913 2.9213 2.9193
1.5 2.4470 2.4450 3.3835 3.3815 2.0665 2.0645 2.9213 2.9193
1.75 2.1863 2.1843 3.3835 3.3815 1.8285 1.8266 2.9213 2.9193
2 1.9222 1.9202 3.3835 3.3815 1.5876 1.5856 2.9213 2.9193

Figure 7: Pcr versus e0a for linear temperature distribution.

Figure 8: χe0a versus e0afor nonlinear temperature distribution.
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Table 6: Pcr in nN with �T = 500 K , �H = 0.5 (wt. % of H2O), and L
d = 10 for both the LTD and NLTD.

l NSGT (e0a = 1 nm) SGT ENET (e0a = 1 nm) CET

LTD NLTD LTD NLTD LTD NLTD LTD NLTD

0 2.4993 2.4973 2.9213 2.9193 2.4993 2.4973 2.9213 2.9193
0.25 2.5257 2.5238 2.9502 2.9482 2.4993 2.4973 2.9213 2.9193
0.5 2.6049 2.6029 3.0370 3.0350 2.4993 2.4973 2.9213 2.9193
0.75 2.7368 2.7348 3.1815 3.1795 2.4993 2.4973 2.9213 2.9193
1 2.9213 2.9193 3.3835 3.3815 2.4993 2.4973 2.9213 2.9193
1.25 3.1581 3.1561 3.6428 3.6408 2.4993 2.4973 2.9213 2.9193
1.5 3.4470 3.4450 3.9592 3.9572 2.4993 2.4973 2.9213 2.9193
1.75 3.7877 3.7857 4.3322 4.3302 2.4993 2.4973 2.9213 2.9193
2 4.1799 4.1779 4.7613 4.7594 2.4993 2.4973 2.9213 2.9193

Figure 9: Pcr versus l for linear temperature distribution.

4.6. Effect of the length scale parameter

This subsection is aimed to investigate the effect of the length scale parameter (l) on the stability analysis of the proposed model.
Various elasticity theories have been taken into consideration in this study, and the results are calculated for different l, which are
varied from 0 to 2 nm with an increment of 0.2 nm along with �T = 500 K , �H = 0.5 (wt. % of H2O), and L

d = 10 for both the LTD
and NLTD. In this regard, Table 6 demonstrates the critical buckling loads with respect to different elasticity theories, i.e. NSGT, SGT,
ENET, and CET. Similarly, Fig. 9 represents the variation of Pcr with l for linear temperature distribution, and Fig. 10 illustrates the
effect of length scale parameter on χl , which is expressed as the ratio of critical buckling loads with microstructure effect and without
microstructure effect. From these results, it is quite clear that Pcr increases with the increase in l for all elasticity theories except ENET
and CET as these are not influenced by microstructure effect.

5. Conclusion

In this study, critical buckling loads of the nanobeam, exposed to a hygrothermal environment with nonlinear temperature distribu-
tion based on the Murnaghan model, have been computed analytically by exploiting Navier’s approach for HH boundary conditions.
A parametric study has been carried out to analyze the effects of various scaling parameters considering linear and nonlinear tem-
perature distributions along with different elasticity theories such as NSGT, SGT, ENET, and CET. Following are the main comments:

� With the increase in �T , and when considering the higher thermal environment, the critical buckling loads of both the linear
and nonlinear temperature distributions for all the elasticity theories decrease. It is also evident that the critical buckling loads
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12 Stability analysis of nanobeams in hygrothermal environment

Figure 10: χl versus l for nonlinear temperature distribution.

for linear temperature distribution are comparatively higher than the nonlinear one, and this is more prominent in case of high
temperatures.

� The critical buckling loads of the nanobeam decrease as the moisture concentration (�H) gets higher, and it is valid for all the
mentioned elasticity theories and both the temperature distribution scenarios. Furthermore, nanobeam with linear temperature
distribution possesses a higher critical buckling load concerning the nonlinear distribution, and this is more visible with higher
moisture concentration.

� It is found that the critical buckling loads decrease as the small scale gets larger, which is applicable for all the above elasticity
theories except SGT and CET as these two theories do not incorporate nonlocal effects. Similarly, Pcr increases with the increase
in length scale parameter for all elasticity theories except ENET and CET as these are not influenced by microstructure effect.

� Nanoscale materials can be considered as temperature-dependent along with size-dependent structures. This means external
temperature fundamentally affects the nonlocality behavior. It is also observed that with both the temperature distributions, the
nanobeam can respond as a hygroscopic-dependent structure.
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