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Steering is an essential feature of non-locality in
quantum theory
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A physical theory is called non-local when observers can produce instantaneous effects over

distant systems. Non-local theories rely on two fundamental effects: local uncertainty rela-

tions and steering of physical states at a distance. In quantum mechanics, the former one

dominates the other in a well-known class of non-local games known as XOR games. In

particular, optimal quantum strategies for XOR games are completely determined by the

uncertainty principle alone. This breakthrough result has yielded the fundamental open

question whether optimal quantum strategies are always restricted by local uncertainty

principles, with entanglement-based steering playing no role. In this work, we provide a

negative answer to the question, showing that both steering and uncertainty relations play a

fundamental role in determining optimal quantum strategies for non-local games. Our the-

oretical findings are supported by an experimental implementation with entangled photons.
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The uncertainty principle is a fundamental feature of
quantum theory, which postulates the existence of
incompatible observables, the results of whose measure-

ments on identically prepared systems cannot be predicted
simultaneously with certainty. Recently, the traditional formula-
tion of uncertainty relations in terms of standard deviations and
commutators has been eschewed in favor of the entropic uncer-
tainty relations1 and the even more fundamental fine-grained
uncertainty relations2. These fine-grained uncertainty relations
are formulated in terms of the basic entities of the theory, namely
the probabilities of particular sets of outcomes for given sets of
measurements, and are thus able to capture the uncertainty of
these measurements in a more general manner than the entropic
measures or the statistical standard deviations. Moreover, the
uncertainty bounds are expressed in a manner independent of the
specific underlying quantum state, an advantage over the tradi-
tional formulation in terms of average values of commutators on
fixed states. Another fundamental feature of quantum theory is
steering, identified by Schrödinger in ref. 3. This property deter-
mines, for two systems in a shared (entangled) state, which states
can be prepared on one system by a measurement on the other.
Quantum steering can be used as a resource to generate ensam-
bles of quantum systems incompatible with a local hidden vari-
able (LHV) model4. For two-qubit states, all states that Alice can
steer are restricted to an ellipsoid within the Bloch sphere of Bob5.

The results of measurements on distant quantum systems can
be correlated in a way that defies classical local realistic descrip-
tion. This non-locality of quantum theory is evidenced in the
violation of Bell inequalities by spatially separated quantum sys-
tems. Quantum correlations are restricted to some extent by the
no-signaling principle, i.e., the measurement results cannot allow
for signaling between the distant locations. Nevertheless, there
exist non-local correlations allowed by the no-signaling principle
that cannot be realized in quantum theory6,7.

The fundamental question why quantum correlations are non-
local yet not as strong as allowed by the no-signaling principle is
an intriguing one that has stimulated the formulation of many
striking new information-theoretic principles. So far none of the
known principles have been able to capture the set of quantum
correlations in its entirety8, thus a comprehensive answer to this
question is still lacking. The test-beds for these principles are a
special class of Bell inequalities based on so-called quantum non-
local games which extract purely probabilistic aspects of the non-
locality test, independent of the physical realization. Considera-
tion of non-local games lead to a significant breakthrough in ref. 2

where two fundamental concepts of quantum theory, the strength
of non-local correlations and the uncertainty principle, were
shown to be inextricably quantitatively linked with each other.

Moreover it was shown that in a large class of non-local games
for which optimal quantum strategies were explicitly known (the
class of XOR games for which an explicit characterization of the
optimal quantum strategy was provided by Tsirelson9) these are
not only just linked, but one of them—uncertainty—fully deter-
mines the non-locality of quantum theory with steering playing
no role. An important question left open in ref. 2 was whether
such a phenomenon holds in general. If it did, this would con-
stitute a defining property of quantum mechanics: that something
fully local (the uncertainty principle for a single-party’s mea-
surements) governs something non-local (the Bell violation on a
shared system).

The intriguing result of ref. 2 is that while the degree of non-
locality in any theory is generally determined by a combination of
two factors—the strength of the uncertainty principle and the
degree of steering allowed in the theory, in quantum theory the
degree of non-locality for the well-known class of two-player
XOR games is purely determined by the strength of the

uncertainty principle alone. More precisely2, shows that in a two-
party Bell scenario, the strength of non-locality in any theory is
determined by the uncertainty relations for Bob’s measurements
acting on the states that Alice can steer to. On the other hand in
quantum theory, for all XOR games (aka bipartite correlation Bell
inequalities)9, the states which Alice can steer to are identical to
the most certain states, so that only the uncertainty relations of
Bob’s local measurements determine the outcome.

In this paper, we show that the one-to-one correspondence
between the uncertainty principle and the degree of non-locality
in quantum theory (referred hereafter as the Uncertainty
Principle—Quantum Game Value correspondence, or
UP-QGV correspondence) observed for XOR games in ref. 2

does not hold in general, by presenting an explicit counter-
example of a non-local game violating the correspondence. We
provide an intuitive explanation in terms of the
Schrodinger–Hughston–Jozsa–Wootters theorem10 for when the
UP-QGV correspondence breaks down. To show that the game
does not have other optimal strategies that could obey the cor-
respondence and to facilitate experimental testing of our result,
we prove a self-testing property of the game, namely that there is
a unique state and measurements (up to local unitaries and
attaching irrelevant ancillae) that achieves the optimal quantum
value. Furthermore, the game is not an isolated example, we
extend it to show that every two-party non-maximally entangled
state ψj i is the optimal state for a game Gψ for which the cor-
respondence does not hold. The trade-off existing between
steering and uncertainty is conclusively shown by means of an
experimental implementation, in which the steered states
manifestly are seen to be distant from the maximally certain state
even after the experimental errors are taken into account.

Results
Uncertainty principle—quantum game value correspondence.
Let us first recall the precise correspondence between the fine-
grained uncertainty relations and the strength of non-locality
established in ref. 2. Consider a two-player non-local game G,
in which Alice and Bob receive questions x,y from respective
input sets X,Y according to some input distribution πX,Y(x, y).
They return answers a, b from some output sets A, B, respectively.
The winning constraint is specified by a predicate V(a, b|x, y)∈
{0, 1}. The success probability in the game ωs(G) is thus written as

ωsðGÞ ¼ max
PA;BjX;Y2C

P

x 2 X

y 2 Y

πX;Yðx; yÞ

P

a 2 A

b 2 B

Vða; bjx; yÞPA;BjX;Yða; bjx; yÞ;
ð1Þ

where S refers to a set of conditional probability distributions
(boxes) PA,B|X,Y. One considers boxes taken from sets C,Q,NS
corresponding to the set of classical, boxes and general no-
signaling boxes, with corresponding values ωc(G), ωq(G), and
ωns(G) respectively. One may also restrict attention to the free
games for which the input distributions are independent, i.e., πX,
Y(x, y)= πX(x)πY(y).

We will in particular be interested in ωq(G), i.e., the value
obtained from those boxes for which there exists a state ρ on a
Hilbert space Hd and sets of measurement operators (POVMs)
Mx

a

� �
; My

b

� �
such that PA,B|X,Y(a,b|x,y)= Tr ρMx

a �My
b

� �
. The
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idea in ref. 2 is to rewrite the game expression in Eq. (1) as
X

x; a
πXðxÞPAjXðajxÞ

X

y;b

πYjXðyjxÞVða; bjx; yÞPBjY;X;Aðbjy; x; aÞ:

ð2Þ

Let PBjY;X;Aðbjy; x; aÞσ̂B
ajx
be Bob’s marginal probability distribution

when his state is steered by Alice to σ̂Bajx . Now, observe that for
each (x, a), the expression

X

y;b

πYðyÞVða; bjx; yÞPBjY;X;Aðbjy; x; aÞσ̂B
ajx

� ξðx;aÞB ; ð3Þ

constitutes a fine-grained uncertainty relation on Bob’s system
with ξðx;aÞB denoting the maximum over all possible states σ̂Bajx of
Bob’s system. When the optimal value ξðx;aÞB equals unity, we refer
to the corresponding uncertainty relation as trivial, i.e., while the
probabilities are bounded below unity for some states, there exist
states for which the outcomes (for each of Bob’s inputs y) can be
fixed with certainty. On the other hand, when ξðx;aÞB <1, we infer
that one cannot obtain a measurement outcome with certainty for
all measurements simultaneously.

An example situation of the uncertainty relation is shown in
Fig. 1 and steering to the maximally certain states is exemplified
in Fig. 2.

Let f~σBajxg denote the set of states of Bob’s system that achieve
the maximum value ξðx;aÞB of the uncertainty expressions for each
(x, a) for given optimal measurement operators My

b

� �
. The

question then arises whether Alice is able to steer Bob’s system to
these maximally certain states and thus achieve the bound set by
the uncertainty principle for the game G. We are thus lead to
consider the effect of steering. For any bipartite no-signaling box
shared by Alice and Bob, any measurement on Alice’s system
creates a set of single-party boxes on Bob’s side {PB|Y(b|y)x,a}=
{PB|Y,X,A(b|y, x, a)}. We say that with this particular input–output
pair (x, a), Alice has steered the state of Bob’s system to the set of
boxes {PB|Y(b|y)x,a} with probability PA|X(a|x).

We see therefore in Eq. (2) the separation of the game
expression into two components, one where Bob’s (optimal)
measurements define a set of uncertainty relations one for each
(x, a) and a second component wherein Alice tries to steer Bob’s
system to the maximally certain states for these relations. The
strength of non-locality in any theory is thus seen as a trade-off
between the strength of the uncertainty relations and the amount
of steering allowed in the theory.

In ref. 2, it was shown that for the well-known class of two-
player XOR games for which the optimal measurements are
known, the strength of non-locality is purely determined by the
uncertainty relation with steering not constraining the value in
any way. In other words, the optimal measurements and the state
share the property that in all these known instances, Alice is able
to steer Bob’s system to the most certain states corresponding to
the set of uncertainty relations of his system for each
input–output pair (x, a).

Note that the restriction to non-local games rather than all Bell
inequalities is crucial for the correspondence to be meaningful.
Indeed, for general Bell inequalities, where one is allowed to scale
the Bell expression with arbitrary multiples of the normalization
and no-signaling equalities, it is possible to show that the
correspondence can always be made to hold up to arbitrary high
accuracy. This general observation inspired by recent results in
ref. 11 is explained in detail in the Supplementary Note 3.

Two-player XOR games are non-local games with an arbitrary
number of inputs and binary outputs, where the winning
constraint of the game only depends on the xor of the parties’
outputs. Building on a breakthrough theorem by Tsirelson9, it

was shown in refs. 12,13 that the quantum value of two-party xor
games can be calculated precisely by means of a semi-definite
program, and the Tsirelson theorem allows to recover the optimal
state and measurement operators for any such game. In effect,
apart from the pseudo-telepathy games14 and a few other isolated
instances, these are the games where the optimal measurements
are known and for which the relation between the uncertainty
principle and non-locality was established in ref. 2. The difficulty
in establishing the relationship for general non-local games is due
to the fact that the problem of finding the quantum strategy of
arbitrary non-local games is hard15; one usually uses a hierarchy
of semi-definite programs16,17 which converge to the true
quantum value.

Note that it is natural to ask about the relation of the steering-
type representation of the Eq. (2) to the well-known
Schrodinger–Hughston–Jozsa–Wootters theorem which defines
all the ensembles Alice may steer to. It is tempting to expect that
the result2 is due to application of that theorem. This is, however,
not the case because of the crucial fact it is not guaranteed that

s

Pol

Pol

Pol

�/2

�/2

0

M1

M2

⎪� >

Fig. 1 The uncertainty principle illustrated by randomly oriented polarizers.
Input state ψj i is prepared via a polarizer (Pol) oriented at ϕ/2, (which
corresponds to orientation ϕ on the Bloch sphere). A reflecting mirror M1 is
randomly inserted with probability 0 < p < 1 in the path of the photons. A
polarizer at 0 measures observable Q(0), and another one rotated by θ

2 (0
< θ < π) measures Q(θ), such that probability that a photon is transmitted,
is P(transmission)= ð1� pÞQð0Þ ψj i + pQðθÞ ψj i and it is upper bounded by ξ
(θ, p)

a

b

Alice Bob

Steering

n̂

n̂

n̂�

n̂�

�
�

m

m
�̂

�̂

�̂

Fig. 2 The Bloch sphere representation of the measurement situation. a The
state ψj i of the polarized photon is represented by v̂, while the projectors Q
(0) and Q(θ) correspond to unit vectors n̂ and n̂θ , respectively, and m is
give by m= 1� pð Þn̂þ p n̂θ . The bound on the probability of transmission ξ
(θ, p) is obtained from the vector m, ξ(θ, p)= 1þ mj j

2 . The uncertainty relation
defined by the probability of transmission (P(transmission)≤ ξ(θ, p) < 1) is
saturated by the ψj i with Bloch vector v̂ parallel to m. b The situation when
Alice tries to steer to the least uncertain state. It is achieved only when v̂jjm
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the maximally certain states together with the optimal local
probabilities PA|X(a|x) obey the no-signaling condition of the
SHJW theorem (see Supplementary Note 2 for more discussion),
viz.

X

a

PAjXðajxÞσ̂Bajx ¼
X

a

PAjXðajx′Þσ̂Bajx′ ¼ σ̂B ¼ trAσ̂AB: ð4Þ

Counter-examples to the correspondence. Let us now exhibit an
example of a non-local game for which the UP-QGV corre-
spondence does not hold, i.e., one where the optimal quantum
state and measurements are such that Alice is unable to steer
Bob’s system to the maximally certain state for each (x,a). Before
we proceed to the counter-example, let us mention that it is
possible that the optimal quantum value of a non-local game can
be achieved with different sets of states and measurement
operators (even going beyond a trivial unitary equivalence),
therefore one must check whether the relation could hold for at
least one optimal quantum strategy. Thus, in order to give a
counter-example to the UP-QGV correspondence, it is necessary
to prove that the relationship does not hold for all optimal
quantum strategies for the game. We achieve this requirement by
proving a self-testing property of the counter-example, i.e., that
up to unitary equivalences there is a unique state and sets of
measurements that achieves the optimal value of the game.

We consider the Bell scenario B(2, 2, 2) of two parties, each
performing one of two measurements and obtaining one of two
outputs. The Bell inequality corresponding to the game denoted G
(7) is explicitly given by

1
4 Pð0; 0j0; 0Þ þ Pð1; 1j0; 0Þ þ Pð0; 1j0; 1Þ þ Pð1; 0j0; 1Þ½

þPð0; 1j1; 0Þ þ Pð1; 0j1; 0Þ þ Pð0; 1j1; 1Þ� � 3
4 ;

ð5Þ

where we have assumed that each party chooses their inputs
uniformly, i.e., πX(x)= πY(y)= 1

2 for x, y∈ {0, 1} so that πX,Y(x,y)
= 1

4 and the classical bound is ωc(G(7))= 3
4. The optimal strategy

for the game G(7) violates the UP-QGV correspondence (the
proof of the following Proposition 1 is given in the Supplemen-
tary Note 1).

Proposition 1: The optimal quantum strategy for the game G(7)

(achieving ωq(G(7)) ≈ 0.782) violates the uncertainty principle—
quantum game value correspondence, i.e., Alice is unable to steer
Bob’s system to the maximally certain states and vice versa.

The uncertainty relations for each input–output pairs (x, a) of
Alice for the game G(7) are given as

x ¼ 0; a ¼ 0ð Þ ! PBjY b ¼ 0jy ¼ 0ð ÞþPBjY b ¼ 1jy ¼ 1ð Þ � 2ξð0;0ÞB

ð6Þ

x ¼ 0; a ¼ 1ð Þ ! PBjY b ¼ 1jy ¼ 0ð ÞþPBjY b ¼ 0jy ¼ 1ð Þ � 2ξð0;1ÞB

ð7Þ

x ¼ 1; a ¼ 0ð Þ ! PBjY b ¼ 1jy ¼ 0ð ÞþPBjY b ¼ 1jy ¼ 1ð Þ � 2ξð1;0ÞB

ð8Þ

x ¼ 1; a ¼ 1ð Þ ! PBjY b ¼ 0jy ¼ 0ð Þ � 1; ð9Þ

where the uncertainty bounds are ξð0;0ÞB ¼ ξð0;1ÞB � 0:882, and
ξð1;0ÞB � 0:823. The optimal state and measurements achieving
ωq(G(7)) ≈ 0.782 are given in the Supplementary Note 4, where it
is shown explicitly that while for (x= 1, a= 0) Alice steers Bob’s
system to the maximally certain state, for (x= 0, a= 0) and (x=
0, a= 1) Alice is unable to steer Bob’s system to the maximally

certain states of the corresponding (non-trivial) uncertainty
relations. Further, the trivial uncertainty relation for (x= 1, a=
1) also fails to be saturated. The value ωq(G(7)) achievable in
quantum theory is thus strictly lower than what is allowed by the
uncertainty principle, and therefore the game G(7) violates the
UP-QGV correspondence.

Let us now see why the UP-QGV correspondence breaks down
for the particular game G(7), and establish conditions for the
correspondence to hold. To do so, we examine the assemblage
fPAjXðajxÞ; ~σajxg of maximally certain states. For the game G(7) it
can be readily verified that the corresponding assemblage of
maximally certain states does not obey the no-signaling relation
Eq. (4), so the SHJW theorem does not guarantee the existence of
a shared entangled state and measurements on Alice’s side that
would prepare the corresponding maximally certain states on
Bob’s system. Formally, we may make the observation (which
follows from well-known demands on steerability4) that the UP-
QGV correspondence holds when the probabilities PA|X(a|x)
together with the maximally certain states σ̂Bajx obey the no-
signaling constraint in Eq. (4).

Observation 2: The uncertainty principle determines the non-
locality of quantum theory whenever the maximally certain states
σ̂Bajx of one party’s measurements together with the optimal local
probabilities {P(a|x)} of the other party, forms a no-signaling
assemblage, i.e., when fPðajxÞ; σ̂Bajxg obeys Eq. (4).

The game G(7) shows that this condition is not always obeyed
by the maximally certain states. While it appears at present an
intractable problem to characterize the set of all games where the
UP-QGV correspondence breaks down, we can nevertheless show
that the game G(7) is not singular in this respect. Indeed, every
two-party non-maximally entangled state ψj i (i.e., a state not of
the form 1ffiffi

d
p

Pd
i¼1 i; ij i for some d > 1) is the optimal state for a

game Gψ for which the correspondence does not hold. This is
captured in the following proposition (whose proof is given in the
Supplementary Note 4).

Proposition 3: For any two-party entangled, but non-
maximally entangled, state ψj i 2 C

d � C
d for arbitrary Hilbert

space dimension d, there exists a game Gψfor which the optimal
quantum strategy is given by suitable measurements on ψj i, and
such that the correspondence between the uncertainty principle
and the quantum game value does not hold for Gψ.

An interesting open question is whether the conditions in
Observation 2 are met for all unique games18 which are a natural
generalization of XOR games to a larger output alphabet. Also
interesting is to find whether the correspondence holds for all
games where the optimal strategy involves a maximally entangled
state, which would highlight that in the foundational program of
seeking an information-theoretic principle behind the strength of
quantum non-local correlations, one must go further than the
correlations exhibited by the maximally entangled states alone.

Experimental implementation. In our experiment, the physical
qubits are single-photon polarization states and the computa-
tional basis corresponds to the horizontal (H) and vertical (V)
polarization, i.e., Hj i � 0j i and Vj i � 1j i. To achieve the max-
imal violation of the Bell inequality given in (5), we used the
following non-maximally polarization-entangled two-photon
state,

Ψj i ¼ 0:2487 HHj i þ 0:4760 HVj i
þ0:8060 VHj i � 0:2487 VVj i: ð10Þ

This state is produced in two steps. First, we generate entangled
photon pairs via spontaneous parametric down-conversion
(SPDC)19. Then at the second step, these entangled pairs are
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transformed to the required state Eq. (10) by local rota-
tions20. With this state, one can use simple linear polarization
settings ϕ±

x

�� � ¼ cosγx Hj i± sinγx Vj i on both sides, where γ0= π/
4 and γ1= 4.7948. The polarization measurement on Alice and
Bob’s sides are performed by analyzers consisting of waveplates,
polarizing beam splitters (PBS), and single-photon detectors. An
FPGA-based timing system is used to collect data. The experi-
mental setup is outlined in Fig. 3 and its detailed description can
be found in the Supplementary Note 5.

The Fidelity, F ¼ Ψh jρexp Ψj i, of the experimentally prepared
state ρexp with respect to Eq. (10) was 0.9933 ± 0.0009. We
obtained the experimental Bell inequality violation ωq(G(7))=
0.7770 ± 0.0002. Note that the theoretical quantum and classical
bounds are 0.7822 and 0.7500, respectively. The fidelity of the
four maximally certain states v0+, v0−, v1+, and v1− are given by
F0+= 0.9990 ± 0.0003, F0−= 0.9888 ± 0.0008, F1+= 0.9899 ±
0.0009, and F1−= 0.9957 ± 0.0004, respectively. Here, vij is the
least uncertain state associated to Alice measurement i having
outcome j. In Fig. 4 we represent the least uncertain states (blue)
and the states mij that Alice is able to steer (red) (see
Supplementary Notes 3 and 5 for details related to theoretical
and experimental results, respectively). Experimental errors
determine eight cones in Bob’s Bloch sphere, whose apertures
are the largest possible, according to the experimentally obtained
errors.

For error estimation, we have considered the error originated
from the measurement side only, as the error on the preparation
side will just shift the experimentally prepared state away from
the desired state and therefore will be apparent from the reported
state fidelity or the value of Bell violation. Further details are
given in Supplementary Note 8.

We note that the experimental realization is not strictly
required for the case of the paper. However, it is fundamental to
note that the breakdown in the correspondence between the two
major aspects of quantum theory is not a trivial one that would be
washed out under inevitable experimental error, since the
correspondence was only considered for the optimal quantum
value. As such, it is of interest to find that even with current

experimental technology, one can achieve sufficient experimental
fidelities to make the case of the paper, apart from serving as one
of the first experiments to self-test a non-maximally entangled
state. Finally, we remark that the experiment was not performed
in a loophole-free manner, as such it would be interesting to
check the expectation that the same conclusions also hold in a
loophole-free Bell test such as recently done in refs. 21–23.

Discussion
In this paper, we have shown that the intriguing correspondence
between the uncertainty principle and the quantum game value,
proven for the very important class of two-player XOR games in2,
does not hold for general non-local games. In order to prove this

UV
laser

BBO

YVO4

F

a

b

SMF

State preparation

HWP

HWP

QWP

PBS

Bob

Alice

D2

D1

D4

D3

Fig. 3 Preparation and measurement stages. A UV pump laser at 390 nm was focused onto two β-barium borate (BBO) crystals placed in cross-
configuration to produce photon pairs emitted into two spatial modes “a” and “b” through type-I SPDC process. Any spatial, temporal or spectral
distinguishability between the photons is removed via a pair of YVO4 crystals, narrow-bandwidth filters (F), and coupling into single-mode fibers (SMF).
Then, the photons in each mode are rotated through a half waveplate to get the desired state Eq. (10). For measurement, Alice and Bob uses polarization
analyzers consisting of a half waveplate (HWP), a quarter waveplates (QWP), a polarizing beam splitter (PBS) and Di (i= {1, 2, 3, 4}) single-photon
avalanche photodiodes

v1–
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0.5

0.5 1.0
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Fig. 4 Experimental results. Least uncertain states v (red) and states m that
Alice is able to steer (blue). Cones show experimental errors originating
from statistics (Poissonian) and systematic due to limited precision of the
settings and non-ideal components. The experimental results illustrate that
steering to the maximally certain state is not possible, as cones associated
to v0+ and m0+ do not intersect
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result we have put forth an intuitive argument to identify when
the correspondence holds in terms of the SHJW theorem.

Many interesting questions remain open. First, note that the
CHSH inequality is the only facet-defining inequality in the Bell
scenario B(2, 2, 2) and the non-local game we consider constitutes
a lower-dimensional face of the classical polytope. It is of interest
to find whether the correspondence holds for non-local games that
are tight Bell inequalities (facets of the classical polytope), or for
games where the optimal strategy involves a maximally entangled
state. Second, while the uncertainty relations always provide a
bound on the quantum value, it is now an open question to
characterize the class of games for which this bound is saturated
and more interestingly those for which the gap is extremal.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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