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This paper addresses the problem of model-based global stability analysis of discrete-time Takagi–Sugeno multiregional
dynamic output controllers with static antiwindup filters. The presented analyses are reduced to the problem of a feasibility
study of the Linear Matrix Inequalities (LMIs), derived based on Lyapunov stability theory. Two sets of LMIs are considered
candidate derived from the classical common quadratic Lyapunov function, which may in some cases be too conservative,
and a fuzzy Lyapunov function candidate, which has been proven to significantly reduce the conservatism level, although
at the cost of increasing the number of LMIs. Two numerical examples illustrate the main result.
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1. Introduction

In the literature, a majority of techniques utilized
to analyse the stability of Takagi–Sugeno (TS) fuzzy
control systems include Lyapunov theory, Linear Matrix
Inequalities (LMIs) and bilinear matrix inequalities. In
some of these approaches, invariant set theory has been
also incorporated.

Stability analysis of the TS system was presented
by Tanaka and Sugeno (1992) while the relaxed stability
conditions for the continuous-time case by Tanaka
et al. (1998). The design and stability of fuzzy
logic multiregional output controllers (discrete-time case)
were presented by Domański et al. (1999) and further
developed by Tatjewski (2007). The latter introduced
fuzzy Lyapunov functions into the analysis.

Stability analysis involving extended Lyapunov
theory and systematic design of TS fuzzy control systems
for the continuous-time case were considered by Xiu
and Ren (2005). There were some trials to incorporate
information about the shape of the membership functions
of the TS system.

A fuzzy Lyapunov function approach to design and
analysis of continuous-time domain TS fuzzy control
systems was addressed by Rhee and Won (2006).

The state of the art in design and analysis of
model-based fuzzy control systems was presented by Feng
(2006). A stable indirect adaptive controller utilising TS
system was developed by Qi and Brdyś (2008) for tracking
control of uncertain nonlinear discrete-time systems. The
controller parameter adaptation was extended by Qi and
Brdys (2009) to cover also the adaptation of the TS plant
model structure.

This work aims at the problem of model-based
stability analysis of TS type fuzzy control systems
which utilize the dynamic output controllers with static
antiwindup filters through the feasibility study of LMIs.
These conditions are derived based on Lyapunov stability
theory. In the presented analyses it is assumed that the
control process can be represented by a TS fuzzy model
with an arbitrary small modelling error. This is based
on the well known universal approximation theorem (see
Yaochu, 2002). Two approaches are regarded: where
the LMIs are derived based on a Common Quadratic
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Lyapunov Function (CQLF) candidate and that based
on a Fuzzy Lyapunov Function (FLF) due to certain
conservatism reduction (see Feng, 2006; Tatjewski, 2007).

The main contribution of the paper is introduction
of tools for global stability verification of the TS fuzzy
output feedback controller with regional controllers that
(regionally) may be regarded as PI controllers with static
antiwindup filtration. The problem of the global stability
verification is posed as a feasibility study of a set of LMIs.
Two distinct sets of LMIs are introduced. The first is based
on the CQLF and the second is derived from the FLF.
Technically, a formal description of the PI with a static
antiwindup filter was acquired from Gomes da Silva and
Tarbouriech (2006). Throughout the technical analysis of
the problem it occurred that the results obtained extended
the above mentioned work to a much wider class of
problem.

The multiregional approach undertaken in this paper
allowed designing a globally stable nonlinear controller
which utilised all the advantages of the PI controller.
Although controller robustness with respect to uncertainty
is not directly tackled it is achieved due to well-known
robustness of regional PI controllers. Therefore, the
paper offers not only a fresh approach to a nonlinear
control design but also significantly extends the results
obtained by Gomes da Silva and Tarbouriech (2006).
Similarly as in their work, applying the sector condition
by Khalil (1996) is a key technical step in deriving the
LMI stability conditions. As nonlinear plant modelling is
carried out within a fuzzy Takagi–Sugeno framework, the
fuzzy Lyapunov function can be applied, which leads to
less conservative LMI conditions.

The work by Gomes da Silva and Tarbouriech (2006)
has been continued towards linear systems with time
varying parameters which are measurement accessible
(Castelan et al., 2006; 2010; Gomes da Silva et al., 2008;
Klug et al., 2011). Therefore, the issue of robustness
has not been addressed. In the works of Castelan et al.
(2010) and Klug et al. (2011), a linear compensator
with time-varying parameters and an antiwindup filter
have been obtained by applying Lyapunov contractive set
theory and ellipsoidal approximation of the largest region
of attraction of desired equilibrium in the LMI format.

This paper is organized as follows. Problem
statement is described in Section 2. Section 3 addresses
the main results by introducing derived theorems.
Section 4 presents two numerical examples. Section 5
concludes the paper. To increase the legibility of the work,
two appendices, containing the proofs of derived theorems
are added.

2. Problem statement

Consider a nonlinear process given by

ẋ = f(x(t),u(t)), (1)

where x(t) is a state vector, u(t) is the controlled input
and the function f is known.

Assume that, based on the universal approximation
theorem plant dynamics (1) can be represented with an
arbitrary small modelling error by a TS fuzzy model. In
this case a discrete-time fuzzy approximation had been
chosen. The corresponding inference rule set describing
the system dynamics is as follows:

Ri : If z1(k) is MF i
1 and . . . and zv is MF i

v then

xi(k + 1) = Aix(k) + Biu(k) + ai; (2)

where x(k) ∈ R
n, u(k) ∈ R

nu are state and input vectors
respectively, Ai ∈ R

n×n, Bi ∈ R
n×nu, ai ∈ R

n×1 are
system matrices; zs(k) are the measurable variables of
the system, i.e., state variables; MF i

s are the fuzzy sets,
i = 1, p is the region indicator, p denotes the number of
regions, s = 1, v is the fuzzy set indicator, v denotes the
number of fuzzy sets, R represents the set of real numbers.

The model (2) can equivalently be described by

x(k + 1) =
p∑

i=1

hi(z(k))[Aix(k) + Biu(k) + ai], (3)

where the firing strength of the i-th rule hi(z(k)) is
defined as

hi(z(k)) =
v∏

s=1

wi
s(zs(k))/

p∑

i=1

v∏

s=1

wi
s(zs(k)), (4)

where wi
s(zs(k)) is the weight resulting from MF i

s , and
the system output is given by

y(k) =
p∑

i=1

hi(z(k))Cix(k), (5)

where the matrices and vectors are defined as follows:
y(k) ∈ R

no is the process output and Ci is the output
matrix of appropriate dimensions. The control input
might be subjected to the actuator saturation, thus

u(k) = g (sat(u(k)) + b) , (6)

where the saturation function is defined as sat(·) =
sign(·)min{1, | · |}, u(k) is the unconstrained controller
output, g is the output scaling factor, b is the
saturation function offset. Also, due to the definition
of the saturation function and (6), it may be regarded
as a decentralised function of the form sat(·) =
[sat1(·) . . . satno(·)]T .

The controller chosen to stabilize the output of the
plant (1), represented by (2) or equivalently (3), on a
desired value is a multiregional PI type compensator based
on TS fuzzy reasoning (Domański et al., 1999; Tatjewski,
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2007; Han et al., 2008; Zubowicz et al., 2010) and is given
by the following inference rule set:

Ri : If z1(k) is MF i
1 and . . . and zv is MF i

v then
⎧
⎨

⎩

ui(k) = xi
c(k) − Di

cy(k) + Di
cr(k),

xi
c(k + 1) = xi

c(k) − Bi
cy(k) + Bi

cr(k)
+ Ei

c(sat(u(k)) − u(k)) + Ei
cb,

(7)

where �
i
c(k) ∈ Rnc and ui(k) are the state and control

signals generated by the i-th TS regional controller,
respectively, r(k) is the reference trajectory input which
is assumed to be piece-wise constant, Bi

c, Ei
c, Di

c are
controller matrices defined as

Bi
c =

[
Ki

I/cmx

]
,

Di
c =

[
Ki

P/cmx

]
,

Ei
c =

[
Ki

IK
i
AW

]
,

(8)

where Ki
P , Ki

I , Ki
AW are the proportional, integral and

antiwindup gains, respectively, cmx is the controller input
scaling factor.

The resulting controller representation is as follows:

u(k) =
p∑

i=1

hi
[
xc(k) − Di

cy(k) + Di
cr(k)

]
, (9)

xc(k + 1) =
p∑

i=1

hi
[
xc(k) − Bi

cy(k) + Bi
cr(k)

]

×
p∑

i=1

hi
[
Ei

c(sat(u(k)) − u(k)) + Ei
cb
]
,

(10)

where hi Δ= hi(z(k)); the definitions of xc(k) and u(k)
result from a TS reasoning scheme, that is, xc(k) Δ=
∑p

i=1 hixi
c(k) and u(k) Δ=

∑p
i=1 hiui(k).

3. Model-based stability analysis of the
closed loop control system

In this section the main result of the paper is presented.
Based on Lyapunov stability theory, sufficient conditions
for stability of the Closed Loop (CL) system are presented
in the form of a feasibility study of derived LMIs. The
two presented approaches utilize the CQLF and the FLF
as candidate functions respectively.

3.1. Closed loop system description. Extending the

state vector as ξ(k) =
[

xT (k) xT
c (k)

]T
, where

ξ(k) ∈ R
n+nu, and utilizing (3), (5), (6), (9) and (10)

yields the CL system representation,

ξ(k + 1)

=
p∑

i=1

p∑

j=1

hihj [Aij
CLξ(k) + Bij

r1r(k)]

−
p∑

i=1

p∑

j=1

hihj

[
Bij

ΨΨ

(
p∑

i=1

hj
[
Kjξ(k) + Bj

r2r(k)
])]

−
p∑

i=1

p∑

j=1

hihj[Bij
a ], (11)

where Ψ(·) is a nonlinear vector function, resulting from
antiwindup filtration, defined as Ψ(·) = sat(·) − (·);
Aij

CL, Bij
r1, Bij

Ψ , Kj , Bj
r2, Bij

a are the CL system matrices
defined as follows:

Aij
CL =

[
Ai − gBiDj

cC
i gBi

−Bj
cC

i Ino×nu

]
,

Bij
Ψ =

[
gBi

−Ej
c

]
,

Bij
r1 =

[
gBiDj

cC
i

Bj
cC

i

]
,

Kj =
[ −Dj

cC
i I1×1

]
,

Bj
r2 =

[
Dj

cC
i
]
,

Bij
a =

[
bi

Ej
cb

i

]
,

(12)

while the change in indexation results from

p∑

i=1

hi

p∑

j=1

hj =
p∑

i=1

p∑

j=1

hihj .

A considerable simplification can be made by
rewriting (11) as

ξ(k + 1)

=
p∑

l=1

hl[Al
CLξ(k) + Bl

r1r(k)]

−
K∑

l=1

hl

[
Bl

ΨΨ

(
K∑

l=1

hl
[
Klξ(k) + Bl

r2r(k)
]
)]

−
K∑

l=1

hl[Bl
a], (13)

where l = 1, K and K =
∑p

k=1 k.
For the purpose of stability validation only the

internal dynamics of the extended state vector are
important, so in further analysis an autonomous system
given by

ξ(k + 1) =
K∑

l=1

hl
[
Al

CLξ(k) − Bl
ΨΨ (ξ(k))

]
, (14)
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is considered where Ψ(ξ(k)) ≡ Ψ
(∑K

l=1 hl
[
Klξ(k)

])

is introduced to simplify the notation.

3.2. CQLF based stability analysis. Sufficient
conditions for global stability of the system (14) are given
in Theorem 1. The presented approach is an extension
of that by Gomes da Silva and Tarbouriech (2006); see
Section 1.

Theorem 1. The system (14) is globally stable if the
following set of LMIs (15) is satisfied:
⎡

⎣
X −X(Kl)T −X(Al

CL)T

KlX 2Y Y(Bl
Ψ)T

Al
CLX Bl

ΨY X

⎤

⎦ > 0, (15)

with a diagonal matrix Y > 0, Y ∈ R
nu×nu, and a

matrix X = XT > 0, X ∈ R
(n+nu)×(n+nu). Here l =

1, K and K =
∑p

l=1 k.

Finding a feasible solution to the LMI system (15)
guarantees that the CQLF is strictly decreasing along the
trajectory of the system, thus implying the asymptotic
stability. A complete proof is given in Appendix A.

3.3. FLF based stability analysis. Sufficient and less
conservative conditions for global stability of the system
(14) are given in the following result.

Theorem 2. Consider positive-definite matrices Xρ =
(Xρ)T , Xl = (Xl)T and Xl,Xρ ∈ R

(n+nu)×(n+nu);
and diagonal positive-definite matrix Y, Y ∈ R

nu×nu.
The CL system is globally stable if the LMI

⎡

⎣
Xl −Xl(Kl)T −Xl(Al

CL)T

KlXl 2Y Y(BΨ
l)T

Al
CLXl BΨ

lY Xρ

⎤

⎦ > 0, (16)

is satisfied, where ρ, l=1, K and K =
∑p

k=1 k .

For the proof, see Appendix B.

Remark 1. Note that, by choosing fuzzy Lyapunov
function matrices Pl, where l = 1, K, according to

P1 = P2 = · · · = PK = P∗, (17)

the following holds:

P (z(k)) =
K∑

l=1

hlPl = P∗
K∑

l=1

hl = P∗. (18)

Hence the fuzzy Lyapunov function defined by (A4)
becomes the Lyapunov function defined by (A1) with
P = P∗. In other words, any solutions of the LMI
(15) can be used to design the solution of the LMI

(16). This simply means that by applying Theorem 2
certain conservatism reduction can be obtained. This
reduction has been achieved by adding an extra degree
of freedom in designing the Lyapunov function, namely,
by applying Theorem 2. Instead of looking for a single
matrix satisfying all LMI conditions (see Theorem 1),
one can search for a different matrix in every separate
region just ensuring that in the ‘transition’ (mixed) regions
certain properties (given by the LMIs) hold. This actually
results in greater freedom in choosing the controller gains
in comparison to Theorem 1. This, however, is at the cost
of an increase in the number of LMIs.

4. Numerical example

In this section two numerical examples are considered.
One is an application of the derived theorems to verify
the stability of the CL control system utilised to stabilise
the pH level in a continuous stirred tank pH neutralisation
reactor.

Example 1. Consider a nonlinear plant (modified
example introduced originally by Tatjewski (2007)),
whose dynamics can be represented by a TS fuzzy system,

R1 : If z1
1 is MF 1

1 then

x(k + 1) = 0.7x(k) + 0.8u(k),
(19)

R2 : If z2
1 is MF 2

1 then

x(k + 1) = 0.3x(k) + 0.2u(k),

and a designed (according to the procedure presented
by Han et al., (2008) and Zubowicz et al. (2010),
multiregional controller, whose parameters of which are
as follows: K1

P = 0.9; K2
P = 2; K1

I = 0.4; K2
I = 1;

K1
AW = 0.3; K2

AW = 0.5; g = 2; cmx = 1.
Solving (15) with the data presented above resulted

in finding the following matrices

P =
[

0.1055 0.0286
0.0286 0.4541

]
,

T =
[

1.108
]

.

On the other hand, solving the LMI problem (16)
with the same data set produced a solution with the
following matrices

P1 =
[

0.1581 0.0490
0.0490 0.7663

]
,

P12 =
[

0.1574 0.0402
0.0402 0.6440

]
,

P2 =
[

0.3646 0.1381
0.1381 0.7121

]
,

T = 1.0e+7
[

1.6737
]

.
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F1(t), C1(t) F2(t), C2(t)

F(t)

pH
control

pH(t)

Volume
control

V(t)

Fig. 1. Continuous stirred tank pH neutralisation reactor.

Clearly, the structure of the Lyapunov function
determined by matrices P1, P12, P2 is less restrictive
than the structure of such a function defined by matrix P.

�

Example 2. Consider a continuous stirred tank pH
neutralisation reactor (see Fig. 1) given by the following
set of nonlinear dynamic equations (following Domański
et al., 1999):

dV η

dt
= F1C1 − (F1 + F2)η, (20)

dV ζ

dt
= F2C2 − (F1 + F2)ζ, (21)

dV

dt
= F1 + F2 − F, (22)

[
H+
]3 + a

[
H+
]2 + b

[
H+
]
+ c = 0, (23)

where
η ∼= [HAC] +

[
AC−] ,

ζ ∼= [Na+
]
,

pH = − log10

[
H+
]
,

a = (Ka + ζ) ,

b = (Ka(ζ − η) − Kw) ,

c = −KaKw, C1 = 0.32 [mol/l]

is the acid concentration in flow F1, C2 = 0.05005
[mol/l] is the acid concentration in flow F2, V ∗ = 1000
[l], Ka = 1.8e−5 and Kw = 1.0e−14 are acid and water
equilibrium constants respectively F1(0) = 81 [l/min],
F2(0) = 512 [l/min].

In this example a discretisation time Ts equal to 0.1 s
was utilised.

The CL matrices are as follows:

A1
CL =

⎡

⎢⎢⎣

1.5447 −0.7755 0.1542 −0.2070
1 0 0 0
0 1 0 0

0.0142 0 0 1

⎤

⎥⎥⎦ ,

A12
CL =

⎡

⎢⎢⎣

0.3878 −0.0098 −0.2418 −3.8835
1.0000 0 0 0

0 1 0 0
0.0074 0 0 1

⎤

⎥⎥⎦ ,

A2
CL =

⎡

⎢⎢⎣

0.7832 0.7559 −0.6378 −7.5600
1 0 0 0
0 1 0 0

0.0007 0 0 1

⎤

⎥⎥⎦ ,

A23
CL =

⎡

⎢⎢⎣

0.0225 0.1832 −0.3054 −3.9195
1 0 0 0
0 1 0 0

0.0095 0 0 1

⎤

⎥⎥⎦ ,

A3
CL =

⎡

⎢⎢⎣

1.2439 −0.3896 0.0270 −0.2790
1 0 0 0
0 1 0 0

0.0183 0 0 1

⎤

⎥⎥⎦ ,

B1
Ψ =

[ −0.2070 0 0 0.0425
]T

,

B12
Ψ =

[ −3.8835 0 0 0.0218
]T

,

B2
Ψ =

[ −7.5600 0 0 0.0011
]T

,

B23
Ψ =

[ −3.9195 0 0 0.0417
]T

,

B3
Ψ =

[ −0.2790 0 0 0.0823
]T

,

K1 =
[

0.2222 0 0 1
]
,

K12 =
[

0.1167 0 0 1
]
,

K2 =
[

0.0111 0 0 1
]
,

K23 =
[

0.1472 0 0 1
]
,

K3 =
[

0.2833 0 0 1
]
,

Verifying system stability by solving the LMI
conditions of Theorem 1 in the search of a CQLF for a
CL system yields

P =

⎡

⎢⎢⎣

0.1032 0 0 0.0001
0 0.7016 0 0
0 0 0.7016 0

0.0001 0 0 0.7016

⎤

⎥⎥⎦ ,

T =
[

22.8412
]
.

Solving the LMI conditions of Theorem 2 gives

P1 =

⎡

⎢⎢⎣

0.6631 0 0 0.0054
0 1.4878 0 0
0 0 1.4878 0

0.0054 0 0 1.4877

⎤

⎥⎥⎦ ,
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P12 =

⎡

⎢⎢⎣

0.1857 0 0 0.0002
0 1.2609 0 0
0 0 1.2609 0

0.0002 0 0 1.2608

⎤

⎥⎥⎦ ,

P2 =

⎡

⎢⎢⎣

0.1857 0 0 0.0002
0 1.2609 0 0
0 0 1.2609 0

0.0002 0 0 1.2608

⎤

⎥⎥⎦ ,

P23 =

⎡

⎢⎢⎣

0.1857 0 0 0.0002
0 1.2609 0 0
0 0 1.2609 0

0.0002 0 0 1.2608

⎤

⎥⎥⎦ ,

P3 =

⎡

⎢⎢⎣

0.6525 0 0 0.0104
0 1.4878 0 0
0 0 1.4878 0

0.0104 0 0 1.4876

⎤

⎥⎥⎦ ,

T =
[

41.4704
]
.

Similarly as in Example 1, the approach utilising
FLF (see Theorem 2) generates less restrictive solutions.
This results in extra freedom during controller design
(choosing controller gains). �

To sum up, notice that in both examples the
two derived theorems were successfully applied to
verify the stability of the CL systems. However, the
approach resulting from Theorem 2 was identified as less
conservative as it gives an extra degree of freedom (see
Remark 1).

A standard MathWorks MATLAB LMI toolbox was
applied to find solutions to LMI feasibility problems
introduced in both presented examples.

5. Conclusions

The work presented in this paper addressed the stability
verification problem of closed loop control systems
comprising of Takagi–Sugeno multiregional dynamic
output controllers with static antiwindup filters. Sufficient
stability conditions were derived based on the common
quadratic Lyapunov function and a fuzzy Lyapunov
function, respectively, in the form of an LMI feasibility
test. The main result of the paper was supported by
two numerical examples, one of which was stability
verification of the closed loop control system utilised for
pH neutralisation in a continuous stirred tank reactor. The
undergoing research is on deriving LMI conditions which
will quantify controller robustness assured by robustness
of regional PI controllers.
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Appendix A

Proof of Theorem 1

Consider the discrete-time CQLF candidate

V (ξ(k)) = ξT (k)Pξ(k), (A1)

where ξ(k) is the trajectory of the CL system. The
function V (ξ(k)) is considered to be positive-definite in
D \ 0 and P = PT > 0, P ∈ R

(n+nu)×(n+nu).
The difference along the trajectory of the system is

given by

ΔV (ξ(k)) = V (ξ(k + 1)) − V (ξ(k))

= ξT (k + 1)Pξ(k + 1) − ξT (k)Pξ(k).
(A2)

By inserting (14) into (A2), we obtain

ΔV (ξ(k))

=
K∑

l=1

hl
[
ξT (k)

(
(Al

CL)T PAl
CL − P

)
ξ(k)

]

−
K∑

l=1

hl
[
2ξT (k)

(
(Al

CL)T PBl
Ψ

)
Ψ(ξ(k))

]
(A3)

+
K∑

l=1

hl
[
ΨT (ξ(k))

(
(Bl

Ψ)T PBl
Ψ

)
Ψ(ξ(k))

]
.

Applying the sector condition (Khalil, 1996),

ΨT (ξ(k))T

[
Ψ(ξ(k)) −

K∑

l=1

hl
[
Klξ(k)

]
]

, (A4)

with a diagonal matrix T > 0, T ∈ R
(nu)×(nu), into the

right hand side of the inequality (A3), and knowing that
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0 ≤∑K
l=1 hl ≤ 1, yields the upper bound,

ΔV (ξ(k))

≤ ξT (k)
(
(Al

CL)T PAl
CL − P

)
ξ(k)

− 2ξT (k)
(
(Al

CL)T PBl
Ψ − (Kl)T T

)
Ψ(ξ(k))

(A5)

+ ΨT (ξ(k))
(
(Bl

Ψ)T PBl
Ψ − 2T

)
Ψ(ξ(k)),

or

ΔV (ξ(k))

≤ − [ξT (k) Ψ(ξ(k))
]

×
[

P − (Al
CL)T PAl

CL (Kl)T T − (Al
CL)T PBl

Ψ

∗ 2T− (Bl
Ψ)T PBl

Ψ

]

×
[

ξT (k)
Ψ(ξ(k))

]
. (A6)

From (A6) it is straightforward that the candidate
function (A1) is a global CQLF for the system (14) if the
matrix in the quadratic form of (A6) is positive-definite
with diagonal matrix T > 0 and matrix P = PT > 0. It is
also straightforward that by applying Schur‘s compliment
to (15) and pre-and post-multiplying it by [ P 0

0 T ] with
X = P−1 and Y = T−1 one obtains an expression
equivalent to the matrix present in the quadratic form
(A6), which concludes the proof.

Appendix B

Proof of Theorem 2

Consider the discrete-time FLF candidate

V (ξ(k)) = ξT (k)P (z(k)) ξ(k), (B1)

where

P (z(k)) =
K∑

l=1

hl (z(k))Pl,

Pl = (Pl)T > 0,

Pl ∈ R
(n+nu)×(n+nu), for z(k) ∈ R

v.
The difference along the trajectory of the system is

given by

ΔV (ξ(k))

= ξT (k + 1)

(
K∑

ρ=1

hρ (z(k + 1))Pρ

)
ξ(k + 1)

− ξT (k)

(
K∑

l=1

hl (z(k))Pl

)
ξ(k). (B2)

By inserting (14) into (B2) one gets

ΔV (ξ(k))

=
K∑

l=1

K∑

ρ=1

K∑

m=1

hlhρ
+hm

× [Al
CLξ(k) − Bl

ΨΨ (ξ(k))
]T

Pρ (B3)

×
[
Am

CLξ(k) − Bm
ΨΨ

(
K∑

m=1

hmKmξ(k)

)]

−
K∑

l=1

K∑

ρ=1

K∑

m=1

hlhρ
+hm

{
ξT (k)Plξ(k)

}
, (B4)

where l, ρ, m = 1, K, hρ
+ ≡ hρ (z(k + 1)).

Knowing that

P(z(k)) =
K∑

l=1

K∑

ρ=1

K∑

m=1

hlhρ
+hmPl, (B5)

the expression (B3) can be rewritten as

ΔV (ξ(k))

= ξT (k)
K∑

l=1

K∑

ρ=1

K∑

m=1

hlhρ
+hm

× [(Al
CL)T PρAm

CL − Pl
]
ξ(k)

− ξT (k)
K∑

l=1

K∑

ρ=1

K∑

m=1

hlhρ
+hm

× [(Al
CL)T PρBm

Ψ

]
Ψ

(
K∑

m=1

hmKmξ(k)

)
(B6)

−
K∑

l=1

K∑

ρ=1

K∑

m=1

hlhρ
+hm

× ΨT (ξ(k))
[
(Bl

Ψ)T PρAm
CL

]
ξ(k)

+
K∑

l=1

K∑

ρ=1

K∑

m=1

hlhρ
+hm

× ΨT (ξ(k))
[
(Bl

Ψ)T PρBm
Ψ

]
Ψ

(
K∑

m=1

hmKmξ(k)

)
.

Since

Θ1 =
K∑

m=1

K∑

m=1

hlhm
[
(Al

CL)T PρAm
CL − Pl

]

=
K∑

l=1

(
hl
)2 [

(Al
CL)T PρAl

CL − Pl
]

(B7)
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+
K∑

l=1

K∑

m=1

hlhm
[
(Al

CL)T PρAm
CL − Pl

]

+
K∑

l=1

K∑

m=1

hlhm
[
(Am

CL)T PρAl
CL − Pm

]
, (B8)

it follows that

Θ1 ≤
K∑

l=1

(
hl
)2 [

(Al
CL)T PρAl

CL − Pl
]

+
K∑

l=1

K∑

m=1

hlhl
[
(Al

CL)T PρAl
CL − Pl

]

+
K∑

l=1

K∑

m=1

hlhm
[
(Am

CL)T PρAm
CL − Pm

]

=
K∑

l=1

hl
[
(Al

CL)T PρAl
CL − Pl

]
= Θ̃1. (B9)

Other parts of the expression (B6) can be bounded
similarly,

Θ2 ≤
K∑

l=1

hl
[
(Al

CL)T PρBl
Ψ

]
Ψ(ξ(k)) = Θ̃2, (B10)

Θ3 ≤
K∑

l=1

hlΨT (ξ(k))
[
(Bl

Ψ)T PρAl
CL

]
= Θ̃3, (B11)

Θ4 ≤
K∑

l=1

hlΨT (ξ(k))
[
(Bl

Ψ)T PρBl
Ψ

]
Ψ(ξ(k))

= Θ̃4. (B12)

As in the work of Wang et al. (2004), by utilising
(B9)–(B12), the following upper bound on the difference
of the FLF candidate can be obtained:

ΔV (ξ(k)) ≤ ξT (k)
K∑

ρ=1

hρ
+Θ̃1ξ(k) − ξT (k)

K∑

ρ=1

hρ
+Θ̃2

−
K∑

ρ=1

hρ
+Θ̃3ξ(k) +

K∑

l=1

hlΘ̃4. (B13)

The rest follows analogously to the proof of Theorem 1.
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