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The distribution of perturbations of pressure and velocity in a rectangular resonator is considered.
A resonator contains a gas where thermodynamic processes take place, such as exothermic chemical
reaction or excitation of vibrational degrees of a molecule’s freedom. These processes make the gas
acoustically active under some conditions. We conclude that the incident and reflected compounds of
a sound beam do not interact in the leading order in the case of the periodic sound with zero mean pressure
including waveforms with discontinuities. The acoustic field before and after forming of discontinuities is
described. The acoustic heating or cooling in a resonator is discussed.
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1. Introduction

The boundaries of a vessel over which sound
spreads have a significant impact on the distribution
of acoustic perturbations in the volume of the vessel.
In contrast to a free space, the presence of boundaries
determines the discrete spectrum of wave numbers of
perturbations and may result in the standing waves
in the volume of the resonator. The physically valid
conditions on the boundaries of the resonator deter-
mine the magnitude and phase of the reflected waves.
In general, intersecting nonlinear waves do interact.
Many studies are devoted to wave fields in resonators
of different shapes, first of all, those filled with the
Newtonian fluids (Chester, 1964; Mortell et al.,
2009; Biwa, Yazaki, 2010; Keller, 1977). Kaner,
Rudenko, Khokhlov (1977) introduced an analyt-
ical method which applies different scales in descrip-
tion of the temporal evolution of standing waves in
one-dimensional resonators. This method was success-
fully applied in studies of quasi-planar, weakly nonlin-
ear, and weakly damping sound in non-dispersive flows
(Rudenko, Soluyan, 2005). It imposes a slow depen-
dence of the shape of progressive waves and their fast
dependence on the retarded time. In connection to this
waveforms before and after forming of discontinuities
may be considered individually. In this way, it becomes

possible to simplify wave equations in many cases. As
for the perturbations in a one-dimensional resonator,
the method makes it possible to subdivide the wave
field into a sum of non-interacting planar waves which
travel in opposite directions and to consider them in-
dividually. The total field represents a superposition
of these planar waves. This is conditioned by their pe-
riodicity and zero mean pressure (Ochmann, 1985).
Shock waves in the resonators filled with Newtonian
fluids have been considered in Biwa, Yazaki (2010)
and Keller (1977).
In the last decades, the interest to the non-

Newtonian fluids and media with irreversible ther-
modynamic processes constantly grows (Chu, 1970;
Parker, 1972; Makaryan, Molevich, 2007). The
non-equilibrium molecular physics began to develop
quickly due to the laser revolution in physics and chem-
istry (Osipov, Uvarov, 1992; Clarke, McChes-
ney, 1976). Since that, the attention is concentrated
on media which may reveal anomalous dispersion and
attenuation (Bauer, Bass, 1973; Molevich, 2001).
Under some conditions, the bulk viscosity of a fluid
takes negative values and sound increases its magni-
tude in the course of propagation. As far as the au-
thor knows, a weakly nonlinear propagation of sound
in a resonator which is filled with a relaxing gas, where
relaxation may be irreversible, is a new subject of stud-
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ies. As well as in the case of resonators containing
a Newtonian fluid, the planar waves, both incident and
reflected, do not interact in the leading order in the
volume of a resonator, if they are periodic and zero
on average (Sec. 3). The standing acoustic waves in
a rectangular resonator are considered before and after
formation of discontinuities for two examples of ther-
modynamic relaxation in gases. The generic parameter
which describes thermodynamic processes in a gas, B,
is positive in an acoustically active gas and negative
otherwise. The Newtonian attenuation, that is, me-
chanical viscosity of a gas and its thermal conduction,
will be ignored. Shock waves with discontinuities in
the wave profile always appear in a planar wave which
propagates in an unbounded volume of an acoustically
active medium, as well as in a resonator. The sound’s
magnitude increases in the course of sound propaga-
tion in the unbounded medium, but the nonlinear at-
tenuation on the front of the saw-tooth wave leads to
stabilization of the peak magnitude of the shock wave
which tends to some positive value depending on B
as the time increases (Perelomova, 2012). The total
field in a resonator represents a sum of incident and
reflected waves, which at first stage do not contain dis-
continuities. However, they necessarily appear as, the
time increases; the time of formation is conditioned
by B, the Mach number and parameter of nonlinear-
ity of a gas. In the equilibrium regime with normal
dispersion and attenuation, the magnitude of acoustic
field in a resonator gets smaller, and discontinuity may
not form at all (Perelomova, 2012). The non-linear
generation of non-acoustic modes, such as the entropy
and vorticity modes, is anomalous in the acoustically
active gases. In a resonator, these effects accumulate
over time. In particular, cooling of a medium takes
place instead of heating (Sec. 4).

2. Examples: gases with excited vibrational

degrees of molecule’s freedom and gases

with chemical reactions

The first example relates to a gas whose steady
state is maintained by pumping energy into the vi-
brational degrees of molecule’s freedom (Osipov,
Uvarov, 1992; Clarke, McChesney, 1976). The
quantity

B = − (γ − 1)2T0
2c3

(
Cv

τR
+
ε− εeq
τ2R

dτ
dT

)
(1)

is positive in the acoustically active gas and nega-
tive otherwise. It is evaluated at unperturbed pres-
sure and temperature of a gas, p0, T0, where γ is the
specific heats ratio for an ideal gas, c is the equilib-
rium speed of the sound of an infinitely small magni-
tude, Cv = dεeq/ dT is the equilibrium specific heat
at a constant volume (εeq is the equilibrium value of

the vibrational energy, ε), and τR denotes the vibra-
tional relaxation time. The relaxation time in the most
important cases may be thought of as a function ex-
clusively of the temperature (Osipov, Uvarov, 1992;
Zeldovich, Raizer, 1966). The non-equilibrium ex-
citation is possible in principle due to the negative
dτR/ dT . B in Eq. (1) is the decrement (or incre-
ment, if positive) of acoustic magnitudes in the high-
frequency oscillations, when ωτR ≫ 1, where ω de-
notes the characteristic frequency of the sound. In
the low-frequency regime, the attenuation (or enhance-
ment) of the sound is insignificant (Perelomova,
2010).
In the case of gases in which exothermic chemi-

cal reaction occurs (Bauer, Bass, 1973; Molevich,
2001),

B =
Q0(γ − 1)(Qρ + (γ − 1)QT )

2c2m
(2)

is the quantity evaluated at unperturbed p0, T0, Y0,
where Y denotes the mass fraction of a reagent A∗ in
A∗ → B∗ exothermic reactions; Q is the heat produced
in a medium per one molecule due to a chemical reac-
tion, Q0 = Q(T0, ρ0, Y0), andm is the molecule’s mass.
The dimensionless quantities QT , Qρ are determined
by means of partial derivatives of the heat produced
due to a chemical reaction with respect to the temper-
ature and density of the mixture, respectively:

QT =
T0
Q0

(
∂Q

∂T

)

T0,ρ0,Y0

,

Qρ =
ρ0
Q0

(
∂Q

∂ρ

)

T0,ρ0,Y0

.

(3)

The characteristic time of chemical reaction is

τc =
HmY0
Q0QY

, (4)

where H is the reaction enthalpy per unit mass of
reagent A∗, QY = Y0

Q0

(
∂Q
∂Y

)
T0,ρ0,Y0

. B given by Eq. (2)

is the decrement (or increment, if positive) of acoustic
magnitudes if ωτc ≫ 1. In the low-frequency regime,
as well as in the case of vibrationally excited gases, the
attenuation (or enhancement) of the sound is insignif-
icant. At low frequencies, a gas has sufficient time to
relax over the sound period and behaves like a New-
tonian fluid. This applies to both considered cases of
relaxation.

3. Wave perturbations in a waveguide

An equation which describes dynamics of the po-
tential of velocity (ϕ: ∇ϕ = v) in gases with type
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of relaxation described in the previous section, in the
leading order is

∂2ϕ

∂t2
− c2∆ϕ− 2cB

∂ϕ

∂t
= −2∇ϕ

(
∇∂ϕ

∂t

)

−(γ − 1)∆ϕ
∂ϕ

∂t
. (5)

This wave equation includes the term responsible for
dispersion (it is proportional to B) and differs from the
well-known equation describing lossless flows. Even in
the case of a lossless perfect gas, no analytical solutions
are available for the unsteady flow apart from those
for planar waves (Hamilton, Morfey, 1998). We will
consider the velocity potential in a resonator consisting
of four parts specifying periodic planar waves:

ϕ1(τ1, ϑ = µt), ϕ2(τ2, ϑ),

ϕ3(τ3, ϑ), ϕ4(τ4, ϑ),
(6)

where µ is a generic small parameter that character-
izes slow variations in the waveforms due to nonlinear-
ity and relaxation, kx, ky are components of the wave

vector, and ω = c
√
k2x + k2y, and

τ1 = t− kx
ω
x+

ky
ω
y, τ2 = t− kx

ω
x− ky

ω
y,

τ3 = t+
kx
ω
x+

ky
ω
y, τ4 = t+

kx
ω
x− ky

ω
y.

Our primary objective is to derive model equations
valid at order µ2 for sound perturbations in a res-
onator. Equation (5) with account for (6) may be
rewritten in the leading order as follows:

2µ

4∑

i=1

∂2ϕi

∂τi∂ϑ
− 2cB

4∑

i=1

∂ϕi

∂τi
= −γ − 1

c2

(
4∑

i=1

∂2ϕi

∂τ2i

)

·
(

4∑

i=1

∂ϕi

∂τi

)
− 2

(
4∑

i=1

∂ϕi

∂τi

∂2ϕi

∂τ2i

+

4∑

i,j=1,i6=j

αi,jk
2
x + βi,jk

2
y

ω2

∂ϕi

∂τi

∂2ϕj

∂τ2j


, (7)

where α1,2 = −β1,2 = 1, α1,3 = −β1,3 = −1, α1,4 =
β1,4 = −1, α2,3 = β2,3 = −1, α2,4 = −β2,4 = −1,
α3,4 = −β3,4 = −1. Averaging all terms over periods
in τ2, τ3, and τ4 (the first equation in the set which
follows) and so on, and returning to the variable t, we
readily subdivide Eq. (7) into four equations governing
ϕ1(τ1, t), ϕ2(τ2, t), ϕ3(τ3, t), and ϕ4(τ4, t):

∂2ϕi

∂τi∂t
− cB

∂ϕi

∂τi
= −γ + 1

2c2
∂ϕi

∂τi

∂2ϕi

∂τ2i
,

(i = 1, . . . 4).

(8)

Equations (8) are readily integrated:

∂ϕi

∂t
− cBϕi = −γ + 1

4c2

(
∂ϕi

∂τi

)2

, (i = 1, . . . 4). (9)

Equations (8), (9) are valid if ϕi are periodic func-
tions of τi. In this case, the four wave constituents
do not interact in the volume of the resonator in

the leading order. Since ux =
4∑

i=1

ux,i =
4∑

i=1

∂ϕi

∂x =

kx

ω

(
−∂ϕ1

∂τ1
− ∂ϕ2

∂τ2
+ ∂ϕ3

∂τ3
+ ∂ϕ4

∂τ4

)
and uy =

4∑
i=1

uy,i =

4∑
i=1

∂ϕi

∂y =
ky

ω

(
∂ϕ1

∂τ1
− ∂ϕ2

∂τ2
+ ∂ϕ3

∂τ3
− ∂ϕ4

∂τ4

)
, the averaged

over periods components of velocity are equal to zero
for each of the four components of the field. The com-
ponents of the individual velocities are described by
the equations which follow from Eqs. (8):

∂ux,i
∂t

− cBux,i = χi
γ + 1

2c2
ω

kx
ux,i

∂ux,i
∂τi

,

∂uy,i
∂t

− cBuy,i = δi
γ + 1

2c2
ω

ky
uy,i

∂uy,i
∂τi

,

(10)

χ1 = χ2 = 1 = −χ3 = −χ4 = 1, δ1 = δ3 = −δ2 =
−δ4 = −1. The equations which describe acoustic pres-
sures belonging to each wave are

∂pi
∂t

− cBpi =
γ + 1

2c2ρ0
pi
∂pi
∂τi

, (i = 1, . . . 4), (11)

since the total acoustic pressure p′ ≈ −ρ0
4∑

i=1

(
∂ϕi

∂τi

)
.

Equations (10), (11) relate to the waveforms without
discontinuities and to the waveforms with discontinu-
ities. The mean values of all components of velocity
perturbations and acoustic pressure are zero in sym-
metric acoustic pulses. In the new dimensionless vari-
ables

τ = ωt, ηi = ωτi,

i = 1, . . . 4, X =
ωx

c
,

Y =
ωy

c
, Kx =

ckx
ω
,

Ky =
cky
ω
, b =

cB

ω
,

U =
u exp(−bτ)

Mc
, P =

p′ exp(−bτ)
Mc2ρ0

,

θ = exp(bτ)− 1,

(12)

whereM is the Mach number, Eqs. (10), (11) take the
forms (i = 1, . . . 4)

∂Ux,i

∂θ
− χiG

Kx
Ux,i

∂Ux,i

∂ηi
= 0,

∂Uy,i

∂θ
− δiG

Ky
Uy,i

∂Uy,i

∂ηi
= 0,

∂Pi

∂θ
−GPi

∂Pi

∂ηi
= 0,

(13)
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where G = (γ+1)M
2b is a non-dimensional quantity. The

dimensionless wave numbers Kx, Ky are real and pos-
itive, their ratio determines the angle between a beam
and the boundaries of a resonator, and K2

x +K2
y = 1.

The solutions of (13) before formation of discontinu-
ities are as follows (Rudenko, Soluyan, 2005):

Ux =

4∑

i=1

Ux,i = 2

∞∑

n=1

Jn(nσx)
4∑

i=1

χi sin(nηi)

nσx
,

Uy =

4∑

i=1

Uy,i = 2

∞∑

n=1

Jn(nσy)
4∑

i=1

δi sin(nηi)

nσy
,

P =
4∑

i=1

Pi = 2
∞∑

n=1

Jn(nσ)
4∑

i=1

sin(nηi)

nσ
,

(14)

where

σx =
Gθ

Kx
, σy =

Gθ

Ky
, σ = Gθ. (15)

The boundary conditions for an impenetrable flow at
the boundaries of a resonator x = 0, x = Lx, y = 0
and y = Ly are given by equalities

Ux(X = 0, Y, t) = Uy

(
X =

2nxπ

Kx
, Y, t

)
= 0,

Uy(X,Y = 0, t) = Uy

(
X,Y =

2nyπ

Ky
, t

)
= 0.

(16)

The length and width of a rectangular resonator
equal integer number of longitudinal or transversal
wavelengths, Lx = nxλx, Ly = nyλy, that in fact
determines the spectrum of longitudinal and vertical
components of wave numbers. An acoustic pressure
and vertical velocity in a rectangular resonator before
formation of a discontinuity in an acoustically active

Fig. 1. Dimensionless acoustic pressure p′/(Mc2ρ0) in a resonator at different dimensionless times before
formation of discontinuity. For M = 0.01, b = 0.01, γ = 1.4, the dimensionless time of discontinuity

formation Tsaw equals 61.

gas with B > 0 are shown in Figs. 1 and 2. In eval-
uations in accordance with (14), only ten first terms
were taken into account. Numerical evaluations under-
taken by the author reveal practically indistinguish-
able results starting from the first five terms in the
series. The series is quickly convergent. The dimen-
sionless time of shock formation Tsaw for the profile of
the vertical velocity is 1

b ln
(
1 +

Ky

G

)
, the one for the

horizontal velocity is 1
b ln

(
1 + Kx

G

)
, and the one for

acoustic pressure equals 1
b ln

(
1 + 1

G

)
.

For dimensionless times σy larger than π/2, the
dimensionless velocities Uy,i (i = 1, . . . 4) take the
form of the saw-tooth shapes consisting of straight-line
parts,

Uy,i = − δiτi
1 +Gθ/Ky

if − π ≤ τi < π. (17)

Individual dimensionless acoustic pressures Pi (i =
1, . . . 4) also take the saw-tooth form, if σ > π/2:

Pi = − τi
1 +Gθ

if − π ≤ τi < π. (18)

The peak magnitude p′i does not tend to zero when
time increases in an acoustically active gas. The non-
linear attenuation at the front of a saw-tooth wave is
suppressed by enlargement of the sound intensity. The
limit value of dimensionless peak magnitude of every
part of the vertical velocity uy,i is

2πKybc
γ+1 , and that of

the acoustic pressure is 2πbcρ2
0

γ+1 , when θ → ∞. In the
equilibrium regime, normal dispersion and attenuation
support nonlinear attenuation, and peak values quickly
tend to zero. In this case, discontinuity in the profile of
the vertical velocity does not form for a large enough
attenuation, that is, for Ky

G ≤ −1.
The peak dimensionless magnitude of the vertical

velocity at the same times as in the Fig. 3, for
b = −0.01 and Ky = 0.2, equals 0.2 at τ = 2Tsaw and
0.002 at τ = 20Tsaw, respectively. Tsaw is evaluated
at b = 0.01. For b = −0.01 and Ky = 0.8, disconti-
nuity does not form at all. Figure 4 shows the dis-
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Fig. 2. Dimensionless vertical velocity uy/(Mc) in a resonator at different dimensionless times and for
different dimensionless values of Ky before formation of discontinuity. For M = 0.01, b = 0.01, γ = 1.4,
the dimensionless time of discontinuity formation Tsaw equals 15 if Ky = 0.2 and 51 if Ky = 0.8.

Fig. 3. Dimensionless vertical velocity uy/(Mc) in a resonator at different dimensionless times and for
different dimensionless Ky in a saw-tooth wave. For M = 0.01, b = 0.01, γ = 1.4, the dimensionless time

of saw-tooth shape formation Tsaw equals 23 if Ky = 0.2 and 72 if Ky = 0.8.
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Fig. 4. Dimensionless acoustic pressure p′/(Mc2ρ0) in a resonator at different dimensionless times in
a saw-tooth wave. For M = 0.01, b = 0.01, γ = 1.4, the dimensionless time of the saw-tooth shape

formation Tsaw equals 84.

tribution of dimensionless acoustic pressure in a vol-
ume of a resonator at different dimensionless times.
The dimensionless time of discontinuity formation in
a pressure standing wave, Tsaw, equals 84. The mag-
nitude of dimensionless acoustic pressure achieves 0.1
for b = −0.01 and τ = 2Tsaw and 2 ·10−8 for b = −0.01
and τ = 20Tsaw, respectively.

4. Acoustic heating

An excess temperature Tent which specifies the
non-wave entropy mode in the field of acoustic pla-
nar waves which do not interact, is governed by the
leading-order equation (Perelomova, 2012)

1

T0

∂Tent
∂τ

= −bM2 exp(2bτ)(γ − 1)

4∑

i=1

P 2
i , (19)

in the case of vibrationally excited gases, and

1

T0

∂Tent
∂τ

= −bM2 exp(2bτ)
(γ − 1)(γ + 2)

γ

4∑

i=1

P 2
i (20)

in the case of chemically reacting gases (Perelomova,
Pelc-Garska, 2014; 2011), where the top line de-
notes the average over the sound period, and T0 is an
unperturbed temperature of a gas. Before the forma-
tion of discontinuity, the rate of heat release varies as
b exp(−2bτ), since the averaged squared dimensionless
pressure P 2

i equals P
2
i = −∂Pi

∂τi

∫
Pi dτi = 0.5. It de-

pends on the sign of b: the temperature of the medium
increases if b < 0 and decreases otherwise. In the case
of the saw-tooth wave, P 2

i = π2

3(1+G(exp(bτ)−1))2 , and
the acoustic heating is described by equation

1

T0

∂Tent
∂τ

= −4M2π2(γ−1)
b exp(2bτ)

3(1+G(exp(bτ)−1)2)
(21)

in the chemically reacting gases, and by equation

1

T0

∂Tent
∂τ

= − 4M2π2 (γ − 1)(γ + 2)

3γ

· b exp(2bτ)

(1 +G(exp(bτ)− 1)2)
(22)

in the gases with excited internal degrees of a molecule
freedom. In the non-equilibrium regime, enlargement
in the sound magnitude is followed by cooling of a
medium. The sound wave “takes energy” from the
background making it cooler.

5. Concluding remarks

The peculiarities of a periodic acoustic field in
a rectangular resonator filled with some relaxing
medium, which may be acoustically active, are studied.
If the mean value of acoustic pressure in the incident
and reflected waves is zero, they do not interact in
the leading order in a volume of the resonator. That
allows to consider the incident and reflected waves
individually. In the equilibrium regime, discontinuity
may not form at all for large enough attenuations con-
nected with relaxation in a gas. If the saw-tooth wave
forms, the peak acoustic pressure rapidly decreases to-
wards zero. Vice versa, an anomalous increase in the
sound amplitude, along with the nonlinear attenua-
tion, result in the settling of the peak magnitude in
the shock wave in a non-equilibrium gas. The con-
clusions concern propagation of the planar wave in a
free space, in waveguides (Perelomova, 2012) and
resonators. In the two last cases, the discrete set of
wave numbers is determined by the boundary con-
ditions. There appear the additional travelling nodal
points in the velocity profile of standing waves in a
flat resonator (one travelling point between two static
ones). There are no additional nodal points in the pro-
file of the acoustic pressure, but their coordinates vary
with time periodically. That has been discovered with
respect to gases with irreversible chemical reactions
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in (Perelomova, Pelc-Garska, 2014). The conclu-
sions are valid also in a rectangular resonator. In con-
trast, the nodal points in the standing waves in New-
tonian fluids are static.
The slowly developing in time modes which are

induced in the sound field in the non-equilibrium
gases, also behave atypically. The anomalous cooling
of a medium and streaming (with streamlines inverted
as compared with direction of streamlines in a Newto-
nian fluid) has been recently considered in reference to
aperiodic and periodic in time sound beams, including
beams with discontinuities in unbounded volumes of
acoustically active gases (Molevich, 2001; Perelo-
mova, Pelc-Garska, 2011;Perelomova, 2012). An
increase (or decrease) in the temperature of a gas does
not disturb the boundary conditions in resonators (16),
since the velocity associated with the entropy mode, is
zero in the leading order. The squared sound veloc-
ity c2 is proportional to the mean temperature, which
makes the set of longitudinal and transversal wave
numbers vary in the course of time in order to hold
the sound frequency constant. Hence, they enlarge in
the acoustically active gas (and get smaller otherwise)
proportionally to the square root of the initial sound
intensity and B. The effects connected with the first
and second viscosities and thermal conduction, are not
considered in this study. They may be readily included.
Newtonian attenuation alone makes the peak pressure
in the saw-tooth waves in the non-equilibrium regime
to decrease; at large times, it tends to zero. Account
for Newtonian attenuation may prevent formation of
discontinuity in the acoustically active gas.
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