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Static electric multipole susceptibilities of the relativistic hydrogenlike atom in the ground state:
Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
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The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite 2% polarity,
is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized
Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 825 (1997); erratum 30,
2747 (1997)] is used to derive closed-form analytical expressions for various far-field and near-nucleus static
electric multipole susceptibilities of the atom. The far-field multipole susceptibilities—the polarizabilities ¢ , the
electric-to-magnetic cross susceptibilities agr M1y, and the electric-to-toroidal-magnetic cross susceptibilities
agr1.—are found to be expressible in terms of one or two nonterminating generalized hypergeometric functions
3 F, with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities—the electric
nuclear shielding constants og; gz, the near-nucleus electric-to-magnetic cross susceptibilities ogz— mz51), and
the near-nucleus electric-to-toroidal-magnetic cross susceptibilities og;_,t,—involve one or two terminating
3 F>(1) series and for each L may be rewritten in terms of elementary functions. Numerical values of the far-field
dipole, quadrupole, octupole, and hexadecapole susceptibilities are provided for selected hydrogenic ions. The
effect of a declared uncertainty in the CODATA 2014 recommended value of the fine-structure constant o on
the accuracy of numerical results is investigated. Analytical quasirelativistic approximations, valid to the second
order in «Z, where Z is the nuclear charge number, are also derived for all types of the far-field and near-nucleus

susceptibilities considered in the paper.

DOI: 10.1103/PhysRevA.93.062502

I. INTRODUCTION

Relativistic studies on static multipole polarizabilities
of a one-electron atom in its ground state, based on the
formalism of the Dirac equation, may be traced back to
the early 1970s, when Zon et al. [1] presented a closed-
form analytical expression for the dipole polarizability o
of such a system. The formula given in Ref. [1] involved a
particular generalized hypergeometric function 3 > with the
unit argument. In the following decades, several equivalent
expressions for oy were derived, with the use of various
alternative analytical techniques, by Labzowsky [2,3], Shes-
takov and Khristenko [4], Labzowsky et al. [5], Le Anh Thu
et al. [6], Szmytkowski [7], Yakhontov [8], and Szmytkowski
and Mielewczyk [9]. Quasirelativistic approximations to «;,
correct to the second order in o Z, where « is the fine-structure
constant and Z is the nuclear charge number, were provided
by Bartlett and Power [10], Rutkowski and Schwarz [11], and
Turski and Sadlej [12] (in this connection, see also the work
of Baluja [13]).

In 1974, Manakov et al. published a paper [14] (cf. also
the review [15] and the monograph [16]) in which they
provided an exact analytical formula for a general static
multipole polarizability o ; the formula involved altogether
eight different 3 /> (1) functions. In the particular case of L = 1,
the result arrived at in that work might be simplified and
the expression from Ref. [1] was recovered. An approximate
quasirelativistic representation for «, given by Kaneko in
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Ref. [17] and by Drachman in an erratum to Ref. [18],
coincided with the corresponding limit deduced in Ref. [14].!

In addition to the analytical works listed above, we have
tracked down four papers in which results of purely numerical
relativistic calculations of the multipole polarizabilities were
reported for selected hydrogenic ions. Goldman [19] carried
out variational calculations of the dipole polarizability «;,
employing the Slater-type functions used as a variational basis
set. Zhang et al. [20] presented results for the quadrupole
polarizability «, computed with the use of the B-spline
Galerkin method. The latter study was pushed further in
Ref. [21], where numerical data for o; with 1 < L < 4 were
provided. Finally, very recently Filippin et al. [22] applied their
Lagrange-mesh method in computations of ¢« , with L in the
same range as mentioned above. The calculations reported in
Refs. [20—-22] used the same value of the fine structure constant
(taken from the CODATA 2010 recommendation). Numerical
data for the four multipole polarizabilities presented by both
groups, although obtained with different methods, appeared to
be in a very good agreement.

The multipole polarizabilities «; are closely related to
the far-field electric multipole moments induced in an atom
by external weak, static, electric multipole fields. However,
a perturbing electric field may also induce in the atom
two kinds of the far-field magnetic multipole moments: the
plain magnetic moments and the toroidal magnetic moments.
Magnitudes of these induced moments may be character-
ized, respectively, by the so-called electric-to-magnetic and

't should be mentioned that a quasirelativistic expression for o
given in Ref. [12] is incorrect and that the criticism of the work [14]
presented in an appendix to Ref. [12] is mostly unjustified.

©2016 American Physical Society
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electric-to-toroidal-magnetic multipole cross susceptibilities.
In Ref. [23], Szmytkowski and Stefariska derived an exact
closed-form analytical expression for the electric-dipole-to-
magnetic-quadrupole cross susceptibility og |, pmp for the Dirac
one-electron atom in the ground state. In turn, analytical
expressions for the atomic ground-state electric-dipole-to-
toroidal-magnetic-dipole cross susceptibility og;_.1; may be
inferred from the papers of Lewis and Blinder [24] and
Mielewczyk and Szmytkowski [25]. Calculations carried out
in Ref. [24] were partly approximate, while those reported in
Ref. [25] were exact at the Dirac-Coulomb level.

The three sets of the electric multipole susceptibilities
mentioned above characterize, through the moments they
are linked to, the first-order field-induced corrections to
electromagnetic scalar and vector potentials generated by the
atom in the region distant from its nucleus. In analogy, one
may consider counterpart susceptibilities related to multipole
moments characterizing the first-order corrections to the scalar
and vector potentials in the close vicinity of the atomic nucleus.
The only fully relativistic research in that direction that we
are aware of was done by Zapryagaev et al. [26] (cf. also
Refs. [15,16]), who studied the electric multipole shielding
constants og;_,g.. From an exact analytical expression they
derived (its explicit, and quite complicated, form was given
only in the chronologically latest Ref. [16, Sec. 4.6]), the
quasirelativistic estimates for the shielding constants with
L =2and L = 3 were deduced [16,26]. Moreover, a quasirel-
ativistic formula for og; g7 applicable for any L was derived,
in an entirely different way, by Kaneko [17].

This brief state-of-the-art overview of research on electric
multipole susceptibilities of the Dirac one-electron atom in the
ground state shows that exact analytical expressions for the far-
and near-field electric-to-magnetic and electric-to-toroidal-
magnetic multipole cross susceptibilities are still missing. We
derive them in the present paper, with the aid of an analytical
technique based on the Sturmian series representation of the
Dirac-Coulomb Green function found by one of us in Ref. [7].
That technique proved its effectiveness in calculations of
various properties of hydrogenic ions carried out by our group
over the past two decades [9,23,25,27-34]. Moreover, in view
of the annoying complexity of the representations for the
multipole polarizabilities and the electric shielding constants
presented in Refs. [14,16], we have decided to reconsider these
two families of atomic susceptibilities, with the goal to arrive
at simpler expressions for them. The attempt has appeared
to be successful, and below we present formulas for «;, and
OEL—EL, €ach one containing only two (as opposed to eight in
Refs. [14,16]) generalized hypergeometric functions 3 F»(1).

The structure of the paper is as follows. Section II provides
some basic notions and facts concerning the ground state of the
Dirac one-electron atom placed in a 2%-pole electric field. In
Secs. III-V, we analyze three kinds of the far-field multipole
moments that characterize charge and current distributions of
the atom in such a field. We show that if the field is weak, it
induces in the atom the electric and toroidal magnetic moments
of rank L only, as well as the plain magnetic moments of
ranks L — 1 and L + 1 (except for the case L = 1, when only
the quadrupole magnetic moment arises). The knowledge of
expressions for the induced moments allows one to deduce
closed-form formulas for related atomic susceptibilities, and
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this is subsequently done in each of these sections. We
provide exact and approximate (quasirelativistic) expressions
for the multipole susceptibilities (the polarizabilities, the
electric-to-magnetic cross susceptibilities and the electric-
to-toroidal-magnetic cross susceptibilities) and also tabulate
their numerical values computed from the exact formulas
for selected values of the nuclear charge Z. The effect of
a declared uncertainty in the CODATA 2014 [35] recom-
mended value of the inverse of the fine-structure constant
on the computed values of the susceptibilities is investigated.
Analogous considerations concerning the near-field moments
and the susceptibilities related to them are carried out in
Secs. VI-VIIIL. The final Sec. IX contains a brief summary
of the most important results derived in the paper, and also
discloses our research plans for the near future. The text is
supplemented by five appendixes. A relationship between a
multipole polarizability and the second-order correction to
energy of the atom in a multipole electric field is revealed
in Appendix A. In Appendix B, we show how the far- and
near-field toroidal magnetic multipole moments arise when
the magnetic vector potential is expanded into multipoles.
In Appendixes C and D, we prove that for each of the two
sets of the toroidal multipole moments that have arisen in
Appendix B there is a one-parameter family of equivalent
integral expressions, which may be used as their definitions;
this gives one the precious freedom to define these moments in
forms most suitable for each particular problem in which they
emerge. Some properties of the generalized hypergeometric
function 3 F» with the unit argument, relevant to the material
presented in Secs. VI-VIII, are discussed in Appendix E.

II. PRELIMINARIES

Consider a Dirac one-eclectron atom with a motionless,
pointlike, and spinless nucleus of charge +Ze. A position
vector of the atomic electron relative to the nucleus will be
hereafter denoted as r. The atom, assumed to be initially in
its ground state of energy E® [cf. Eq. (2.6)], is perturbed
by a static electric 2--pole field £ (Ll)(r) derivable through the

relation S(Ll)(r) = —V(p(Ll)

4
<p2”(r>=—,/ﬁ#cg"~n(n,.> (L>1), @1

where C(Ll) and Y (n,) are spherical tensor operators of rank
L with components C(Ll,f,, and Yy y(n,), respectively. Here
Y, m(n,) is the normalized complex spherical harmonic (in this
work, we adopt the Condon-Shortley phase convention) and
n, is the unit vector along r. The components of cV , which
determine both the strength of the potential and its angular
dependence, are constrained to obey

il = (M, (2.2)

where the asterisk denotes the complex conjugation.” This
ensures that (p(Ll)(r) is real. In terms of components of the two

(r) from the scalar potential

2The reader should observe that for L = 1 the components C\y, of
the tensor (then vector) C(,]) are simply the cyclic components of the
perturbing dipole electric field £ (11).
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tensors, the interaction energy between the atomic electron
and the field reads

L
4 "
v =e,/ T rb > G Yin(m) (L>1). (23)
M=—L

Henceforth, it will be assumed that the electric force
-V VL(l (r) acting on the electron is so weak that the probability
that the field ionizes the atom may be neglected. Within this
approximation, the atomic electron may be considered to be
in a stationary state described by the time-independent Dirac
equation

[—icha -V + Bmgc? — + v ) - E]qf(r) =0,

(47T 60)7‘
2.4)

where a and B are the standard Dirac matrices. Since, by
the above-made assumption, the external electric field is
weak, in what follows the electron-multipole field interaction
term VL(l)(r) is considered as a small perturbation of the
Dirac-Coulomb Hamiltonian. Then, to the first order in that
perturbation, the energy eigenvalue is

E~E® 4+ ED, (2.5)

with the (doubly degenerate) unperturbed ground-state energy
level E© given by

EQ =m,?yi, (2.6)
where
Ye = VK2 —(aZ)? 2.7

(o, not to be confused with the Dirac matrix e or the multipole
polarizability «;, is the Sommerfeld fine-structure constant).
To the same order, the electron wave function is

U(r) ~ vOr) + v, (2.8)
with the unperturbed component given by
VOF) = aipW @) +asipV ). (2.9

The basis states W (r) appearing in Eq. (2.9) are chosen to
be
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1
/ EroPTE)w ) = S (mm = iz)’ 2.12)
R3

so that if the coefficients a/, are subjected to the constraint

laro* + la_ipl® = 1, (2.13)
the function W*(r) is normalized to unity:
/ Pry T EHwOe) = 1. (2.14)
]RS

It follows from the standard Schrodinger-Rayleigh pertur-
bation theory that the so-far-unknown corrections E" and
W (r) [and also the coefficients a | /2 hidden in wO ()] enter
the inhomogeneous Dirac-Coulomb equation

2
[_ich“ VB - e E(O)}‘I’(l)(r)
(Amey)r
= —[v"tr) - EV]wOr), 2.15)

which is to be solved subject to the usual physical regularity
requirements as well as the orthogonality constraints

/ Erv Vv =0 (m = i%) (2.16)
R}

After Eq. (2.15) is projected onto the unperturbed basis states
VO, (m = :l:%), this yields the homogeneous algebraic

system

1/2

Z [VL(%I)nm/ - E(l)(smm’]am’ =0 (m = i%), 2.17)

where
L
4
(D _ (1)
L,mm 2L +1 Z LM
X / PryOT et Y um)vQe).  (2.18)
R3
Denoting

<chm,< }YLMQK/WLK/> = ‘¢\ dznr QImK (nr)YLM(nr)QK’mK/ (nr)
4

1 /POFQ_ (0, 1
\Plg?)(r) =—|. 0( SSEtm(my) m==4-|, (2.10) (2.19)
r\i QV(Qm(n,) 2 ‘
where and exploiting the known identity
y <Q—Km,( Y)\}LQ—K/mKr> = (Qlcm,( YAuQK’mK1>a (220)
Z 1 + Y1 2Zr ! _
POy = |2 TN (220 Zriao (2,11 i
(V) ao F(2)/1 + l)( ap ) € ( a) we obtain
0 zZ l-n (2Zr\" _, Vi = e T[T 4 POOIP + 1000
0% = [— =) e #®, (2.11b) Lomm 2L+1 Jo
aF'Cyi+D\ ao .
while Q,,, (n,) are the spherical spinors [36]. It is easy X Z CP(Q 1 Y Q) (2.21)
to verify that the functions (2.10) are orthonormal in the M=—L
062502-3
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The angular integral in Eq. (2.21) may be evaluated with the
aid of the known formula

4
2L +1

1 1
)m”+1/22F | | L |K|_§
L

{Sum,

Yiu Qk’mkr)

k'] = 3

N Ma,.L.1)., (2.22)
m, —-M —My

where ( ,fl"l n’fb rfh) denotes Wigner’s 3 j coefficient, while
1 forl,+ L + 1. even,
e, L) = (2.23)
0 forl, + L+ odd,
with
Le=c+3[—3 (2.24)
and similarly for /... One finds
1
<Qflm |YLM Qflm’) = \/47 81033108 mm’ - (225)

Since we have excluded the case L =0 from the very
beginning, we have

Vi =0

L,mm

(2.26)

which implies immediately [cf. Eq. (2.17)] that for any L it
holds that
ED =0 (2.27)

and that the coefficients ai;/, are arbitrary save for the
normalization condition (2.13).

With the result (2.27) in mind, the solution to Eq. (2.15)
may be written as

\/7 Z (1)*

X / Er'GOw, rr Yy )w O, (2.28)
R3

() =

where GO(r,r’) is the generalized (or reduced) Dirac-
Coulomb Green function [7, Sec. 6] associated with the ground
state of the atom under investigation.

III. ELECTRIC MULTIPOLE MOMENTS OF THE ATOM
IN THE MULTIPOLE ELECTRIC FIELD AND ATOMIC
MULTIPOLE POLARIZABILITIES

A. Decomposition of the atomic electric multipole moments
into the permanent and the first-order
electric-field-induced components

Being in the state described by the wave function W (r),
the electronic cloud of the atom may be characterized, among
others, by its electric multipole moments Q,, with the spherical
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components®

J 4”fd3 Yump(r),  (3.)
= r (n) o), .
N B

—eUirw(r)
Jge PP VIE)W ()

where

p(r) = (3.2
may be considered as a smeared electronic charge density. In
the case the function W (r) may be approximated as in Eq. (2.8),
after Eqs. (2.9), (2.14), and (2.16) are taken into account, the
density p(r) may be approximately written as

p(r) = p ) + p V), 33)
where
pO(r) = —ev O (r)wO(r) (3.4)
and
o) = —2¢ Re[W T (1) WD (). (3.5)

Accordingly, Eq. (3.3) implies
Qi Q)+ Q5. (3.6)

where

4
<0>
/;fﬂg EryOi eyt Y, )0 ()
and
4
(1) \/;/ rrt Y, (m )Y OT )W)

+ D w Oy (3.8)

are the permanent and the first-order induced electric multipole
moments of the electronic cloud, respectively. Proceeding
along the route that parallels the evaluation of the energy
correction EV, presented in Sec. II, it is easy to show that
the only nonvanishing multipole moment of the atom in the
unperturbed ground state is the monopole one:

Q) = Q81080 QO = (3.9)

Therefore, in what follows we shall be concerned with the
evaluation of the induced moment Q(Allj only.
With the aid of the identity

Vi) = (=YY} _, (n,) (3.10)
and of the result in Eq. (2.28), Q(l) may be written as
ol =)+ g, 3.11)

3The reader should observe that the definition (3.1) of the spherical
components of the electric multipole moments we adopt here differs
from the one we used in Ref. [31] in that in the latter the spherical
harmonic was complex conjugated.

062502-4
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with

Q(l)

hid - ch 3 3
* Ny OF Y (0) Ly Q) 12
V(Z)» +DRL+1) M; A;; d’r /;&3 d’r (MY, )G Oyt Yy )W O, (3.12)

It is possible to separate out radial and angular integrations in Eq. (3.12). To this end, one may exploit the following multipole
expansion of the generalized Green function GO(r,r’):

. 4MO o =2 O )R, (1), (1) =i ()R, (12T, (1)) .
r.,.r E E — . .
rr’ \ . -0 nNQ of / ~(0) Q of /
Kk = —oo me=—|k|+1/2 lg( HK(r,r) —Km,(("r) Kln,((nr) 8- 7)K(r r) —Kmk(nr) —km, (nr)
( #0)

After this expansion is plugged into Eq. (3.12) and use is made of Eq. (2.20), one arrives at

~ 4
<K_¢O>
L k=172 12 12
x Z Yo D ahawCli Qi YauQem, ) Qem, [ Y Qo). (3.14)
=—Lmy=—|«|+1/2m=—1/2m'=—1/2
where R*D(P© 0O pO 0O) s a particular case of a general double radial integral
LiL = = Li a0 L ((Fe(r)
R 2)(Fa7Fb;FCaFd)=/ drf dr'(Fu(r)  Fp(r)r" GOy’ (3.15)
0 0 Fy(r')

(other particular forms of this integral will appear in Secs. IV to VIII), with the matrix
] BT B ()
GOrr) = (3.16)
_(0 ’ () ’
20 ) gl )
being the radial generalized Dirac-Coulomb Green function associated with the ground-state atomic energy level (2.6). The two
angular integrals in Eq. (3.14) may be taken with the help of the general formula (2.22). Once this is done, it is then possible to
carry out summations over the quantum numbers m,, m, and m’. After straightforward, though tedious, calculations, one finds
that the only nonvanishing contributions to QEXIJ come from the terms with x = L and k = —L — 1; one has

A A A
QW QM L+ Qky.,fol’ (3.17)
with

Q) sgn(x)

Q) =) ————— TR REDPO, 00 PO 0Ok + pllar o — la—12)ICH,

+V(L = WL+ p+ Dapat, )00 o+ VL + (L — u+ Dajpa_ipCy) ) (=L, —L—1). (3.18)

(

The asterisks at the components of the tensor C(l) in the above ~ Where
equation have disappeared in virtue of the 1dent1ty (2.2). With W 2| LDy 50 . O Ol
Egs. (3.17) and (3.18) in hand, we return back to Eq. (3.11). Qlux = (47760)— RED (PO 0O pO Of ))C

This eventually yields Q(l) in the form @L+1y2
v At k=L, —L—1). (3.21)
Q(l) Q(I)B AL> (3.19) Equation (3.19) shows that the only electric moment induced
in the atom is that one which is precisely of the same multipole
with character as the perturbing electric field. In other words, one

has
(l) (1) (1)
Qun =%+ <11 (3.20) Q) >~ Q(AO)SM) + QE\I)SM. (3.22)
062502-5
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B. Atomic multipole polarizabilities
The 2%-pole polarizability of the atom in the ground state,
opLEL, 18 defined as a proportionality factor between the
induced electric multipole moment Q(Ll) and the field tensor
C(Ll) appearing in the expression (2.1) for the perturbing 2%-
pole electric potential:*

QY = (meo)ap, £ CY (3.23)

(the SIfactor 47 €; has been separated out in order to secure that
the physical dimension of ag; gy is L?:*!, where L stands
for length). It follows from Eqgs. (3.23) and (3.20)—(3.22) that

J

o0

GO, = Z

0
ny=—00 Mr(u)l( -1

nyk

where

(L+ y0)n ] + 2vln, ! <2Zr>”e_z,,ao[L(2m (zg) o —

§O ) =
noel?) 2Z Ny, (Np,ie = 1T (0| + 270 \ a0

and

(1 = y)(Ine| + 2y)lne ! <2Zr>”62r/ao[L<2yk> (2Zr> K —

T(O) —
ﬂrK(r) \/zan,K(Nn,-K - K)F(|l1r| + 27/’() o

M(O) SO )

L (S
1O 1\ 10
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the polarizability og;— g1, hereafter denoted in the standard
manner as oy, may be written as the sum

ap =0rL+oL 11, (3.24)
with the constituents being given by
2k
= RED (PO 0. pO 0
@Le = op o KPP0 0"
k=L,—L—-1). (3.25)

The remaining task is to evaluate the double radial integral
RED(PO 9O pO 0Oy This will be done below with the
aid of the Sturmian expansion of the radial generalized Dirac-
Coulomb Green function [7]:

TOW)) (k # -1, (3.26)

nekVnyk

Nn_,( 2v) 2Zr
BAEMULRY SO0 3.27
w2y 3.272)

n=1\ T

N 27
2 LQW)(—'")} (3.27b)

[n]—1 In,| + 2y, [ ao

ao

are the radial Dirac-Coulomb Sturmian functions associated with the atomic ground-state energy level (2.6) [here L(*)(p) denotes
the generalized Laguerre polynomial [37]; we define L(_“l) (p) = 0], while

o _ .| + v + Ny,
yi+1

nek

(3.28)

is the pertinent Sturmian eigenvalue. The “apparent principal quantum number” appearing in Egs. (3.27) and (3.28) is defined as

Noe = £/ (ne 1+ 72 + (@22 = £/ |1, 2 + 2{n, |y, + 12,

(3.29)

where the plus sign is to be chosen for n, > 0 and the minus sign for n, < 0; for n, = 0 one should choose the plus signif ¥k < 0

and the minus sign if ¥ > 0, i.e., one has Ny, = —«.

Substitution of the expansion (3.26) into the definition of the double radial integral which appears in Eq. (3.25) yields ar , in

the form

o0

2|«| 1 o
U= s Y —r— - [0 drr* [POr)SO.(r) + V()T (r)]

QL+ 1

F=—00 Mn, i

0

x f dr'r'" [u POCHSO )+ 0V HTO ] (=L, —L —1).

(3.30)

The evident advantage of the use of the Sturmian expansion (3.26) is that in the resulting Eq. (3.30) the integrations over r and
r’ may be carried out separately. On exploiting Egs. (2.11), (3.27), and (3.28), the integral formula [38, Eq. (7.414.11)]

*° 'y +DI'n + o —
/ dpp e L@ (py =~ DU 2 Rey = —1) (3.31)
0 n'F(ot — ]/)
and the identity
ve=v+k -1, (3.32)
#The multipole polarizability az; .z, may be equivalently defined through the formula E? = —1 (47 €p)apr L C" . C", where E® is the

second-order correction to energy. The reader is referred to Appendix A for the justification of this statement.

062502-6
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one finds that

/ oodrrL[P((’)(r)S,(,‘j;(r) + 09T ()]
0

_ _( ay )“‘ VA — ) Pos ) — (e 4 e — Y1 — L — D] Ty 4+ 91 + L + DOl 4 75 — 71 — L — 1)

2z Va0l "N« (Np e — OTCy1 + DU, | + 27, + D T —n — L)
(3.33)
and
/ drrt [ POS ) + 0OMT )]
0
_ _(a_o>”‘ (ke = 1) (No,c = ) P +y+L+ D0 +y—n—L=1)
27 \/2a0|nr|!Nn,K(Nn,-K - K)F(27/1 + l)r(|nr| + 2%( + 1) F(yk — V1 L)

N n.K + 1
W +) = (ns |+ v —yi — L =Dl (3.34)
|nr| + Yie = V1

Once these two equations are plugged into Eq. (3.30), then use is made of Eqs. (3.29) and (3.32) and subsequently the terms in
the summand corresponding to the same absolute value of the summation index n, are collected together, with a good deal of
labor one finds the following infinite-series representation for oy ,:

X{[(NM +x)=yi(n | +ye =y —L—-D]+

2L+1 2 o 2

a kIT*WVe + 1+ L+ 1) rmn,+y.—y—1~L)
P a— S TN Nyt +D+2L+ 113 e 1

2L+ 1PT Q21+ DD, — 1 — L) 2 M+ Ve — 71+ DD, + 20+ 1)

o0 2

2, + v —yi — L

-y (, +ye =y —L) (k=L,—L—1). (3.35)
0 nl(n, + Y — vyl 0y + 2y + 1)

The two series in Eq. (3.35) may be expressed in terms of the generalized hypergeometric function 3 F> of the unit argument.

With the aid of the identity

3 F(n+a)l(n +a)l(n+a3)  T'(a)l(a)l(a3) <6111; azl; @, 1) [Re(b; + by —ari —ay —as) > 0] (336)
1, by

= nlP(n+b)l(n + by) L'(b)I(b2)

one arrives at

ot KIP* (e +n + L+ 1)
TOZ222LQL 4+ 12Ty + DRy + 1)

QL «

>

Yilvite + 1)+ 2(L + 1] Ve —N—Lyvi—vn—-Lyv.—n+1
X 3F2 01

Ye —vit+1 Ye = V1 +2, 2y + 1
K K - L9 K - Lv K
_Yetn ) <V 71 Ye — N1 VZ y1;1>} (C=L.—L_1) (337)
k41 Ve =1+ 1,2y +1
A simplification of the above result may be attained with the help of the relation
P ap, az, az. _ royroe—a —a, +1) _(al—a3—l)(a2—a3—1) ai, a, a3+1.1
2\ G+ 1,0 ) T h—a3— DI — aDT(b — ay) @a+Ob—a—-1 2\ a+2,b
[Re(b —a; — a) > —1], (3.38)

which may be used to eliminate one of the two 3 F>(1)’s in favor of the other. It appears that a bit more compact result is obtained
if the first 3 F>(1) is retained:

B aéLH k|ITQ2y; + 2L +2) {_1 itk + D+ L+ 1Ty + i + L+ 1)
T Z2LA202L( + (2L 4 12T Ry + 1) Ve =71+ DIQyi + 2L+ T2y + 1

K = _L» K = _L, K +1
X 3 F <y " Ve n Yem ;1>} (k=L,—L—1). (3.39)
Ve —V1+2, 2y +1

aL,K
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Specializing to the two admitted values of «, we finally arrive at

PHYSICAL REVIEW A 93, 062502 (2016)

0y, G LTCn+2L+2) {_ L+ D0+ Dty + L+ 1)
' ZAA222L(L 4+ DL + 1) TRy + 1) e = +DICyi +2L+2)I'QyL + 1)
- - L’ - - L? - + l
X 3F5 (VL Y1 YL — VI YL — VI ; 1)} (3.402)
ve—vi+2,2y,+1
and
. @M L+ DP@y +2L +2) {1  In L= tn+ L+
Lol = 72 DL (2L + 1202y + 1) Vie1 — 71+ DI@yi + 2L + 2T Qyrr + 1)
-n-—1L, -n—1L, -+l
w3 Fs <)/L+1 V4! YL+1 V3! YL+1 V4! ;1> } (3.40b)
Yiel — V1 +2, 2y + 1

respectively. Hence, the closed-form expression for the 2°-pole polarizability of the hydrogenlike in the ground state is

LYXL +1*n + D2y 4+ + L+ 1)

agtt! I'Qy +2L +2) {
oy

T 2R 2L+ DL + DT 2y + 1)

A <7/L_V1_L’VL_VI_LsVL_J/l‘f‘l. )
e YL—vi+2,2y+1 '

Vier =N —L.vivi—n—L,viv1 —n+1
X 3 ;1) ¢

In the dipole case (L = 1), Eq. (3.41) yields

CL+ Dy —ri+DI@Qyi +2L +2)I 2y + 1)

(L+ 1Ly —L—=1°T*(ypi+n+L+1)
QL+ D1 — 1 +DICy1 + 2L +2)I'Qyr41 + 1)

o) =
VA

(3.41)
Yirr = V1 +2, 2y + 1
ﬁ{ 1+ D@y + D%y + 13 +12) N =2’ +y+2)
36 B—yn+DICn+DHIQy2+ 1)
- v—-Lyn-n-lLyn-n+l
<Py (Vz i 2—n -ntl l> } (3.42)

Vo—y1+2,2m+1

which is in agreement with earlier findings (cf. Refs. [8,
Eq. (16)] and [9, Eq. (3.24)]).

Exact numerical values of the dipole to hexadecapole
polarizabilities for the ground state of the hydrogen (Z = 1)
atom, derived directly from the analytical formula (3.41), are
presented in Table I. Calculations have been done for two
values of the inverse of the fine-structure constant: o'
137.035999 139 (from CODATA 2014 [35]) and o~ ! =
137.035999 074 (from CODATA 2010 [39]), in the latter case
with the purpose to enable one to make comparison with data
available in Refs. [21,22]. Table I confirms almost perfect
numerical accuracy of results obtained computationally by
Tang et al. [21] using the B-spline Galerkin method and also
the high quality of numbers generated by Filippin ef al. [22]
with the use of the Langrange-mesh method. Actually, one
encounters essentially the same situation for ions with higher
atomic numbers Z: Our data (not provided here) generated
from Eq. (3.41) with the CODATA 2010 value of ! validate
completely counterpart numbers from Refs. [20,21] and imply
only minor inaccuracies (the maximal relative error being of
the order of 10~'?) in the data listed in Ref. [22].

It should be stressed that both sets of our data presented in
Table I, as well as the numbers excerpted for comparison from
Refs. [20-22], have been computed under the assumption that
the values of the inverse of the fine structure constant used
in calculations are exact numbers. Actually, available values
of a~! are always subject to experimental uncertainties. In

(

particular, the CODATA 2014 recommended value of a!
appears to be 137.035999 139 (31), where the number in
parentheses is a one-standard-deviation uncertainty in the
last two digits of the significand [35]. It is evident that
this uncertainty implies limitations on physically meaningful
numbers of digits in values of computed quantities and has an
impact on uncertainties in digits to be retained. In Table II,
we present results of our numerical calculations of the first
four multipole polarizabilities «;, for selected hydrogenic ions
with the nuclear charge numbers from the range 1 < Z < 137.
Computations have again been based on the use of the formula
displayed in Eq. (3.41), but now the uncertainty in the value of
a~! has been taken into account. The values of the polarizabil-
ities are listed along with uncertainties in their last two digits.

In the final step, we provide an approximate formula for
the polarizability ¢, that is correct to the second order in ¢ Z.
Using

(@Z)?
2|k|

Ve = k| — (3.43)

and
F(Cl%c + a/)//c' + b)

aZ)( a a
~T(alk| +d'|«'| + b) 1—( ) — 4+ —
2 &’

x Ylalk| +d'|&'| + b)i|, (3.44)
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TABLE II. The static electric multipole polarizabilities «;, with 1 < L < 4 for selected hydrogenic ions in the ground state, computed
from the analytical formula in Eq. (3.41). The number in parentheses following each significand is an uncertainty in its last two digits and
stems from the one-standard-deviation uncertainty (equal to 31) in the last two digits of the value of the inverse of the fine-structure constant

a~! = 137.035999 139 (from CODATA 2014) used in calculations.

Z a; (units of a3) o, (units of a3) a3 (units of a)) oy (units of ag)

1 4.499 751495 177 88 (12) 1.499 882982285755 (53)x 10" 1.312378214478562(55)x10%> 2.126028 67449934 (10)x 10?
2 2.811878749 18562 (28) x107! 2.343 018 679 358 61 (34) x10~! 5.125 050 375 239 51 (86) x 10~! 2.075 551 546 062 03 (40)

5 7.190 061 246 057 0 (45) x1072 9.581 285 372 341 8 (85) x10™* 3.352210 608 794 4 (35) x10™* 2.171 618 426 950 9 (26) x10~*
10 4.475 164 360 649 (11) x10~* 1.488 319383924 5 (53) x10~> 1.300 352 899 799 1 (55) x10=° 2.104 187 645 771 (10) x 1077

20 2.750 523 499 121 (28) x 105
40 1.604 002 839 693 (69) x10~°
60 2.797 090 475 04 (30) x 10~7
80 7.256 2303670 (16) x10~%
100 2.168 647 589 56 (99) x 10~
120 5.962 322 886 3 (66) x10~°
137 5.748 648 40 (30) x 10710

2.271 146 583 119 (33) x 1077
3.218 326 876 78 (20) x10~°
2.371 147 053 79 (36) x10~1°
3.196 013 750 5 (10) x 107!
5.405 559 190 6 (34) x 10~'2
8.350 889 829 (13) x 1013
3.159 735 44 (23) x 10714

4.938 640 072 446 (84) x10~°
1.717 671 116 98 (12) x 107!
5.443 579 082 03 (97) x10~13
3.921 694 890 3 (15) x10~!4
3.923 335 160 2 (29) x 101
3.675 741 125 2 (65) x 1016
6.689 221 53 (60) x 10718

1.991 062 443 097 (38) x 10710
1.707 067 336 75 (14) x10~13
2.345 208 225 06 (47) x 1071
9.141 669 900 2 (38) x10~17
5.514 202 2559 (46) x10718
3.240 357 008 3 (64) x107°
3.139717 91 (33) x1072!

Explicit expressions for the quasirelativistic approximations to
ap with 1 < L < 4, resulting from Eq. (3.51), are displayed
in Table III.

IV. MAGNETIC MULTIPOLE MOMENTS OF THE ATOM
IN THE MULTIPOLE ELECTRIC FIELD AND ATOMIC
EL — M(L 1) MULTIPOLE CROSS SUSCEPTIBILITIES

A. Decomposition of the atomic magnetic multipole moments
into the permanent and the first-order
electric-field-induced components

Next we proceed to the investigation of electric-field-
induced magnetic multipole moments of the Dirac one-
electron atom in the ground state. In Appendix B, components
of the 2F'-pole magnetic moment M), for a stationary sourceless
current distribution j(r) are defined as

. 4w A P .
p—— = L) - ,
My, i I D@D ./]R3 d’rr Yw(n )-j(r)

A.1)

where Yﬁu(n,) is a particular vector spherical harmonic
[40, Sec. 7.3.1]. The right-hand side of Eq. (4.1) may be
transformed to another form using the identity [40, Sec. 7.3.1]

AY)»;/.(nr)
N e

TABLEIIIL. Quasirelativistic approximations for the static electric
multipole polarizabilities «; with 1 < L < 4 for the Dirac one-
electron atom in the ground state. The expressions have been derived
from Eq. (3.51).

Y, (n) = (4.2)

where

A=—irxV 4.3)
is the orbital angular momentum operator. Plugging Eq. (4.2)
into Eq. (4.1), after exploiting the Hermiticity property of the
operator A, one obtains the formula

i A
M, = —— /d3 "Yaum)A - jr), (4.4
" A+1‘/2/\+1 - rr Y m)A - jr), (4.4)

which appears to be optimal for the use in the subsequent
considerations.

In the weak-perturbing-field case considered in this work,
the atomic wave function may be approximated as in Eq. (2.8).
Hence, after using Egs. (2.9), (2.14), and (2.16), to the first
order in the perturbing electric multipole field, the electronic
current in the atom

—ecUT(MaW(r)

0= Jrs r W)W (r) @
may be approximated as
i) = jOm + jOw), (4.6)
where
FOr) = —ecv T (v Q@) 4.7)

is the electronic current in the unperturbed atomic ground state,
while
JVr) = —2ec Re[V VT (1o ¥V (r)] (4.8)

is the leading term in the field-induced electronic current. The

L
o approximation in Eq. (4.6) implies that

3
1 DM — Bgz)y

g g i ]2 Moy = MO+ MY, (4.9)
2 Z—%]S[] — 55@Z) ]
3 %ﬁ[ B M(aZ)Z] where

VAR 2940

& i 47 ;
4 [ - e @2)] M=V /R LrrYum)A - jOr) @10
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are components of the magnetic 2*-pole moment of the atom
in the unperturbed state W (r), while

(1) 4

3 (1)
M A+1 T drit Yium)A - jH(r) (4.11)

R3

is the first-order field-induced correction to Mgﬁi

It has been shown by us in Ref. [23] that the only
nonvanishing unperturbed multipole moment Mg\o) is the dipole
one,

MO = M8, (4.12)
the spherical components of which are
1
Mip = —3@n+ Disllarpl = laipl), - (4.132)
V2 \
MO, = +2-Qy1 + Dusaly pazip, (4.13b)
where
eh
s = (4.14)
2m,

is the Bohr magneton. If we introduce the unit vector v with
the cyclic components

= laipl* — la_1pl? v = :F\/Eail/gaqzl/z, (4.15)

the magnetic dipole moment vector may be compactly written
as
2y + 1

0
MO = L

3 (4.16)

The parametrization

ayp = e " cos(/2),  a_ip = e sin(9/2)

O< x,¢p <27, 0< V¥ <) 4.17)
implies that
Vo =cos?, vy = :FL e*? sin v, (4.18)
9 /\/5 )

i.e., ¥ and ¢ may be considered as the polar and the azimuthal
angles, respectively, of the vector v in the spherical coordinate
system.

Once the nature of the unperturbed moments has been
explained, we proceed to the analysis of the induced moments

PHYSICAL REVIEW A 93, 062502 (2016)

obtain
M) = M) + (=) M (4.19)
where
~(1) lec 47T 3
M, = k+1"2}»+1/ d’rr Y;\M(n,)A
TP O (e w D). (4.20)

As WD (r) is given by Eq. (2.28), the above equation may be
rewritten in the form of the double integral

=~y iezc

MO = (1)*
A A+IWZ

x/ d3rf d3r’rkYM(n,.)A
R? R?

TGO I Yy ()P O ).

421

A simplification occurs if one exploits the obvious identity
A - [V GO, )] = —[a - AYOE GO0, r)
+0 Oy - AGO(r,r'), (4.22)
the multipole expansion (3.13) of the Green function
GO(r,r), and the relation [36, Eq. (3.2.3)]
0 - AQp (1) = —(k + D)Qy, (n,). (4.23)

This results in a separation of integrations over radial and
angular variables, and one obtains

(Ameg)c 4

A+1 JRA+DQRL+1)
X Z (x —

K =—00

(c #0)

oD
M, =—

1HRG-D(QO, pO; pO O

lkl—1/2 1/2 1/2

X Z Z Z Z a amC(Ll;;

M=—L mg=—Ic|+1/2 m=—1/2 m'=—1/2
X (Q—]m|YAMQ—KmK >(chm,( YimQ_im),

where R&D(Q@ PO, pO 00y s a particular case of the
double radial integral defined in Eq. (3.15) and the bracket
notation has been used to denote the angular integrals [cf.
Eq. (2.19)]. Evaluating the latter with the aid of the formuflg in
Eq. (2.22) and carrying out the summations, we find that Mf\]ﬁ
does not vanish only if A = L F 1, i.e.,

(4.24)

<1> vl i)
M.". Substituting the expression (4.8) for the induced current My = Moydiror+ Moydris- (4.25)
into the definition (4.11), after using the identity (3.10), we In these two cases, one has
|
L — _
M1, = —Gree som— RO PO P00 [<VL7 =12 i — a2 P)CL
+V(L + WL+ p+ Darpa®, 500 — VI — (L — p+ Daipa1nCl, ] (4.26)
and
1
v REFLD QO pO. pO OV fL 112 — 12 — )
e S QL+ D2L +3) RETPQO. PO PO QY [V 412 — 2 (larl* = la_121P)C,,
V(L — (L = p+ Daypa*y ,C0 o — V(L + (L + p + Dajpa_inCy, ). (4.27)

062502-11


http://mostwiedzy.pl

A\ MOST

RADOSLAW SZMYTKOWSKI AND GRZEGORZ LUKASIK PHYSICAL REVIEW A 93, 062502 (2016)

respectively. On combining Eqs. (4.19), (4.25)—(4.27), and (4.15), we find that

M) = MO8 1+ M8 1, (4.28)
where
MO 4 AL 1) Hw-1.L), H0) p©O). pO) HO) JIZ = 12 uc
Lot = —( ﬂéo)CmRL Q7. P P, 0| =V L7 — nwCy
1
\/ (L+ WL+ p+ Do+ \/ S =L —p+1) vlcz‘fu_l} (4.29)
and
2
o _ RE+LD) JELF 1= 2ve?
Mt = —(47T€0)Cm P00, PO PO, Q(O))[ (L +1? = u?wCy,

1
\/(L (L — M+1)v,cLMH+\/§(L+u)(L+M+1)vlc§{>ﬂ1]. (4.30)

Thus, we see that, to the first-order of accuracy, the 2--pole electric field induces in the ground state of the atom two magnetic
multipole moments, being the 2X~!-pole and the 2+!-pole ones; i.e.,

M, = MO8, + MO, L1+ 8ur ). 4.31)

However, it is evident from Eq. (4.29) that an exception occurs in the case of the perturbing electric dipole (L = 1) field, when
only the quadrupole (). = 2) moment is induced (cf. Ref. [23]).

Consider now the irreducible spherical tensor product of rank X of the vector v, defined in Eq. (4.15) and characterizing the
unperturbed atomic state, and the tensor C(Ll), characterizing the perturbing multipole electric field. According to the general
theory of such products [40, Sec. 3.1.7], its components are given by

[vecy’) b = Z Z (ImLM|Am)v,C) (4.32)

m=—1M=

where (ImLM|Au) is a particular Clebsch-Gordan coefficient. A look at a table of these coefficients (e.g., Ref. [40, Table 8.2])

shows that the two induced magnetic moments M(L:)F,, components of which are displayed in Eqs. (4.29) and (4.30), may be
compactly written as

22

M(l) —(4rme R*D® pO®. pO o© v®C(1) A=LF1), 4.33
e e L @ 0 b T @33
with

1 L forA=L—1,
K)\:_EO‘_L)()”_‘_L—FI):{—L—I fora =L+ 1. (4.34)

B. Atomic multipole EL — M(L F 1) cross susceptibilities

We define the atomic electric-to-magnetic multipole cross susceptibilities ogr vz 1) through the relation
r® C(l)

M = (4 eo)c aer ks P F D, (4.35)

(10L0|20)

where the Clebsch-Gordan coefficient standing in the denominator in the fraction on the right-hand side is

A+L+1

Combining Eq. (4.35) with the representation (4.33) of the tensor M(Al) links the cross susceptibility to the double radial integral
appearing therein:
2A(L— L)

= =B RO pO). pO) 0O (= 1 4.37
OEL—M. D r DL+ D (Q o) ( F ). 4.37)
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To tackle the latter, we exploit the Sturmian expansion (3.26), obtaining

oo

aEL Mr = —M Z ;/OO drrk[Q(O)(r)S(O) (r)+P(0)(r)T(0) (r)]
- @+ DL+, & uD, —1 )
o0
x / dr'rH u®, POCHSY, () + 0OCHTO ()] =L F D). 4.38)
0

The second of the two, now separated, radial integrals in Eq. (4.38) is seen to be identical to the one we have evaluated in
Eq. (3.34), while the first integral, with the aid of Egs. (2.11), (3.27), and (3.31), is found to be

/"" drr* [ QS (1) + PONTLG, ()]
0

_ _az<ﬂ>”l V2 (W, = 52) e + 71+ 2+ DOl + v, — 71— )
22)  Jaoln N, N, — KT @yt + DEr ] + 275, + D CO — 11— M)

(4.39)

Plugging Egs. (4.39) and (3.34) into Eq. (4.38), then transforming the resulting series Z:fz_oo(- -+) into a one of the sort
Zf:o(' -+), and identifying subsequently the two 3 F>(1) functions, yields the cross susceptibility og;—p; in the form

aay ™A = LTy, + 1 + A+ D, + 1+ L+ 1)
ZAFLAL LA + 1)Q2L + DRy + DRy, + 1)

X{ yl()"+1) F2<VK~A_V]_kvykx_yl_l"ym_yl—i_l.l)

QEL->ML =

Yo —yi+1° Yo = V1 +2,2y + 1 ’
Y, TV Yo, = V1= A Vi, =1 — L, Vi, =11

B AN A A » | A=LF1). 4.40
K}L+1 3F2( J/K,\_y1+172qu+l ( :F) ( )

Eliminating the second 3 F>(1) in favor of the first one with the help of Eq. (3.38), we finally arrive at the following general
expression for the cross susceptibility in question:

aat ™ MG = LF@y+ A+ L+2)
ZMHLAL 204 L (e, + DA+ DQRL + DIy + 1)

QEL>ML =

y { _1+()L-i-1)[V1(KA+1)+L+I]F(Vn+)’1+)L+1)F(VKA+V1+L+1)
G, =1+ DEQy1 + A+ L+ 2T 2y, + 1)

Yo =V =X Vo ==L ve —yi+ 1, _
X3F2< Y, — V1 _|_2’ ZVKA+1 ,1)} (}\.—L:Fl), (441)

where, we recall, k; has been defined in Eq. (4.34). If in the above formula the explicit values of A and «, are set, this gives
explicitly

aal® (L-DIrQy+2L+1) {1 L+ D+ DI+ + DO +n+L+ 1)

UEL>M(L-1) = 5 22L-I(L + 1)(4L2 — D'y + 1) L =—n+DICyi+2L+ D2y + 1)
vo=n—-Lyi—vn—-L+Lyo—n+1
xaf ( yvL—vi+2, 2y, +1 ! (342
and
aagtt? (L+ DI'Qy, +2L +3)
AEL-M(L+1) =

Z2L+2 Q2L 2L + 1)(2L + 3)[' 2y + 1)

y {1 n (L+2) Ly —L—-DI'(Yrg1+yi + L+ DI'(Yig1 +y1 + L +2)
Vi+1 =1+ DIyt +2L +3)I'Cypp + 1)

Vi —Vi—L—=—Lyipi—vi—L,yepi—ni+1
;1) ¢. 4.43
X3k ( Yerr =1+ 2, 2y + 1 (4.43)
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TABLE IV. The static electric-to-magnetic multipole cross susceptibilities agr,—m(r.—1) With 2 < L < 4 for selected hydrogenic ions in the
ground state, computed from the analytical formula in Eq. (4.42). The number in parentheses following each significand is an uncertainty in
its last two digits and stems from the one-standard-deviation uncertainty (equal to 31) in the last two digits of the value of the inverse of the

fine-structure constant «~! = 137.035999 139 (from CODATA 2014) used in calculations.

z oga—mi (units of ag) ag3 v (units of a) g4y (units of a)

1 7.447 801 428 7 (51) x 10°8 7.840 878 107 8 (53) x1077 1.234 923 524 98 (84) x1073
2 1.861 763 994 3 (13) x1078 4.899 814 158 6 (34) <1078 1.929 209 479 8 (13) x10~7
5 2.976 734913 0 (21) x10~° 1.253 036 091 45 (85) x10~° 7.891 765 327 7 (54) x1071°
10 7.423 191 448 8 (51) x 1010 7.802 108 784 5 (53) x 10! 1.227 360 291 30 (83) x 10"
20 1.837 121 846 2 (13) x1071° 4.803 053 653 1 (32) x10~12 1.882 114263 5 (13) x10713
40 4.404 779 739 7 (29) x 10~ 2.820 265 342 7 (18) x10~13 2.722 166 1331 (17) x10715
60 1.816 173 088 1 (11) x 101! 4.983 382 447 9 (29) x 10~ 2.082 589 394 7 (12) x 10~16
80 9.069 233 476 7 (50) x10~12 1.323 207 519 24 (64) x10~14 2.987 634 353 8 (14) x10~"7
100 4.810 527 179 2 (20) x10~'2 4.126 084 143 0 (12) x1071 5.611 810738 7 (12) x10718
120 2.398 905 441 474 (94) x10~'2 1.243 760 509 44 (27) x10~1 1.064 754 960 93 (42) x10~'8
137 6.535 200 35 (19) x10713 1.835 801 306 (67) x 10716 9.459 904 27 (40) x107%0

In the particular case of the dipole (L = 1) perturbing electric field, the right-hand side of Eq. (4.42) vanishes, while Eq. (4.43)
becomes

OE| M2 =

aa; T2y +5)
Z4 602y + 1)

With the use of the relation (3.38), the latter formula may be transformed into

QE1-M2 =

Z4 2400 (2y))

nrCyi +35r2y, + 0

which is identical to the one we have arrived at in Ref. [23, Eq. (4.24)].
Numerical values of the cross susceptibilities ogr—mizx1) With 1 < L < 4 for selected hydrogenic ions, computed from
Eqgs. (4.42) and (4.43), are presented in Tables IV and V.
A derivation of quasirelativistic approximations to the two cross susceptibilities agz—.m(z+1) is very much analogous to the
procedure we have adopted in Sec. III for the polarizabilities «; . Exploiting the relations (3.43) and (3.44), one deduces the
estimates

vo—-n—Liyo—vn—-L+Lyo—n+1_\_, 2
3F2( J/L—)/1+2, 27/L+1 91 ~1 ((XZ)

3(i = 2T (s + 71 + 2T (2 + 1 +3) (VZ_VI —2pn-n-Ln-n+l,

=+ DrQy +5T2y + 1) vi=v+2,2pn+1 ' )}

(4.44)

aag T'2yr +5) M =2+ yI)F2+ v +2F(y2 + 1 +3) n-=-vn—-2,n-n—-1L,yv—-—n.
—_— 1_ 3F2 ’1 )
n-vn+12yn+1

(4.45)

L—-1
2L+ DEL+1)

(4.46)

TABLE V. The static electric-to-magnetic multipole cross susceptibilities ag—mr+1) With 1 < L < 4 for selected hydrogenic ions in the
ground state, computed from the analytical formula in Eq. (4.43). The number in parentheses following each significand is an uncertainty in
its last two digits and stems from the one-standard-deviation uncertainty (equal to 31) in the last two digits of the value of the inverse of the
fine-structure constant «~! = 137.035999 139 (from CODATA 2014) used in calculations.

Z g M2 (units of aé) oy v (units of ag) o3 M4 (units of ag) op4—Mms (units of aéo)

1 3.283 609 988 21 (74) x 1072 1.641 779 910 28 (37) x 107! 1.915 387218 71 (44) 3.878 621 704 27 (88) x 10!

2 2.051 883 757 57 (47) x1073 2.564 697 947 34 (58) x1073 7.480 014 760 8 (17) x 1073 3.786 611 359 32 (86) x 1072
5 5.246 149 090 0 (12) x 1073 1.048 828 974 42 (24) x1073 4.893 086196 1 (11) x107° 3.962 443 793 36 (90) x10~°
10 3.263 961 669 54 (73) x107° 1.629 485 276 85 (36) x1077 1.898 813 208 63 (42) x1078 3.841 383 757 26 (86) x10~°
20 2.002 912 101 25 (43) x1077 2.488 285 199 83 (53) x10~° 7.222 989 034 9 (15) x10~ ! 3.642 467 546 25 (76) x10~'2
40 1.160 561 045 67 (21) x1078 3.536 787 823 83 (59) x 1071 2.529 227 814 95 (40) x10~1*  3.150 752 599 06 (48) x10~1
60 2.001 899 182 26 (22) x10~° 2.622 086 172 86 (22) x10712  8.120 641 172 46 (49) x10™  4.402 352 754 59 (19) x10~"7
80 5.112 923 654 384 (67) x10~'0  3.576 878 765 05 (25) x10~'3  5.987 127 613 93 (69) x10~1¢  1.767 496 114 01 (27) x10~18
100 1.497 342 934 87 (38) x 10710 6.199 237 022 9 (23) x 10~ 6.253 163 632 3 (28) x10~"7 1.125 356 310 60 (58) x 1071
120 4.025 596 828 3 (36) x10~!! 1.018 161 258 7 (12) x10~14 6.466 767 859 0 (85) x10~!8 7.469 936 050 (11) x1072!
137 4.095281 71 (19) x10~12 5.745 732 04 (32) x 10716 2.193 610 03 (14) x10~" 1.601 547 89 (11) x10~%
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I (4.47)
2(L+2)2L +3)

When the approximation (4.46) is inserted into Eq. (4.42), after some play with the recurrence relation (3.50), one finds that

2L 2 3 2
al S(L — 12QL3 + 512 + 4L + 2)2L — 2)!
M) aZ . 4.48
FBL-M(L-1) = z2L( ) 22LI(L + DL + 1) (4.48)

Similarly, combining Eqs. (4.43) and (4.47) yields

aal" " (L +2)2L 4 2)!
ZZL+2 22L+2L

OEL—>M(L+1) =

: {1 —(aZ) [I/f(ZL +4H—-vQ2) -

LQL*+9L% +17L* + 17L +8) 4.49
2L+ 1)X(L +2)2L + DL + 3)} } 49

It is worthwhile to notice that irrespective of the value assumed by L, the cross susceptibility agz—m(z—1) (hence, also the induced

moment M(LI)_]) vanishes as «Z — 0, while in the same limit both og; mz+1) and M(Lljr] remain finite.
Explicit forms of the expressions standing on the right-hand sides of Eqs. (4.48) and (4.49), with L restricted to the range

1 < L < 4, are collected in Table VI.

V. MAGNETIC TOROIDAL MULTIPOLE MOMENTS
OF THE ATOM IN THE MULTIPOLE ELECTRIC FIELD
AND ATOMIC EL — TL MULTIPOLE CROSS
SUSCEPTIBILITIES

A. Decomposition of the atomic magnetic toroidal multipole
moments into the permanent and the first-order
electric-field-induced components

The last member of the family of far-field atomic multipole
moments we wish to consider in this work are the magnetic
toroidal moments. We show in Appendix C that spherical
components of the 2*-pole magnetic toroidal moment T, due
to a solenoidal current density j(r) may be written in several
equivalent forms, out of which, for the use in this section, we
choose the following one:

1 4 .
Top = P /2x+ 1 /R &EritY,,(nor - j(r). (5.1)

Proceeding along the route sketched in Sec. IV, after the
current is approximated as in Eq. (4.6), we obtain

T =T + 1) (5.2)

T

where

4
(0) 3 :(0)
“‘_k—i—l‘/Z)\—}—l/Rwdrr Yiu(m)r - j*(r) (5.3)

TABLE VI. Quasirelativistic approximations for the static
electric-to-magnetic multipole cross susceptibilities ogz -1y With
2< L <4 and agrme+1) With 1 < L <4 for the Dirac one-
electron atom in the ground state. The expressions have been derived
from Egs. (4.48) and (4.49).

L OEL>M(L-1) OEL—>M(L+1)
o4
9 409 2
1 Z3[1 - 35 @2y]
4 6
way 23 g asr 1193 2
2 7+ 1202 Z) 76 2[ 260 (@ Z) ]
0(116 o 8
24 113 2 %4y 52511 _ 3317 2
3 70 5 (@Z) 75 2 [ 2016(0‘2)]
Ctas oa,
aag 1017 2 30 4zszs 759449 2
4 7 0 (@Z) 710 [1 fi5s00 (@ Z) ]

(

and

4
(1) 3 . (1)
—/ &rrty 5.4
’\" A+1 2)»+1/]Rz rrtYmor - jEr) - G4)

with jO@r) and jP(r) given, respectively, by Eqgs. (4.7)
and (4.8).

At first, we show that in the ground state of an isolated
atom all permanent toroidal multipole moments do vanish. To
this end, we insert the expression (4.7) for j@(r) into the
right-hand side of Eq. (5.3) and then make use of Egs. (2.9)
and (2.10), together with the identity [36, Eq. (3.1.3)]

n, - GQKmK(nV) = _Q—Kmk(nr)’ (55)
obtaining
TO _ iec 4 / drr1 PO 0O
T = 1V rr (rQ™(r)

1/2 1/2
X Z Z a;am/[<sz—lm|Y)Lp,Q—lm’>
m=—1/2m'=—1/2
- (le|yku§21m’>]' (56)
It follows from the property displayed in Eq. (2.20) [being, in
fact, the consequence of the identity (5.5)] that for all A, w, m,
and m’ the expression in the square bracket on the right-hand

side of the above equation is zero. Hence, we arrive at the
aforementioned result

0
T =0. (5.7)

Next, we turn our attention to the first-order induced

moments T . From Egs. (5.4), (4.8), and (3.10), we have
V) =T0) + (-, (5.8)
with
(1) . ec 47T
MO 41V 2a 41

x/ d3rr“1YM(n,)‘l’(0)T(l‘)nr'“‘I’(l)(r)' (5.9)
R3

Skipping details that should be already obvious to the reader
who has gone through Secs. III and IV, we come to the
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inference that Eq. (5.9) may be converted into

o0
F0) _ i(4meg)c 4z Z RO+LD(QO _ pO). pO HO)
A A+1 J2h+ DRL +1) « ' B
oo
(k #0)

lk|—1/2 1/2 1/2

L
X Z Z Z Z a am’C(Ll}i;Q 1m|YAu KWLKX Kn

M=—L m,=—|k|+1/2m=—1/2m'=—1/2

Yim Qo im)- (5.10)

Comparison of the multiple sum on the right-hand side of Eq. (5.10) with the one that appears in Eq. (3.14) shows that the two
are identical. This allows us to save labor, and, after exploiting results of Sec. III A, we quickly find that

T = T8, (5.11)
where
) =T, + 7)) _, . (5.12)
with

2i sgn(x)
(L+1DQL+1)2 “
x [uarl* = la—1pPCY) + VL — p)L + p+ Darpa® nCY oy + V(L + u)(L — o+ Dafpa_ioCy, ]
k=L,—L—1). (5.13)

TV = re)e

o = RUHLD(QO _ pO), pO) o)

In Sec. IV A, we have succeeded in expressing the two induced magnetic moments M(szl in terms of certain irreducible

tensor products of the vector (rank 1 tensor) v, introduced in Eq. (4.15), and the 2Z-pole tensor c, characterizing the perturbing
electrostatic field. An analogous simplification is possible in the case of the toroidal moments considered here. Invoking Eq. (4.15)
and rewriting the right-hand side of Eq. (5.13) in terms of the spherical components of the vector v, after making use of a table
of the Clebsch-Gordan coefficients [40, Table 8.2], we arrive at

2i sgn(k) REHIL(QO _ pO; pO o0, g CP)

7O — _@4
Gree o eV L1

L,k (K=L,—L— 1). (514)

Lp

In summary, in this section we have shown that in the ground state of an isolated atom all magnetic toroidal multipole moments
due to the electronic movement vanish, while, to the first order of approximation, a perturbing 2% -pole static electric field induces
the toroidal moment of the same multipolar symmetry as that of the perturbing field, i.e.,

T, ~Ts,,. (5.15)

B. Atomic multipole EL — TL cross susceptibilities

We define the atomic multipole electric-to-magnetic toroidal cross susceptibilities ag; .17 according to

T = itdne)caprv/LIL + 1) {r ® C"},. (5.16)
Comparison of Eq. (5.16) with Egs. (5.12) and (5.14) gives agy— 1, in the form of the sum

OEL—TL = ®EL—TL,L + ¥EL—TL,—L—1, (5.17)
with the two addends given by

2 sgn(k)
S (L+DEL+ 1)

or, by virtue of the definition (3.15) and the expansion (3.26), by

OBLTLx = REFLDQO — p@, pO 9Oy (¢ =L, — L —1) (5.18)

2 sgn(x) /OO "
= drrtt 1 [ 0@ () s© POGYTO
QELTL, L+ DeL 1 Z M;O)K — rrt 0S8 (r) — (T3]
X f dr'r’* [uP PO+ 0O0HTO )] (=L, —L—1). (5.19)
0
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The integral over r’ is seen to be identical to the one evaluated in Eq. (3.34), while the one over r, after the use is made of
Egs. (3.27) and (3.31), is found to be

/ "t [0V)SO.(r) — PONTO(r)]
0

_QZCQYﬂ V21 l(n, | + 20 TG+ +L+ 2T + 7 —yi — L —2)
2z Vaoln !Ny« (N« — T Cyr + DE(n, | + 2y + 1) F(ye —yi—L—1

(5.20)

Inserting Egs. (3.34) and (5.20) into the right-hand side of Eq. (5.19) and summing the resulting series, with the same procedure
we have applied before in Secs. III B and IV B, to a form involving a particular 3 F>(1) function, yields the following general
expression for ags 7L «:

aad™ ™ sgn()yi(k + 1)+ L+ 10 + 1+ L+ Dy + 31+ L +2)
7242 2LHN(L 4+ DL + 12(y — y1 + DIQy1 + DIQRy, + 1)

QEL—>TLx =

K _L_]’ K —L, K +1
N RIS Vem M =B Ve ™MLY oL L 1), (5.21)
Ve = V1 +2,2y+1

Hence, we find that the cross susceptibility ag; 7y is the sum of

aai"? (i + D+ +L+ D0y +y+L+2)
Z2L+2 L QL 4+ DXy, — 1 + DT 2y + DI Ry + 1)

QELTL,L =

oy —L—1,9 —y1— L,y —y +1
APy (VL 7 YL — Y YL =Y ;1> (5.229)
yL — 1 +2,2y + 1
and
o Caay™? Ly —L—DI'yea+n+ L+ D0+ 1+ L +2)
BEAEALTE T 2000 2L £ QL + 12 (v — 71+ DEQyi 4+ DE @yt + 1)
—y—L—1, -y —L, -y +1
% 3 Fs ()’L+1 Vi Yi+1 — VI Yi+1 — VI ;1>; (5.22b)
Yivl — V1 + 2,2y + 1
i.e., one has

aajtt? 1 { M+DIy+n+L+D(y+y+L+2)
OEL>TL =

Z2L+2 2L+ (2L 4 1)2F(2y1 +1) o=+ DRy +1)
<VL—7/1 —-L-1,y—yi—L,yp—n+1 )
X 32 ;1
ve—vi+2, 2y +1
I Iy —L-DI'yps1+m+L+DI'yei + i +L+2)
(L+Dey1 = +DIQyr + 1

-y —L—1, -y —1L, -y +1
<3P <VL+I Y1 YL+1 Y1 YL+1 Y1 : 1) } (5.23)
Yir1 —vi+2,2y041 + 1

Tabulation of numerical values of the cross susceptibilities ag; .7, with 1 < L < 4 for selected hydrogenic ions is done in
Table VII.

In the particular case where the perturbing electric field is of dipolar (L = 1) character, the first 3 F>(1) series on the right-hand
side of Eq. (5.23) is a terminating one and ag;_,1; appears to have the relatively simple form

OE1->TI

aag { V+DCr+1D) =T +n+2Tn+n +3)
A 18 1440y, =i+ DICyi+ DI'Cyr2 + D

=2, m—=—n—-—Ly—-yn+l1
% 3Fs (Vz Vi V2= V2= ;1> } (5.24)
Vo= +2,2m+1
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TABLE VII. The static electric-to-toroidal-magnetic multipole cross susceptibilities og, 7, With 1 < L < 4 for selected hydrogenic ions
in the ground state, computed from the analytical formula in Eq. (5.23). The number in parentheses following each significand is an uncertainty
in its last two digits and stems from the one-standard-deviation uncertainty (equal to 31) in the last two digits of the value of the inverse of the
fine-structure constant «~! = 137.035999 139 (from CODATA 2014) used in calculations.

Z g1 (units of ag) ag2-12 (units of af) o313 (units of a) og4—14 (units of a)”)

1 8.208 992 048 8 (19) x 1073 1.824 181 749 47 (41) x1072 1.197 103 615 58 (28) x 107! 1.551 430471 54 (35)

2 5.129 627 095 4 (12) x10~* 2.849 550 959 88 (65) x10~* 4.674799 9499 (11) x10~* 1.514 573 425 52 (34) x1073
5 1.311 405 660 90 (30) x107> 1.165 075 455 46 (27) x10~° 3.057 322 790 70 (69) x10~7 1.584 512 136 37 (36) x1077
10 8.156 619 781 8 (19) x10~”7 1.808 732 920 30 (41) x 1078 1.185 426 820 77 (27) x10~° 1.534 745 348 09 (34) x10~10
20 4.999 128 4894 (11) x10~8 2.753 638 596 01 (58) <1010 4.493 949 807 48 (94) x10~'2  1.450 075 102 23 (30) x10~ 13
40 2.881 625203 51 (51) x10~° 3.864 378 956 52 (62) x 10712 1.551 228291 91 (23) x10~*  1.235602 013 60 (18) x 1076
60 4.921 478 469 93 (50) x10~1° 2.797 665976 33 (17) x10™13  4.849 315540 87 (18) x107'®  1.678 687 380 721 (30) x10~'®
80 1.235279 761 024 (42) x10710  3.666 029 498 03 (43) x10~'*  3.417 412738 36 (57) x10~'7  6.427 122 689 3 (13) x10~%
100 3.504 059 007 8 (11) x10~! 5.922 743 695 6 (28) x10~1 3.298 079 781 3 (19) x 1018 3.764 776 924 1 (24) x1072!
120 8.770433 963 4 (93) x10~12 8.385272 052 (12) x 10716 2.882 550 881 2 (48) x10~"° 2.089 625 1252 (39) x 10722
137 5.927 356 55 (38) x10713 2.011 157 10 (19) x107 3.384 692 32 (40) x 1072 1.335922 79 (18) x 10~

The dipolar case was studied by our group a decade ago in Ref. [25], where the following representation of ag;_, 11 was derived”:

(r1 = 2@y + DI+ +2)

OEI->T1 = 74

ady { (71 + D@y1 + D(8y + 54y] + 67y + 18)

864

576(y, — YOIy + DI'Cy2 + 1)

=1 =i —1, 9 —
% 3Fy (Vz Vi Y2—n Y2 V1.1>}. (5.25)
vn—-vn+12y+1
Equivalence of the expressions in Egs. (5.24) and (5.25) may be proved with the aid of the identity
P (611, az, a3 l) _ |:1 (a1 —az — D@ —a3 — 1)] rGIro—a —a +1)
W e+, T (a1 — D(b —ar) (b —as — DI(b —aL(b — ay)
_(ar—az —D(a1 —a3 = D(az —az — 1) (Ch —lLay, a3+ 1 )
@—-Da+hb-a-1) U a+2b
[Re(b — a) — ay) > 1]. (5.26)

To find a quasirelativistic limit of the general expression for the cross susceptibilities under study, we approximate the

hypergeometric function appearing in Eq. (5.22a) with the formula

vi—vn—L—-1,yp—y—L,yr—yi+1
3k 01

N 2L% +5L +1
T (L+DHRL+1)

ye—vi+2,2y. + 1
1205 +32L* — 1503 — 68L% — 17L + 8

—(az)?

AL(L + 1)2(L +2)Q2L + 1)2

(5.27)

and the one in Eq. (5.22b) using Eq. (4.47). This yields the following estimations of the two addends in Eq. (5.17):

QEL—>TL,—L-1 =

QEL—>TL,L =

aai"*t* 2L 4+ 5L + 1)(2L)!

Z2L+2

2L+2
ada,

2LLQ2L + 1)

(2L + 3)2L)!

72042 2L 4 1)L + 1)

{1 — (aZ)z[sz +2)—¥(2) —

{ 1 —(aZ) [1//(2L +2)—y(2) —

200 — 15 —26L* —31L% +4L +4
4L2(L + 1)(L +2)2L> +5L + 1) |}’

(5.28a)

205 + 1304 +27L3+18L%> —3L — 4
2(L + DAL +2)2L + 3)

(5.28b)

5Equation (5.25) follows from Eq. (4.32) in Ref. [25], where the expression for T = cog;_.1; was presented. The reader might be surprised
that by setting L = 1 in Egs. (5.22a) and (5.22b) and multiplying the results by the speed of light, one does not reproduce Egs. (4.24) and (4.31)
in Ref. [25]. The origin of this apparent paradox is that splitting the components TL(B of the induced toroidal moment into a sum of two
k-dependent addends is not (and, in fact, need not to be) unique and depends on a particular integral representation of 75, chosen as a starting
point (in this connection, see the discussion in Appendix C). However, the sum of the two addends is, of course, always the same.
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Adding the right-hand sides of Egs. (5.28a) and (5.28b), after some algebra we arrive at the sought quasirelativistic representation

of agr—1r:

aad"" (L +2)Q2L + 1)!

OEL->TL =

ZZL+2 22L+1L(L—|- 1)
6L7 +29L° +49L5 +32L% — L3 — 16L% —

{1 —(aZz)? [w(zL +3) = ¥(2)

2L2(L + 1)2(L + 2)2Q2L + 1)2

Table VIII collects the quasirelativistic approximations of ag; .1, obtained from Eq. (5.29) for 1

VI. NEAR-NUCLEUS ELECTRIC MULTIPOLE MOMENTS
OF THE ATOM IN THE MULTIPOLE ELECTRIC FIELD
AND ELECTRIC MULTIPOLE NUCLEAR
SHIELDING CONSTANTS

A. Decomposition of the near-nucleus electric multipole
moments into the permanent and the first-order
electric-field-induced components

With this section, we start the second part of the paper, in
which we analyze near-field (henceforth, in view of the present
context, the term near-nucleus is used instead) multipole mo-
ments characterizing electrostatic and magnetostatic potentials
and fields generated by the atomic electron in the region near
a point where the atomic nucleus is located. The first of these
moments is the near-nucleus electric multipole moment R;,
the spherical components of which are defined to be

4
Rop = ) f Err Y, m)p(r), (6.1)
210+ 1 R?

where p(r) is the electronic charge density given by Eq. (3.2).
Approximating the density as in Eq. (3.3) yields

Rou = Ry, + RS, (6.2)

A

with the permanent and the first-order induced parts given by

4

0

R =5 /R P e (63)

R = | 47 / &Err 7Y, m)p (), (6.4)
20+ 1 Jgs H

respectively.

Evaluation of both R{) and R} is much simplified by
the fact that angular integrations involved are identical to
these encountered in Sec. III A, where the counterpart far-field

and

TABLE VIII. Quasirelativistic approximations for the static
electric-to-toroidal-magnetic multipole cross susceptibilities ag; 1.
with 1 < L < 4 for the Dirac one-electron atom in the ground state.
The expressions have been derived from Eq. (5.29).

(5.29)

)

<L <4

(

moments Q L and Q( ) have been analyzed. In result, one finds
that

R, ~ R”s,0+R!"5,,. (6.5)

with the nonvanishing components given by

Rgg;:_e/ drr H{[POOP + [0V} (6.6)

0
and
(1) (1) (1)
RLM = RL/L,L + ’R’Lu,fol’ (6.7)
where
2|k |
1) (—L-1,L) p(0) ~(©0). p0) ~H©0)y~ (D)
RLMK (47‘[60)(2L 1)2R P, 0%, PV, 0 )C
(«k=L,—L-—1). (6.8)

In the last equation, RCL=LD(PO 0O pO 0Oy is a par-
ticular form of the double radial integral defined in Eq. (3.15).
Invoking the explicit forms (2.11) of the electronic radial
functions, one immediately finds that

(6.9)

B. Atomic electric multipole nuclear shielding constants

In analogy with the far-field case, the present analysis leads
in a natural way to a definition of a near-nucleus electric 2--
pole polarizability of the atom, og; g, through the relation

R = (47 eo)or, . CY (6.10)
In the literature, the near-nucleus polarizability og; g, is usu-
ally named the electric multipole nuclear shielding constant,
and in what follows we adopt that nomenclature. Combining
Eq. (6.10) with Egs. (6.7) and (6.8), we deduce that

L 4 YEL-TL OBEL—>EL = OEL—EL.L + OBL—>EL,—L—1, (6.11)

1 Z3ll - f@2zy] .

) 0 - .

’ * I - SR @2y] CEL—BLx = (2L2 |Ji|l)_2 RELLD(PO gO; pO o0

4 el D1 — e (o 2)?] («=L,—L—1), (6.12)
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where, by virtue of Egs. (3.15) and (3.26), the double radial integral may be written as

]

1 o0
RETID(PO QO pO g0y = 3 1/ drr " [POM SO + QO TO)]
ok 0

n,=—00

(o]
x / dr'r’" [ POCHSO )+ QOHTO )] =L, —L—1). (6.13)

nek
0

As the integral over r’ is the one from Eq. (3.34), while that over r is found to be

/ "t [POSO.(r)+ QT ()]
0

_ _(2_Z>L V2Nox = N Wy + ) = (| + 7 =71+ D] T+ 71 = D0 | + 7 =71+ L)

ao ) \Jaoln !Ny, «(Ny,c — )T 2yt + DT(In,| + 2y, + 1) F(ye =i +L+1)
VALY — 1
(z < a*leorK = L>, (6.14)

by means of the by now familiar procedure of summation of the series over n, to a closed form involving a single 3 F>(1) function,
we arrive at the following expression for ogz gL :

2|k | itk + D) = Ll[yik + D+ L+ 1T (e + 1 — LT (e + 1 + L+ 1)
OEL—EL.x = -1+

Z(k + D@L + 1)? Ge —y1 + DICy1 + DIy, + 1)
- L+1,y—vi—L,v. — 1
X 3F» <y” natEbveen =y nd ;1)} (=L,—L—1). (6.15)
Ve =1 +2, 2y + 1

At the first sight, the expression on the right-hand side of Eq. (6.15) looks equally complicated as its counterparts displayed in
Egs. (3.39), (4.41), and (5.21). It appears, however, that because of particular forms of the parameters in the 3 F>(1) function
being involved, it may be transformed to a much simpler representation. To this end, we exploit the identity [44, Eq. (7.4.4.1)]

ai, a, as L' (b)I(s) by —ay, by — a3, a
3P ;1) = 3P ;1
bl, b2 F(bz — az)F(S + 612) bl, s + ap
[s=by+by—a; —ar, —a3;Res > 0; Re(b, — ay) > 0], (6.16)

and this casts Eq. (6.15) into

. B 20| {_1 M + 1) — LIy + 1)+ L+ 1] ( —L+1, 1,y —n—L )}
FEZELCT Ze + DRL + 12 Ge—vi+ Dy +n—1L) - +2 % +n—L+1
(k=L,—L—1). (6.17)

Hence, the two addends on the right-hand side of Eq. (6.11) may be explicitly written as

2L (L+Dyi+Din(L+1) — L] —L+1LLy—n—L
OBEL—EL,L = 1~ 2 ; (6.18a)
Z(L+DEL+1) e=—n+Dyr+yr—-L) ve—vi+2,ve+n—-L+1
and
2(L+1) Liyi+ DLy —L—-1) —L+1L Lyrqi—n—L
OEL—EL,~L—1 = 511 — ) ; , (6.18b)
ZLQ2L + 1) Vev1 =i+ D+ = L) Yeri =Vi+ 2,7+ —L+1
and consequently the sought formula for the 2%-pole electric shielding constants is
o _ 2 { L*(L 4+ D + DIyi(L + 1) — L] P ( -L+1,1Ly—n—-L )
T ZL el D T L+ D -+ DA n -0 e — i+ 2 A — L+ T
L(L+1*(yi + D(Ly; — L —1) F ( —L+L Lyyi—n—L )} 6.19)
- 3k ; . .
QLA+ D(yre1 =71+ Dyeyr + 1 — L) Yiei=Vi+2, v+ —L+1

At the first sight, it might seem that the constraint on Z, under which the above formula is valid, is the one in Eq. (6.14).
This is indeed the case if L > 2, but for L = 1 the situation is different. A closer look at the left-hand side of Eq. (6.14) and
at Eq. (3.27) shows that in the dipole case the convergence condition in the former equation is rooted in the presence of the
constant terms in the Laguerre polynomials in the radial Sturmians S,(,?)l (r) and Tn(?l) (r). However, it is easy to show that the
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TABLE IX. Exact analytical expressions for the static electric multipole nuclear shielding constants og; g, With
1 < L < 4 for the Dirac one-electron atom in the ground state. The expressions have been derived from Eq. (6.19).

L OEL—EL Constraint on Z
1 3 Z <o
104y2 4110y, —79 115
2 7 S =D Z<a 'y
1 2064yt +14764y3 430968y 247181y, —17 177 135
3 z )tz(y1+7><2lm+7><4mlf|1)(6y11—1> Z<a IT
4 1 1420804251 184y +1662 556y +4 813404y +5 195 4137 —862 740y, —3 136 025 7 < q 131
z 9001 +3) (1 + D2y +9)Q2y1 +23) @y 1By —1) 8
series
5(=2,1
Ri )(p(O)’Q(O); P(O),Q(O))
. 1 > (0 ~(0) * 0 0) 0
=2 5 / drr 2 [POMS, )+ 00T, 1] f dr'r' [ POCOSE) + 0OCHTAE)]. (6.20)
ny=—oc0 Mn,1 = 0 0
where
5O () = I+ yDdn. |+ 2y)In,|! 2zr y'efzr/ao L () 4+ ﬂL(Zyl)(o) (6.21a)
ol 2Z Ny, 1(Ny,1 — DE(ny | 4+ 2y1) \ ao Inr =1 In,| 42y, ™!
and
FO ) = (1 —y)n.| + 2y |! 2Zr\" z/a L2 () — 1 — Ny L2 0) 6.21b)
n ) = _ -— ) € Iy |—1 T | oy il ’ :
2Z Ny 1(Np,1 — D(In, | + 27D\ ao In |+ 2y

gives a null contribution to the integral R(l_z’l)(P(O), 00, pO 0Oy In consequence, in the dipole case the limitation on Z is
weaker than for higher multipoles, being simply the natural one Z < «~'. Hence, in summary, the constraint on the validity of
the formula for og; gy, displayed in Eq. (6.19) is

! forL =1,
Z < _— (6.22)
a_l% for L > 2.

As it holds that L > 1, both 3 F>(1) functions that appear in Eq. (6.19) are seen to be terminating ones. This implies that the
susceptibilities of the sort considered here may be expressed in terms of elementary functions. Explicit formulas for og; gy
with L constrained by 1 < L < 4 are displayed in Table IX.

Since only elementary functions are involved, numerical values of og;_. g, if desired, may be computed to any required
accuracy, even without having access to any specialized software. For this reason, we have decided not to provide tabulation of
such data here.

To complete the task, we derive the quasirelativistic representations for the shielding constants og; g7 . Somewhat surprisingly,
this appears to be a bit more involved than in the case of the three far-field susceptibilities analyzed in Secs. III to V. Referring
to Egs. (3.43) and (3.44), the quasirelativistic approximations for the two 3 F»(1) functions in Egs. (6.18a) and (6.18b) are found
to be

F( ~L+1,1L,yp—y—L ) 3L+ 1 @z)? L—1 [L2—5 (L — 1)L —2) (—L+3,1,1 >]
) = o — (e ;
T\ 2 et — L1 2L+ 1) 4L(L+D| 2L+ 1) 3L+2 P\ L43.4
(6.23)
and
—L+1,1, — oy —L L(L—1 —L+2,1,1
, 2< Via1 =1 ;1) ~1—(@zp LD 3F2( ;1), (6.24)
Vel =V +2, V11 +vi—L+1 6(L + 1)(L +2) L+3,4
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respectively. It is seen that in both cases the coefficients at («Z)? involve the hypergeometric functions of the sort considered in

Appendix E. From Eq. (E10), we obtain

_ 3(L+2)SL +4)

6(L +2)2L + 1)

—-L+2,1,1
3 ;1) =
L+3,4 2L(L + 1)

and

_ 3(L+2)(SL+1)

(V2L + 1) — (L +2)] (6.25)

L(L—1)

6(L+2)2L+1)

[V (2L) — ¥(L +2)] (6.26)

~L43. 11
S I VEELS B 2L(L — 1)

(L =1L -=2)

(singularities at L = 1 and L = 2 in the above two equations are apparent only and are removable through the application of the
L’Hospital rule), which allows us to rewrite Egs. (6.23) and (6.24) as

—L+1,1, — — L 3L +1 L—-—1DQRL+1 L+1
3F2< nen ;):——(aZ>2¢[w(2L+1>—m+1>——} (6.27)
v —wn+2,y0+y1—L+1 2(L+1) 2L(L+1) 2L +1
and
—-L+1,1, — — L 2L +1 LOBL +7
3F2( Vir =N ;1):1—<aZ>2—+[w<2L+1>—w<L+1>—#], (6.28)
Viet =1+ 2 v+ — L+ 1 L+1 XL+ DQL + 1)

respectively. Inserting the above two estimates into Eqs. (6.18a) and (6.18b) and passing to the quasirelativistic limit with the

factors multiplying the two 3 F>(1)’s, one arrives at

2
Z(L+DEL+ 1)

OEL—EL,L =

and
2
ZLQR2L +1)

OEL—EL,—L-1 =

{1 - (aZ)zLT_l[t/f(ZL + 1D —yY(L+ 1D+

{1 - (a@z%ﬂ[w(u S =YL+ 1) -

6L+ L3+ L%>—-2L -2
tLT (6.29a)
AL(L — DQRL+1)

2L2+7L+1]}

10L 1 1) (6.29b)

Hence, we infer the following formula for the quasirelativistic approximations of the electric multipole shielding constants:

,2L — 1
1 —(aZ)
2L 41

ow- = 7 |

Estimates of og;_. g, resulting from Eq. (6.30) are presented
in Table X for 1 < L < 4.

We have verified numerically that the quasirelativistic
formula in Eq. (6.30) is equivalent to a much more complicated
one given in Ref. [17, Eq. (37)], provided one corrects the latter
and replaces (2/ — 2)! with (2] — n)!. In addition, we remark
that the quasirelativistic approximations to og; gz supplied
in Refs. [26, Eq. (3)] and [16, Eq. (4.41)] are correct for L = 1
and L = 3, but for L = 2 the factors k, and K, displayed
therein should take the value 2/5 instead of 59/150.

TABLE X. Quasirelativistic approximations for static electric
multipole shielding constants og; g, With 1 < L < 4 for the Dirac
one-electron atom in the ground state. The expressions have been
derived from Eq. (6.27).

|:¢(2L +D—y(L+1)+

L OEL—EL

(exact)
1— 2(aZ)]
H@zy]

1—
il — @27

gl
gl

B W N =
NI— N|= N|—= N[~

(6.30)

L[P—2L%+L—1
2L2L — 1) ’

(

VII. NEAR-NUCLEUS MAGNETIC MULTIPOLE

MOMENTS OF THE ATOM IN THE MULTIPOLE

ELECTRIC FIELD AND NEAR-NUCLEUS EL —
M(L £ 1) MULTTPOLE CROSS SUSCEPTIBILITIES

A. Decomposition of the near-nucleus magnetic multipole
moments into the permanent and the first-order
electric-field-induced components

Next we consider the near-nucleus magnetic multipole
moments of the atom in the 2Z-pole electric field. In agreement
with Eq. (B38), the spherical components of the 2*-pole
moment of that sort are given by

4r(A+1) 3. —A—lyA ,
_— d Y r) - , (7.1
YeTe, fR rr Y ) - j(r), (11)
where j(r) is the electronic current in the atom, defined as
in Eq. (4.5). The same argument that has been applied to
transform Eq. (4.1) into Eq. (4.4) allows us to rewrite the
above definition as

i 4 P .
= —— Y. A - . 7.2
Ny m/zxﬂ/Rad” WA (). (12)
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Approximating the current as in Eq. (4.6) yields

0 1
Now = N+ N, (7.3)
with
i 4 .
N = _X‘/—zwr 1 fR Prr Y mOA - jOr) (7.4
and

@ _ i 4m 3. a1 (1)
Ny = —X,/ 1 /R}d rr Yium)A - j V). (7.5)

Evidently, angular integrations which arise when the integrals
in Egs. (7.4) and (7.5) are evaluated in the spherical coordinates
are identical to these in Egs. (4.10) and (4.11), respectively.
This immediately allows us to write

N, =~ N(AO)3A1 + N(Al)(SA,L—l + 65, 1+1), (7.6)

where

4 0
NY = —geev / drr?POMeOr) (A7)
0

2V20. 4+ 1)
Cr+DJ/RL+DA+L+1)
x R(__)”_I’L)(Q(O),P(O); P(O), Q(O)){v ® C(Ll)},\
A=LF1L;A#0), (7.8)

N'" = (4rep)c

PHYSICAL REVIEW A 93, 062502 (2016)

considered, while the first-order moments of that kind induced
by the 2--pole electric field are of ranks L — 1 and L + 1,
except for the dipole (L = 1) case when only the quadrupole
moment arises [cf. Eq. (B42)].

Straightforward evaluation of the radial integral in Eq. (7.7)
gives a closed-form representation of the permanent dipole

moment N(lo),
3
ozl%), (7.9)

8 z?

N(IO) = ILLB3 v (Z <
3y1 (23/1 - ]) agy

where the constraint on Z results from the convergence

condition for the integral at its lower limit.

B. Atomic near-nucleus multipole EL — M(L F1)
cross susceptibilities

The near-nucleus multipole electric-to-magnetic cross sus-
ceptibilities are defined through the relation

{" ® C(Ll)};\

N(l) — 4 .
5 = (4mep)copr—mr (10L0[0)

A=LFLAr#0),

(7.10)
where Ngl) has been given in Eq. (7.8). Recalling the expres-
sion (4.36) for the Clebsch-Gordan coefficient (10L0|A0) with
A = L F 1 yields the susceptibility ogz— My in the form

20+ (A — L)

oM = RGA-LL) (0)’p(0);p(0)’ ©
OEL—>Mx Cr+ DL+ 1) & (Q o)

with «; defined as in Eq. (4.34). We see that an isolated A=LFLA#0. (7.11)
atom possesses only the permanent dipole moment of the sort ~ In view of Egs. (3.15) and (3.26), we may write
|
[o.¢] 1 00
RTHDQO PO P00 = 3 /0 drr 1 [QOMIS, ) + POOTLY, ()]
ny=—o00 MK
x / dr'r' [u, POCHSY. () + QVGNT ()] A=LF1L;1#0). (7.12)
0

The second of the two integrals on the right-hand side of Eq. (7.12) is the same that has appeared in the last four sections, and
its value has been given in Eq. (3.34). As regards the first one, its value may be deduced from Eq. (4.39), after the replacement

A — —A — 1 is made in the latter, and this gives

/ " ar [0S0, () + POOTS, )]
0

27 “/z(Nn,lq - K)»)

Fye, +vi—=MDn |+ Ve, — 1 +A+1D

A
)
ap \/aO|nr|Uvnrlq(]\]n,/(;L - KA)F(2)/1 + l)F(|nr| + 27/1(1 + 1)

[Z ! VRL+DQRL+3)
2L +1)

forh =L + lj|,

'y, —+2+1

(7.13)

where the constraint, henceforth tacitly assumed to hold, guarantees that the integral in question converges at its lower limit.
Plugging Eqgs. (3.34) and (7.13) into Eq. (7.12), and then the latter into Eq. (7.11), after transformations which are already routine
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TABLE XI. Exact analytical expressions for the near-nucleus static electric-to-magnetic multipole cross
susceptibilities of the Dirac one-electron atom in the ground state. The expressions for ogmr—1) With 2 < L < 4,
derived from Eq. (7.16) and given in the second column, are valid provided that Z < o~!. The last column displays
constraints on the nuclear charge number Z under which the expressions for og;_,mz+1) With 1 < L < 4, obtained
from Eq. (7.17) and given in the third column, remain valid.

Constraint on Z

L OEL>M(L—-1) OELM(L+1) N 0L M(L+1)
6(3y1+1) —1/15

1 —eZ___tOptl) Z <o 2
ap Sy1(yi+h@y1—1 4

2 _ aag 21+ az 1606y} —yi=36y1—-14) 7 < g1 Y3
z 9 ap 3571 (1+D2y1+N(6y1-1) 6

3 _aag 3Cn+D)2y1+5) az 50032y +164y7 —53y7 —584y; —231) 7 < g 13/
z 28(2y1+7) ag 1891 (y1+D(1 + D@y +1DBy —1) 8

4 _aay 22y1 +1)(68y7 +483y, +709) oz 260y +744y} 42065y —964y 2 —5905y, —2300) 7 <o 13 Vv
z 315(y1 +7) @y +11) ap  yi(y1+D1+5Q2y1+5)2y1+23)(10y; —1) 10

at this stage, we obtain

aal™ i+ DO — L@y — A+ L+ 1)

ZL=% 2L==1(jc, + 1)2A + DL + DIy, + 1)

5 {1 N Myt +D+L+ 10T (Y, + 1 = )T + i+ L+ 1)
(Yo =11+ )TQy — A + L+ DLQy,, + 1)

Vo —Vi+A+L Yo ==L, Y, —v1+1 )}
X3 F i1 A=LF1;L#0). 7.14
’ 2( Vn_)/l‘i‘z»z%a"‘l ( T ;é ) ( )

OEL—-MA =

Applying the identity (6.16) to the hypergeometric function of the right-hand side of Eq. (7.14) casts the latter formula to the
simpler form

agg™" A+ DA -LTQp—A+L+1)
ZL 2151 (i + 1D(2A + DL + DE @y + 1)

s Myt + D+ L+ 1] ( A+ L Ly,—n—-L
312 5
Vo =1+ D), + 11 =) Yo —V1+2 Ve +ri—A+1

OEL—>MA =

1)} Oo=LF1L;A£0), (7.15)

where the 3 F>(1) function is a truncating one. Hence, we find that the explicit representations of the two cross susceptibilities
OEL—M(LF1) are

aag L2y +1 (L* = H(n + 1) —L+2, Lyp—yn—-L
OEL->M(L—1) = ——— 1 3P ;
Z (L+1DAL?—1) e—n+Dyr+n—L+1D vo—n+2,vo+n—L+2
(L#1) (7.16)
and
aZ 2(L +2) (L+D(Lyy—L—-1) —L, 1, ypy1—y1—L
OEL—M(L+1) = —— 1- V) ;1
ap y1L2L+ 1)L +3) Vi1 = +Dyep+yi—L—1) Vil =V + 2, v+ — L

L YOLTDELFY)
|:Z <a™! @L+ D@L+ 3):|. (7.17)

2(L+1)

Elementary expressions for og;—m(—1) With 2 < L < 4 and ogr—mz+1) With 1 < L < 4, inferred from Eqs. (7.16) and (7.17),
are displayed in Table XI.
To establish the quasirelativistic approximations to the formulas in Egs. (7.16) and (7.17), we consider the estimates

—L+2, 1,y —yn—L
3P ;1
vo—n+2,yve+n—L+2

N4L+1_(Z)2 L-2 [2L2+L—7 (L—1)L-3) <—L+4,1,1_1)}
“3r+0 Yer@+n| 3L+ aL+2 7\ L43s

(7.18)
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and
( —L,1,yp41—yi—L
3k
Yirl = V1 +2, Yo+ v —
which, with the aid of the identities
8(L +2)(4L* — 1)

L;1> ~1—(aZ)

s (RS
3k L+3.5 )T

[cf. Eq. (E11)] and

L+3,3
[cf. Eq. (E3)], may be rewritten as

—L+1,1,1 4(L+2
3F2( ,1>=¥

—L—|—2,1,)/L—)/1—L >N4L+1 —(z

F )
32<VL—J/1+2,J/L+)/1—L+2 3(L+1)

and

( —L, L,yrpi—y—1L
3F
Vil — V1 +2, Vi1 + 1 —

(L =L —=2)(L —3)

3L(L +1)

U 1> ~1 —(aZ)2
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L? L+1,1 1'1 719
4(L+1)(L+2)3F2( L+3,3 ) (7.19)

2(L +2)(32L — 19)
[WQL+1)— (L +2)] — L2 3 (7.20)
2L +2 Loy XEt2 721
[VQ2L+2) -y (L + )]_L——H (7.21)

L2 —

[WzL +D— YL+ 1) - W}

12412 — 1)
(7.22)

[¢(2L +2)—Y(L+2)— (7.23)

2(L+1)}

respectively. Applying the estimates in Eqgs. (3.43), (7.22), and (7.23) to the right-hand sides of Egs. (7.16) and (7.17), after some

algebra we arrive at the sought quasirelativistic approximations

aao 1 2
UEL—)M(L—l) >~ — Z L + 1 1 - ( Z)
and
aZ 4(L +2) 2
OEL—M(L+1) ap LCL + DL + 3){ 2

[w(ZL) V(L) —

2(L+1)

LAL?* —3L —5) ]}
(L#1) (7.24)

4L — 1)(4L2 — 1)

|:1//(2L +2)—Y(L+1)— W} } (7.25)

2L

Particular cases of the later two formulas are displayed in Table XII.

VIII. NEAR-NUCLEUS MAGNETIC TOROIDAL
MULTIPOLE MOMENTS OF THE ATOM IN THE
MULTIPOLE ELECTRIC FIELD AND NEAR-NUCLEUS
EL — TL MULTIPOLE CROSS SUSCEPTIBILITIES
A. Decomposition of the near-nucleus magnetic toroidal
multipole moments into the permanent and the first-order
electric-field-induced components

The last family of the atomic multipole moments we wish
to look at in the present work are the near-nucleus magnetic
toroidal multipole moments U, . According to Eq. (D10), their

TABLE XII. Quasirelativistic approximations for the near-
nucleus static electric-to-magnetic multipole cross susceptibilities
OEL—>M(L—1) with 2 < L < 4 and OEL—>M(L+1) with 1 < L < 4 for the
Dirac one-electron atom in the ground state. The expressions have
been derived from Egs. (7.24) and (7.25).

L OBEL—M(L—1) OEL-M(L+1)

| i+ 2]

2 451 =32y -2+ JH@zy]
3 —iill - §@zy] — Pl + T @2)]
s - Blerr] -3+ 2Baz)]

(

spherical components may be defined as

1 4 i .
Uy, = = /2x+ . fR} Err Y mor - j(r). (8.1)

In the weak-perturbing-field regime, which we consider in this
paper, after exploiting Eq. (4.6), we have

U 14, 82)
with
1 4
© —A— ;
U=\ e f A tmor 500 63
and

1 4
O _ / 3. a1 (1)
U, = VT A;d rr Yiumor - j(r) (8.4)

being the permanent and the first-order induced parts, respec-
tively, of the moment under study in the atomic ground state.
Exactly in the same manner as in Sec. V, one may show that
the isolated atom in the ground state does not possess any
nonvanishing moments of the sort considered,

u® = o, (8.5)
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and that the only induced moment is the one with the multipolar symmetry identical to that of the perturbing electric field, i.e.,

U, ~ UPs,,, (8.6)
with
0 2i L+1c i), ,0 ©. pO) O (=L.L), H(©) ©. p© O M
UL 2(47[60)6(2[,—‘;-1)2 I [RL (o™, =P, P, 0 )_R—L—l Q", =PV, P, 0 )]{V®CL }L 8.7

[for the definition of the double radial integrals R(-5-D(Q@, — pO; pO 0O see Eq. (3.15)].

B. Atomic near-nucleus multipole EL — TL cross susceptibilities

In complete analogy to the far-field case discussed in Sec. VB, we define the near-nucleus multipole EL — TL cross
susceptibilities through the relation

Uy = i(dmeo)cop-mv/LIL + D) {v @ C}, . (8.8)
Comparison of Egs. (8.7) and (8.8) yields oz 1z, as the sum
OEL—TL = OEL—TL,L + OEL—TL,—L—1, (3.9)
where
2sgn(x) LI
oL = = REED(QO, — pO; pO 9O =L,—L-1). 8.10
OBLTLa = Tor i (Q 0" ) (8.10)
After the Sturmian expansion (3.26) is used, the double radial integral appearing in Eq. (8.10) takes the form of the series
[e ]
_ 1 o
R,E LBQ®, — PO, PO 00 = Z ©) / drr L[Q(O)(’”)S,(.?i(r) - P(O)(V)T,S?Z(I”)]
ny=—o0 Mnyc = 1 Jo
o0
x / dr'r" [ POGHSOL () + V0T (). (8.11)
0

With no difficulty, from Eqgs. (2.11), (3.27), and (3.31) one finds that

/ Oodrr—L[Q<0>(r)S,5‘j>K(r) - POCTO ()]
0

_az(2_Z>L" V21 1(n, | + 27, TG +n =L+ D0+ —p+L—1D
a ) Jaoln ["Nu e Noe — Ty + DL, | + 27, + 1) T(ye =1 + L) '
(8.12)

Inserting Eqgs. (3.28), (3.34), and (8.12) into Eq. (8.11) and proceeding then along the same path as in the preceding sections to
transform the series Z$=7M(~ --) into the one of the form Z;fzo(' --), we arrive at
_ady sen()yik + D+ L+ 1I'ye + i — L+ D'y + 1 + L+ 1)
z LQRL+ 1y —y1 + DIy + DI Qy, + 1)
K + Lv K - L, K + ]
X 3 Fs (V VI e Ve m = B Ve T ;1) (=L.—L—1). (8.13)
Ye =V +2, 2y +1

In the final step, we apply the hypergeometric identity (6.16) to convert the 3 F>(1) series in Eq. (8.13) into a more suitable one,
which yields

OEL—>TL.x =

_aag sgn(k)2yr + Diyik + D+ L + 1]
Z LCL+ 1’ — i+ D+ —L+1)

( —L+2,1,y—y—L
X 3F >
Ve =V +2, %+ —L+2

Hence, the cross susceptibility og;_ 1y is the sum of

OEL—TL.x =

1) (=L, —L—1). (8.14)

i _ aay (L+ Dy + D2y + 1) 3F2< —L+2, L,y —yi—L .1> 8.15)
EL—-TL,L — — 5 ’ .
’ Z LRL+ 1D’y =i+ Dy +n—L+1) ve—=vi+2v+y—L+2
and
. _ aag Cn+DLy—L-1 P < “L+2Lyip-n-L 1) (8.15b)
EL—-TL,—-L—-1 — — 5~ ’ ’
Z LRL+ 1D (yis1 =i+ Dyemi+ i —L+1) vert=vit2yenty—L+2

062502-26


http://mostwiedzy.pl

A\ MOST

STATIC ELECTRIC MULTIPOLE SUSCEPTIBILITIES OF ... PHYSICAL REVIEW A 93, 062502 (2016)

TABLE XIII. Exact analytical expressions for the near-nucleus static electric-to-
magnetic-toroidal multipole cross susceptibilities og; ., With 1 < L < 4 for the Dirac
one-electron atom in the ground state. The formulas have been derived from Eq. (8.16) and

are valid under the constraint Z < a~!.

L OEL—TL
1 _ea Ll (abénth  ;1=2@nth  p LLy-n-1 1
z 9 20 ntn+3 32 \p-n+2ntn+
2 _ aap Cyi+D2y1+3)
Z  20Q2y1+7)
3 _aag +DQ2y1+D@y7+34y1+67)
Z 21+ D2n @ +11)
4 _aag @n+1)@E8y)+1092y 48856y 431625y 7+48 384y, +23 395)
z 216(y1 +5)(1+1)2y1+5)2y1+23)@y; +11)

and is explicitly given by

ﬂ(L—I—l)(Zyl—i—l){ yi+1 F( —L+2, 1L, yp—n—-L )
Z LRL+1? |-+ D+ n—-L+0 v —n+2 v +n—L+2

OEL—TL = —

Ly,—L—1 —L+2,1, — v — L
i ( Yitl — Vi 1)} 8.16)

+ F ;
LDV -+ D+ —L+D" "y =y 4+2. 1+ — L +2

For L > 2, both hypergeometric series on the right-hand side of Eq. (8.16) truncate, and consequently the corresponding cross
susceptibilities o7 .77 may be written in terms of elementary functions. The dipole (L = 1) case is different since then the second
3 F>(1) function remains transcendental. Explicit analytical expressions for the cross susceptibilities og; 17 With 1 < L < 4 are
presented in Table XIII. In turn, in Table XIV we provide numerical data for the dipole cross susceptibility o, for selected
values of the nuclear charge number Z.

‘We move to the derivation of the quasirelativistic limit of the expression in Eq. (8.16). The 3 F>(1) function in Eq. (8.15a) is the
one we have already come across in Sec. VII B, and the approximation to it is given in Eq. (7.22). In turn, for the hypergeometric
function in Eq. (8.15b) we have

—L+21, —y =L L(L-2 -L+3,1,1
3F2< YL+l — V1 ;1> ~ 1—(aZ)2#3F2( ;1>_ (8.17)
Yiri =+ 2, vt —L+2 8(L + (L +2) L+3,5
From Eq. (E11) we have

(—L+3, 1,1, ) 16(L +2)(2L + 1) 4(L 4 2)(16L* + 17L + 3)
312 =

L+3,5 " (L — 1)L —-2) WeL =y +2]- 3L(L2 —1)

(8.18)

(we do not exclude the cases L = 1 and L = 2 as singularities at these two values of L in the expression on the right-hand side
are only apparent and are removable via the passage to the limit procedure) and consequently the 3 F>(1) function in Eq. (8.15b)
may be approximated as

—L+2,1, -n—L 2LQ2L + 1 16L% +21L — 1
, < Vet = ;1) ~1— (aZ)2$|:W(2L F)— Y@ +1)— + }
)/L+1—)/1+2, )/L+1+)/1—L+2 L°—1 12(L+1)(2L+1)
(8.19)
Using Egs. (7.22) and (8.19), after some algebraic simplifications we obtain

aay 4L +1 |~ (@z) 4L% — 1 Y@L — 1) — y(L) 41> - 3L — 4 (8.20a)

OEL— >~ — () ———— -1 - - .20a

FL=TL.L 7 L2QL + 1)? LAL + 1) 4412~ 1)

and

aay 1

2LQ2L + 1)
“Z L(L+ DQL + 1)

L?—1

5 L(L+5)
OEL—TL,—L-1 = {1 —(aZ) |:W(2L +1)— Iﬂ(L +1)— —] } (8.20b)

42L +1)
Hence, the sought approximate expression for the cross susceptibility oz .1z, is

4 13 _ 272 _ 3_g72_ _
aay 1 {1_(az)22L L3 —3L LH[W(ZL)—t/f(L)— L(L3 — L?> —3L —5) ]} $21)

Z LAL+1)

OEL—TL &= —

LQL+ 1)(L2—1) 4QLA—L3-3L2—L + 1)
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TABLE XIV. The near-nucleus static electric-to-toroidal-
magnetic dipole cross susceptibilities og;_1; for selected hydrogenic
ions in the ground state, computed from Eq. (8.16) with L = 1. The
number in parentheses following each significand is an uncertainty
in its last two digits and stems from the one-standard-deviation
uncertainty (equal to 31) in the last two digits of the value of the
inverse of the fine-structure constant o~' = 137.035999 139 (from
CODATA 2014) used in calculations.

Z o171 (units of ag)

1 —3.648 637 095 60 (83) x 1073
2 —1.824 259 765 87 (41) x1073
5 —7.295 393076 3 (17) x10~*
10 —3.644 756 614 28 (82) x10~*
20 —1.816 493 443 61 (41) x107*
40 —8.964 422 142 8 (20) x107°
60 —5.844 669 492 5 (13) x107°
80 —4.246 284 894 89 (82) x 1073
100 —3.264 717 305 27 (59) x1073
120 —2.646 549 207 67 (64) x1073
137 —1.413 71275 (56) x10~*

In the particular case of L = 1, after the L’Hospital rule is
applied (this is admissible since L may be formally treated as
a continuous parameter; cf. Appendix E) and the well-known
identities
2 72
(1) = —, ‘)= — —1,
vi(1) 3 v'(2) G
are exploited, Eq. (8.21) becomes

aay 1 3 =2 )
OEl->T1 = ———|:1 — (— — )((ZZ) :| (8.23)

(8.22)

Z 2 4 18

The explicit forms of the quasirelativistic approximations to
ogL—1L for 1 < L < 4, resulting from Egs. (8.23) and (8.21),
are displayed in Table XV.

IX. SUMMARY AND FUTURE PROSPECTIVES

In this paper, we have considered various far- and near-
field electric and magnetic multipole moments induced in

TABLE XV. Quasirelativistic approximations for the near-
nucleus static electric-to-toroidal-magnetic multipole cross suscep-
tibilities og; ., with 1 < L < 4 for the Dirac one-electron atom
in the ground state. The expression for L = 1 is the one displayed
in Eq. (8.23), while these for 2 < L < 4 have been derived from
Eq. (8.21).

L OEL—TL

1 —s i1 - (G - 7)@zy]
2 — 25l - 3@z)]

3 — P 5l - 3 @Z)]

4 o 1 108z
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the ground state of the Dirac one-electron atom by an
external, weak, static electric 2--pole field. Strengths of all
these induced moments have been characterized by congruent
atomic multipole susceptibilities, using formulas brought
together in Table XVI. Table XVII shows how the suscep-
tibilities in question enter the near- and far-zone asymptotic
representations of the lowest-order electric and magnetic
fields and their potentials, generated by the atom in response
to the perturbation. For the reader’s convenience, all exact
closed-form analytical expressions for the susceptibilities,
derived by us in Secs. III-VIII with the aid of the Sturmian
expansion of the Dirac-Coulomb Green function, are collected
in Tables XVIII and XIX.

In Tables II, IV, V, and VII, embedded in Secs. III-V, we
have provided numerical values of the far-field susceptibilities
ar (= agLEL), ®EL>M(LF1)> and ag 7, all with 1 < L <
4, only for some representative nuclear charge numbers Z.
A complete tabulation of values of these susceptibilities for
all integer values of Z from the range 1 < Z < 137 has been
presented elsewhere [41].

There are two directions in which we would like to extend
the current research. First, we plan to analyze various electric
and magnetic moments induced in the ground state of the
atom by an external, weak, static 2L—pole magnetic field; a
result of such an analysis would be a set of static magnetic
multipole susceptibilities for the atomic ground state. Second,
we intend to carry out an analogous study, for both electric
and magnetic perturbing fields, for the atom in energetically
excited states belonging to the manifold characterized by the
principal quantum number n = 2. Our preliminary insight
into the latter problem shows that such calculations, although
significantly more complex than those presented here, should
nevertheless be feasible.

ACKNOWLEDGMENT

We thank Dr. Patrycja Stefaniska for valuable discussions.

APPENDIX A: MULTIPOLE POLARIZABILITIES
VS THE SECOND-ORDER CORRECTION
TO THE ATOMIC GROUND-STATE ENERGY

The purpose of this appendix is to give a relationship
between the atomic multipole polarizability «;, and the second-
order correction to atomic energy due to a perturbing static
electric 2E-pole field defined in Sec. II. It is assumed that
before the field was switched on, the atom had been in its
ground state.

If we go one step beyond the first-order perturbation theory
used in Sec. II, the perturbed wave function of the atom may
be approximated by

W(r) =~ vOr) + D) + v (r). (A1)

The zeroth-order wave function and the first-order correction
to it have been given in Egs. (2.9) and (2.28), respectively;
we recall that the first-order perturbation theory has left the
coefficients a,, in Eq. (2.9) undetermined. Similarly, for the
atomic energy in the field we may write

E~EQ4+ED 4 E®, (A2)
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TABLE XVI. The collection of formulas defining the multipole susceptibilities considered in the present paper.

Susceptibility Related induced moment Constraints

Far-field zone

1
QEL—EL Q( ) = (4mep)XEL>EL C D
) {reci’}, 2 for L = 1
OEL—>Mx M;’ = (4mep)copr—mr 7(10L0LM0>” A= LEl forl>2
1 . 1
OEL—TL T(L) = i(4mep)cagL 1L v L(L + 1) {V ® C(L)}L
Near-nucleus zone
1 1
OEL—EL R(L) = (4m€0)OELEL C(L)
a _ {"®C(Ll>},\ ]2 forL =1
OEL—M) N;’ = (4meo)corrm (10L0|A0) LFl forL>2
1 . 1
OEL—TL U(L) =i(4mep)copr1r ~/L(L + 1) {V ® C(L)}L

with E® and EM given by Egs. (2.6) and (2.27), respectively. Proceeding in the standard manner, from Egs. (2.4), (A1), and (A2)
we deduce that the corrections W@ (r) and E® solve

7 2
—ichet -V + pmc? — —==— — EOl9O@) = —[vO ) — EVwD () + EQwO(r), (A3)
(47'[60)1"
subject to the orthogonality constraints
. 1
/ &IrvO T (rHe@er) =0 <m = ii)' (A4)
R3

Projecting Eq. (A3) from the left onto the unperturbed basis functions \lffl) /z(r) and then making use of Egs. (2.9), (2.12),
(2.16), (2.27), and (2.28), we arrive at the homogeneous algebraic system

172 |
> Vi = E@8uwaw =0 (m=i§), (AS)
m'=—1/2

in which
v =~ / &r / ErvO v GO v e, (A6)
R3 R3

To simplify the expression on the right-hand side of Eq. (A6), we make use of Egs. (2.3), (2.10), (3.13), and (2.20) and also of
the definitions (3.16) and (3.15). This yields

00
Ly (L,L)y p(0) ~(©0). p0) ~HO) (1) A (1)
Vi = (4neo>2L+1 > REPPO.0: P00 )Z Z ciietin
kK =—00 M=—L M'=—L
(k #0)
lk|=1/2
X Z (Q—lm‘YLMQKmKXQKmK YLM’Q—lm/)' (A7)
me=—|k|+1/2

Evaluation of the angular integrals with the help of Eq. (2.22) casts Eq. (A7) into

L
+ 8y — K+ M "
V[(llni,)n _ (47‘[60) Z KLZL—:lL lR(L’L)(P(O),Q(O);P(O),Q(O))[(Sm,l/zamq]/z § ( )M2 I CEI;/[C(I)*
M=—-L

(K 750)

L MYk — M +1
b 3 (M =MD

e
e+ 1| CrCL by = @) —1/28m1/2

— sgn(k )8y, 1720, —

L
s (_)M\/(K —M)k +M+1)

|2k + 1]

L
* * K % M
CSX,IC(L]’),M,I + Sm,—1/20m,—1/2 Z (= )Mm cies M:| (A8)
M=—L
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The four sums over M may be simplified after evident symmetry properties of their summands are taken into account. One finds

that

MKiM M K]
Z( M St Con €l = 57

and

ZL: (— )M\/(’C M)k FM+1) C(l)*C(l)*

|2 + 1]

Hence, we deduce that

ViD= s, (4T o) L
L,mm’ mm 0 (2L+ 1)

The matrix formed by the elements VL(I,,:,),[, is thus seen to
be a multiple of the unit 2x2 matrix. Recalling Eqgs. (3.24)
and (3.25), we are led to the conclusion that application of the
second-order perturbation theory does not remove degeneracy
of the atomic ground state and that the second-order correction
to energy of that state may be written as

E® —

—1@nep)a,CV - CY. (A12)

This result is very well known in the dipole (L = 1) case.

APPENDIX B: FAR-FIELD AND NEAR-FIELD
EXPANSIONS OF THE MAGNETIC VECTOR
POTENTIAL AND THE MAGNETIC INDUCTION

On our way to a deeper understanding how various sorts
of multipole moment tensors arise in the far- and near-field
asymptotic expansions of the magnetic vector potential, we
have much benefited from studying the methodological paper
of Agre [42], which we wholeheartedly recommend to all
readers interested in the subject.

1. General considerations

For a given stationary solenoidal current distribution j(r),
the magnetostatic vector potential may be found from the
formula

A(r) = ﬂf e (B1)
R3

4r |r —r'|
Exploiting the multipole expansion

(o) L L
r—r| ZX_: X_: 2L+1 L<+1 Vi, () ¥ew, (@), (B2)

one finds that in the far-field (r — o¢) and near-field (r — 0)
regions the vector potential A(r) behaves as

A(r) =% Z AL (r) (B3)

ZR(LL,L)(P(O)’Q(O); p(O),Q(O)) +

L
1 1
> cilieth =

L,—L-1) (A9)

Lome1 =0 (k=L,—L—1). (A10)

L+1 LL) (p® 9O, pO O () (1)
mR 2P0 PO ZC mCru-

M=L
(A11)
[
and
oo
A(r) 8 ST AR g, (B4)
L=0
respectively, where
o 4w -
AL _ ol Y* ,
"= fwa+1” MZL L, ()
—

X / Er'r* Yy, m)jr) Oo=L,—L—1).
R3
(B5)
In the next step, we make use of the closure identity

1
D enen =1 (B6)

m=—

for the unit vectors of the cyclic basis, which gives

L 1
> 2 Yiu e,

Mp=—L m=—1

Mo 4w
AL)»( ) — A
e 2L +

x / &Er'r* Yo, (n))e, - j(r')
R3
A=L.—L—1) (B7)

The product Yy, (n,)e,, appearing in Eq. (B7), may be
expanded in the basis of vector spherical harmonics as

L+1 J

You, (n)em = Y Y (LM Am|JM,)Y}, (n,). (BS)
J=|L-1| M;=—J

Inserting this relation twice into Eq. (B7) and exploiting the
orthonormality property

Lo Ly
Z Z (LaMyLy,My|JM ) {(LoMoLyMy|J' M)
My=—L, My=—L,;

=8778Mm,m, (B9)
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of the Clebsch-Gordan coefficients yields

L+1
L 0 - Lx
AP = o -y Z Y, ()
J=|L—1| M;=—J
/A L / ./ _
/ rY iy, m) - jr) (A=L,—L—1).
(B10)
If we define
4
Ziu, = \/2L+1/ drrtYjy, () j(r)
(IL-1<J <L+, (B11)

Eq. (B10) becomes

L+1

A (r )—477 2L+1 rh Y Z zie Yk ().
J=|L-1| M;=—J

(B12)

We show that the coefficients Z%h are components of a
rank-J irreducible spherical tensor Z4*. Using the relation

L 1
Y5y, )= > Y (LM im|JM;)YLy,(n,)e,, (B13)

M;=—L m=—1

reciprocal to the one in Eq. (B8), and the fact that the mth
cyclic component of the vector j(r) is given by

Jn(r) = ey - (1), (B14)
we obtain
L 1
Y5y, () j@y= " > (LMpm|JM)Y L, (1)) ju(r)
Mp=—L m=—1
={YL(1,) ® j()sm,, (B15)

and further

4 .
Ziw, =\ 341 fR A YL m) @ jO)ym, (B16)

which proves the statement.

Concluding this section, we observe that since in the
definition (B11) J varies in the range |L — 1| < J < L + 1,
for L = 0 there are only two tensors in the Z5* family: Z(l)0 and
20,71 while for L > 1 their number formally increases to six:
sz,, Zil, ZE and Zp M,z ZE o However,
in Secs. B2 and B 3 of thls appendlx we show that the tensors

ZLL and Zy~ "' vanish identically.

2. The far-field case (A = L): The tensors M; and T, _;

In the far-field zone, the asymptotics of the magnetic vector
potential is that displayed in Eq. (B3), with A“L(r) given by
Eq. (B12) specialized to the case A = L. Components of the
pertinent far-field tensors Z 7, may be found from Eq. (B11),
in which one sets A = L.

PHYSICAL REVIEW A 93, 062502 (2016)

Consider the tensor Z}%, ,, . In accordance with what has
been said above, its components are given by

[ 4m X
Zfil,MHl = 2L + 1 /]R3 dSrrLYIL‘J,_],MH,(nr) : J(r)

(B17)

However, from the differential relation [40, Eq. (5.8.9)]

J+1
A1 _ hyd+l
VIr'™ Y, u,m)] = —A—1) 2J+1” Yy, ()
+(J +2+2) r*Y i ()
(B18)
it follows that
v L+1Y p
PYE gy () = T UL g,

V(L + DEL+3)

Consequently, the integrand in Eq. (B17) may be rewritten as

Vo rt Yo, (n) ()]
V(L + DL +3)
A, )V - ()
JILFDRLF3)
(B20)

rLYI£+1,ML+](nr) SJjr) =

Since, by assumption, the current is solenoidal, the second
term on the right-hand side of Eq. (B20) vanishes. Hence,
replacing the integrand in Eq. (B17) with the first term on
the right-hand side of Eq. (B20), and then using the Gauss
divergence theorem, casts the former equation into

" _ 4
L1, My (L+ DQRL + DL +3)

x lim d’n, VL+3YL+1,M,‘+1(nr)nr - j(r).

r—>0o0 A

(B21)

Hence, provided that the current obeys the asymptotic con-
straint

lim X3, - j(r) =0

r—00

(B22)
one finds that
2, =0 (B23)

i.e., the tensor Z}%| vanishes identically. In result, Egs. (B3)
and (B12) may be combined into

rﬁoo MO 47
Z V2L + 1

Z Z ZﬁﬁL’IJ Yﬁ;‘k’h("’)

J=|L—1| M;=—J

(B24)

(the sum starts from L = 1, as we have proved above that the
tensor Z(I)O vanishes).
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In the literature, instead of the tensors Z5% and Z5L |, one
encounters the tensors My and T, _;, components of which,
given by

_ 3 L L
Moy, = ‘/(L+1)(2L—|—1)/ Fretyt, o) - )

(B25)
and
1 4 .
Tiim,, = _m,/ffw dsrrLyg_l,MH(n,).J(r),
(B26)
are related to those of Z-* and ZI~ | through
. L LL
MLML = —1 L——}—l ZLML (B27)
and
1 LL
Ti-im,_, =— (B28)

-z )
LQRL +1) 1M

The tensor M, is the plain 2-pole magnetic moment, and
the tensor T;_; is named the 25~!-pole magnetic toroidal
moment [43] (various integral representations of components
of the 2¢-pole moment T; are derived in Appendix C). With
the use of components of these two more common tensors, the
expansion (B24) is replaced with

rooe MO
Z 2L+1

[L+T ¢
X[l Z MLML LML(”r)

M;=—L
—(1—=6L)VLRL+1)
L—1
x> TLI,MLIYﬁ*l,ML,(n,)}. (B29)
M, _=—L+1

The factor 1 — 87 has been inserted into the second term in
the square bracket since, as shown at the end of Appendix C,
it holds that 7yy = 0.

It remains to derive the expression for the asymptotic
representation of the magnetic induction with the aid of the
well-known formula

B(r) =YV x A(r). (B30)

If we exploit the differential relation (B18) with A =—L — 1

PHYSICAL REVIEW A 93, 062502 (2016)

On the other hand, from the identity [40, Eq. (7.3.55)]
V x [f(}’)YLML(nr)]
L 0

— 7 — = L+1
= 2L+1(8r r)f( Y Ly, ()

4 [L+1 (0
l JE—
2L + 1\ or

one infers that

Vo Y Ey, )] = i VLRL + Dr Y ).
(B34)

L+1
+ f)f( Whil(n,) (B33)

On combining Eq. (B30) with Eqgs. (B29), (B32), and (B34),
one arrives at the sought asymptotic representation

o0
—“—; 3 VA @+ nrt?
L=1

B(r) =%

L
x> M, Yy (B35)

My =—
of the magnetic induction. It is seen that components of the
magnetic toroidal moments T, do not appear in Eq. (B35).

3. The near-field case (. = —L — 1): The tensors N, and U,

In the near-field region, the asymptotic representation of the
vector potential may be derived from Eqgs. (B4) and (B12), the
latter with A = —L — 1. Components of the tensors Zﬁ’_L_l
are given by Eq. (B11), with A specialized as above. Then, in
complete analogy with what has been presented above, the use
of the identity (B31) leads to the inference that

zi =, (B36)
provided that the current is constrained to obey
m% r 2, jr) =0. (B37)

If, pursuing further the analogy with the material of Sec. B 2
of this appendix, we introduce the tensors N, and U, ;; with
components

4 (L + 1) Lyl .
=i [— Y ) -
NLML 1 L(2L n 1) - LML(n ) J(r)
(B38)
and
1 4
Unimen = =39\ T 41

< [ w0, B39

and J =L —1, this allows us to write the product
A SN (n,) as a gradient of a scalar field:
respectively, related to those of Zf’_L ~!and Zé +1L ! through
_ VI Yi_im,, (n,)]
L-1yL M \"Pr
Y n,) = . B31 JL+1 1
L—1,M;_ 1( ) L(ZL—I) ( ) NLML =1 L Zf;VILL ! (B40)
This immediately implies that and
Vox [rily n,)] =0. B32 _ 1 L—L-1
[ Loty ()] (B32) Up i, =— O Zratal . 4D
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after some algebra we arrive at the following near-field limit
for the vector potential A(r):

10 o 4r
~ar LAl
T = L+
x [(1 —3L0)i,/L+1 Z Now, Y5y, (n,)

A(r) ig

M;=—L
++ (L +1DQRL+1)
L+1
XY Usim,, Yﬁil,Mm(n,)]. (B42)
My 1=—L-1

The factor 1 — 8, has been inserted into the first term in the
square bracket since Eq. (B12) implies that the only nonzero
contribution to A%~'(r) comes from the term involving
components of the tensor Z?’f1 [or equivalently, by virtue
of Eq. (B41), the tensor U;].

The near-field multipole expansion of the magnetic induc-
tion is obtained from Eqgs. (B30) and (B42), with the aid of the
curl identities

VX [P Yy, ()] =0

[cf. Eq. (B19)] and

V x Y Ey, )] = =i L+ DL+ D Y )

(B44)

(B43)

[cf. Eq. (B33)]. The required result is

Br) =2 ——Z\/ wLrt! Z N, Y5 ).
Mp=—L
(B45)

APPENDIX C: ALTERNATIVE INTEGRAL
REPRESENTATIONS OF THE FAR-FIELD
MAGNETIC TOROIDAL MULTIPOLE MOMENTS T,,

It follows from the material presented in Appendix B
that for a given sourceless stationary current distribution
Jj(r), spherical components of the magnetic toroidal 2--pole
moment T; may be defined as®

1 4 .
—2L+3\/L+1/R$ ety ) - (),
(C1)

where Yﬁ M, (n,) denotes the vector spherical harmonic (B13),
or equivalently as

1 4
T = _ | 2T [ Brrltipy Y
LM 2L 13 L—}—l/Rs rr Y L) @ i),

(C2)

Tim =

®The components of the magnetic toroidal multipole moments
defined in Refs. [42,43] are complex conjugates of ours. Moreover, in
Refs. [42,43] the Gauss system of units was used, while in this paper
we conform to the International System of Units; consequently, we
omit the factor 1/c in the definition of 77 .
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(observe that the irreducible tensor product appearing in the
above equation is commutative).
Consider now the identity [40, Eq. (5.8.9)]

VIf(r)Yrun,))
_ L+1 i L I+
a 2L +1 (Br r )f( )Y (nr)

L o L+ .
+\/;(E + >f( NY 5 (). (C3)

In the particular case f(r) = rit2, Eq. (C3) yields

L+1
\v/ L+2Y ] = ) LJrlyL-I—l n,
[r Lm(n,)] Vars1” (n,)

+(2L+3) L+lyL l(nr)

2L +1
(C4)

Hence, it follows that Eq. (C1) may be rewritten as
V2L +1)

(L+DE2L+3) Jr
VL

L1

Tim = Irjr)-Vir' Y,
3

At ) - (), (CS)

Let us transform the first integrand as follows:

J@) VIR ym)] = V- rE Y () j ()]
—rfP2Y @)V - j(r).  (C6)

As we have assumed that the current is sourceless, one has
V . j(r) =0 and the second term on the right-hand side of
the above equation is zero. Furthermore, if the current density
obeys the constraint

lim . jr)y =0 (C7)
(which is certainly the case for atomic currents which vanish
exponentially at infinity), application of the Gauss’ integral
theorem to the first term on the right-hand side of Eq. (C6)
leads to the inference that the first integral on the right-hand
side of Eq. (CS5) vanishes. In that way, we have proved that
Trm, defined in Eq. (C1) in terms of the vector harmonic

YLH(n ), may be equivalently expressed as
VL
Tiw =7 11 Y @) ). (C8)

Multiplying Eq. (C8) by n € C and Eq. (C1) by 1 — 7, and
then adding, we find

T — LJrl YL ,
LM = \/L+1/Rs [VL—}—I L (1)

Y”‘(m)} - j(r). (C9)

+( =)

2L +3

Playing with the value of 7, the above general formula may
be used to obtain particular expressions for 7;,,, some of
which have already appeared in the literature. For instance,
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with n = (L + 1)/(2L + 1) Eq. (C9) becomes

JrL
Tiy = — o drri!
2L+ 1 Jg
2 [L
Y l(n, = yH ) |- o),
|:LM(n)+2L+3 L+l () |-j(r)

(C10)

which coincides with Eq. (4.10) in Ref. [43]. Furthermore, if
n = —2/(2L + 1), then Eq. (C9) reduces to

1 /| 4
Ty = —— T /dgrrLH
L+1V2L+1 Jgs
n)— ,/ Y7y } ().

(C11)

|: 2L+1

Since it is known (cf. Ref. [40, Eq. (7.3.70)]) that
/ / L + 1
r) L+1 r) = nrYLM(nr)v

(C12)
Eq. (C11) may be rewritten in the compact form

7, J 4”fd LY, u(n)r - j(r).  (C13)
= — r nr - j(r
Lm L+l 2L+ 1 Jpu O T J

given before in Refs. [43, Eq. (B.4)] and [25, Eq. (2.2)]. The
representation (C13) of 77 5, has been found to be most suitable
for the purposes of this work, and the considerations presented
in Sec. V have been based upon it. As the last example, in
Eq. (C9) we put n = 2(L + 1)/[(L + 2)(2L + 1)]. This casts
the latter equation into

1 47 L
Ty = — U /d*rr“’
L2\ T+ DL+ D Jrs
L+1
J Y (n,
X[ 2L+ 1 )+
(C14)

The integrand in Eq. (C14) may be simplified with the aid of
the formula (cf. Ref. [40, Eq. (7.3.73)])

L+1 ey
v Y,y (n,
2L + 1 Lo () +

Y“‘(nr)] J@).

YL+l(nr)
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the third particular expression for 77 5, we wish to present here

is
i 4
Tim = \/
(L+1D)(L+2)V2L+1

x/ ArrtYoym)A - [r x j(r)]. (C18)
]RB

Concluding this appendix, we observe that the monopole
toroidal moment vanishes identically. This is immediately seen
if in Eq. (C13) one sets L = M = 0, obtaining

Too = / d’rr - j(r), (C19)
R3
and then one replaces the integrand by the right-hand side of
the obvious identity
1 2
5Y" [r?j ()] - —r V- j).

r-jr)= (C20)

APPENDIX D: ALTERNATIVE INTEGRAL
REPRESENTATIONS OF THE NEAR-FIELD
MAGNETIC TOROIDAL MULTIPOLE MOMENTS U,,

In Appendix B, we have come across a set of the near-
nucleus magnetic toroidal multipole moments Uy, with L > 1,
the spherical components of which are given by

ar 3. ~LylL
Uiw ==y L & ¥ -, o

or equivalently by

1 4
5 VT fR A Y L) ® ()i

(D2)
In this appendix, we aim to show that there is a one-
parameter family of representations of U/, y; which, under some
constraints imposed on the current density j(r), are equivalent
to the one given in Eq. (D1). We shall be brief, as in many
details the reasoning is similar to that presented in Appendix C,
where the counterpart set of the far-field moments has been
considered.
Substitution of f(r) = r~%*! into Eq. (C3) transforms the
latter into

uLM =

L+1
2L +1

+z,/ﬁ “LyLl(n);  (D3)

Vir - Y )l = QL — 1),/ —— r Y5 ()

=—in, X YLM(n,). (C15)
This yields hence, it follows that Eq. (D1) may be rewritten as
V7L
i 4r L Upy = -2~ 2 m@L+1 / Erjr)-Vir 1y um)
T = — LQ2L —1)
L+2\ (L+1DQ2L+1)
NZZIAES))
L ' n 7(L+ 1 / SrrtY ) - (). (D)
X d’rr”Y ) - [r x jr)]. (Cl16) L R3
R? o
Since it holds that [40, Egs. (7.3.9) and (7.3.6)] Now it s evident that
L AYpu(n,) J@) -V Y @)l = V- I Y () j ()]
YE (n,) = ————, C17 _ .
() = e €17 — Y )V - j(r). (DS)
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Consequently, if the current is solenoidal and such that
1in(1)r*L+3n, S jr)y=0, limr tn, . jor)=0, (D6)
r— r—00

the first integral on the right-hand side of Eq. (D4) vanishes,
yielding

Uy = rr b Y ) - j@r). (D7)

«/H(L-i-l)'/ 43
L R?

Multiplying Eq. (D1) by a parameter n € C and Eq. (D7) by
1 — 7, and then adding, we obtain the sought one-parameter
family of equivalent expressions

E1d 2
— T Pt Y l(n,
Ui =—\T /R; " ["2L — Y ()

L+1
(- %Yﬁ;(m] jr). (D8)

which may be interchangeably used as definitions of compo-
nents of the tensor Uy .

Two particular choices of n are worth analyzing here. Thus,
for

2L -1
2L+ U
by virtue of the identity (C12), we obtain

1 47 .
Um==T\3r 11 /]R3d3rr_L_]YLM(”r)r - j(r), (D10)

while for

n (D9)

_@+DeL-1
T= L -DeL+ 1)
after exploiting the relations (C15) and (C17), we find

i 4
Uy = Prrt Y u(n)A
M=Tao V2L +1 /ﬂ;{s e Y ()

rx gl (L#D. (D12)

If L =1 were admitted in Eq. (D12), the integral appearing
therein would vanish (see the next paragraph), and conse-
quently on the right-hand side we would have a 0/0-type
expression. To prepare the ground for the use of the L’Hospital

J

(L #1), (D11)
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rule, we set L = 1 in the spherical harmonicand L = 1 + ¢ at
other places in the above formula. Hence, if we let ¢ tend to
zero, after exploiting the aforementioned rule, we obtain

. |4 3 _» .
U =i\ f Err In(/r) Vi (m)A - [ x j(r)l,
R?
(D13)

where r(, of the dimension of length and such that ry > 0 but
otherwise arbitrary, has been introduced merely to make the
argument of the logarithm physically dimensionless.

We still owe the reader a proof that 71, = 0, where

Ly = / ErrYiym)A - [r x jr)].  (D14)
R3
To show this, we observe that with the use of the relation

/3
Yin(n,) = 1

the integral in Eq. (D14) may be transformed into

Ly = ,/41/ Arr3[(r x Aey -1)]- jr). (D16)
T JR3

Hence, it follows that

3 r r .
Iy = —i /_/ d3rw-1(r). (D17)
%4 R3 r

Now, it holds that

n, x (n, X ey)

(D15)

= —V(ey - n,), (D18)

,
and consequently one has

3
I =iy o / &PrV - [(ew - n)j(r)]
T JR3
~y if Lriey -n)V - j(r).  (DI19)
47‘[ R3

The first integral on the right-hand side is zero by virtue of
the Gauss’ theorem and the constraints in Eq. (D6), while
in the second one the integrand vanishes identically since, by
assumption, the current is sourceless. This completes the proof.

APPENDIX E: FORMULAS FOR THE GENERALIZED HYPERGEOMETRIC SERIES ;3 F>(a,1,1; b,n;1) WITH 1 = 3,4,5

In the course of evaluation of the three kinds of shielding factors, presented in Secs. VI to VIII, we have encountered the
specialized generalized hypergeometric series 3 F»(a,1,1;b,n; 1), with n = 3,4,5. It may be found in the literature that the one
with n = 3 may be expressed in terms of the digamma function as [44, Eq. (7.4.4.41)]

2(b -1 2(b— 1) —
ya (“;,}’31; 1) =P R = D= b —a D] [Re(o @) 1] (E1)
which, after exploiting the relation
1
Y+ 1) =vy(@+ E, (E2)

may be transformed into

F a,l,l1 _2(b—1)_2(b—1)(b—a)
32 ) (a—1)a—2)

b3’

(Wb —-1)—y0b—-a)] [Red—a)>—l]. (E3)

Below we derive analogous expressions for the two remaining 3 F>(1) functions of interest in the context of this work.
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Playing with the definition

- (al,az,as, )_ T'(b)T(h) ir<n+a1)r(n+az)r(n+a3) "
32\ b by %) T T(apT (@) (@) ~  T(+b)l(n+b)  n!

[Iz] < 1;Re(by + by —a; —ay —az) > Oforz = 1] (E4)

(the constraints on z, a’s and b’s are tacitly assumed to hold throughout the rest of this appendix), it is possible to obtain the
recurrence relation

ai, az, as a; ar, az, as + 1 by —1 ai, az, as
2= ——— )= iz ), E5
3F2< by by Z) as—b2+13Fz< by by Z) as—b2+13F2<b1,b2—1 Z) ()
from which we deduce that
a, 1,1 1 a, 1,2 n—1 a 1.1
3Fz(b,n ) n—23Fz<b,n >+n—23Fz<b,n—1 ) (ES)
Next we exploit the identity
a1, a3 (b1 — )by — 1) a—1,1,a3 — 1 (b1 — )by — 1)
)= ) s s E7
3F2< by, by Z) @D -0 2\ b =161 7 (@~ D@ - Dz E7)
which also may be directly inferred from the definition (E4). As the particular case of that identity, we have
a, 1,2\ _ (—DHb-1 a—1,1,1 (n—1D®-1)
3F2<b,n’1>_?3Fz<b—l,n—l’l>_T' (E3)
Insertion of Eq. (E8) into Eq. (E6) yields the relationship
a, 1,1 n—1 a, 1,1 (n—1kb-1) a—1,1,1 (n—1kb-1)
) = — ) - ———— | —_—— E9
3Fz<b’n ) n—23F2(b»n—1 ) w—a-0P -1t ey @

If in Eq. (E9) we put n = 4, after simplifying the right-hand side with the use of Eqgs. (E3) and (E2), we obtain
a, 1,1 3b—1)Ba—-2b—4) 3b—-Db—-—a)b—a+1)
3F2( b, 4 ;]) T 2a-2)a-3) (a—Da—2)a—-3)
Employing Eq. (E9) recursively, in the similar manner we find
a, 1,1 2(b — 1)(6b* + 24b — 15ab — 40a + 11a> + 36)
3F2< b,5 ”) B 3@ —2)a —3)a — )
4b—-Db—a)b—a+1)b—a+2)
 @—-D@—2)a-3)a—4)

For the sake of completeness, we observe that apparent singularities at some values of the parameter a in the expressions on the

(Wb —1) =y —a)] [Re(d—a)>-2]. (EIO)

[W(b—1)—y(b—-a)] [Re(d—-a)>-3]. (El

right-hand sides of Egs. (E3), (E10), and (E11) are removable with an application of the L’Hospital rule.
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