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There are many steps in the design of a microwave filter:
mathematically describing the filter characteristics, represent-
ing the circuit as a network of lumped elements or as a cou-
pling matrix, implementing the distributed elements, finding
the initial dimensions of the physical structure, and carrying
out numerical tuning using electromagnetic simulators. The
whole process is painstaking and time-consuming, and requires
a great deal of engineering expertise. Microwave filters are
very complex geometric structures and their simple circuit rep-
resentation is often very hard to find. Moreover, manufacturing
them is costly, so in order to be sure that the hardware resulting
from the design will meet the performance goals, rigorous
computer tools are used to determine the physical dimensions
and to evaluate all the adjustments at the final stage. This last
stage is particularly challenging, and advanced computational
techniques are required.

At microwave frequencies, the physics governing the opera-
tion of a filter are given by Maxwell’s equations. To accurately
predict a filter’s behavior, the software has to numerically
solve Maxwell’s equations at all frequencies, within a given
frequency band, and with high accuracy. There are several
methods that are used in commercial and in-house code to
do this, including the method of moments, mode matching,
the finite-difference method, and the finite-element method.
Unfortunately, all electromagnetic (EM)-based solvers have
the same problem of long computation times. During the
numerical tuning and final global optimization stages, the
simulations must be repeated many times. Waiting for design
closure can be frustrating.

In an ideal world—or at least in a microwave filter de-
signer’s paradise—it would be as simple as providing the
filter specifications, clicking START, and letting the computer
do all the work. The humans involved would relax and have
more time to enjoy life and develop themselves, while the
machines did all the chores. This designer’s paradise is still
far away, and in fact may never be reached: humans will
always need to make some knowledgeable decisions on filter
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topology and implementation, even if the tedious task of
refining the crude design to meet performance goals can be
left to the machine. In theory, this can be achieved using
computer-aided design (CAD) tools that are meant to assist an
engineer by design-by-optimization. To date, running complex
optimization tasks based on full-wave solutions of Maxwell’s
equations has been considered infeasible, especially when the
number of design variables is large and the initial design is
not high enough quality. In 2007, Microwave Magazine ran a
feature article by microwave filter experts Dan Swanson and
Giuseppe Macchiarella [1], who remarked: “without a good
starting point, the most elegant optimization procedure may
not be able to find an acceptable solution.” More recently, in
2011, also in a feature article in Microwave Magazine, Ming
Yu and Ying Wang [2] observed: “a brute force application of
optimization, for example by defining a cost function based
on the specification and feeding it to an optimizer, is rarely
successful.”

As we will see, recent advances in computational electro-
magnetics and CAD mean that these two statements are likely
to need revision: to a large extent, designers’ dreams may soon
come true. The answer to these dreams lies in overcoming a
few crucial obstacles, which we will discuss in detail in this
paper. We focus on the design-by-optimization of filters using
electromagnetic solvers based on the finite-element method
(FEM) [3], [4], as this is one of the most general and powerful
numerical techniques, and one which is ideally suited to the
arbitrarily shaped 3D geometries found in many microwave
filter implementations. With suitable enhancements, FEM can
address many of the challenges that have prevented successful
EM-based CAD of microwave filters. Moreover, while the
focus of this article is on FEM, some of the techniques we
describe also apply to other full-wave methods.

The most important factor for designers is the overall
time needed to complete a design. Since a single full-wave
simulation takes a long time, one way to speed up the process
is to use a full-wave solver as little as possible—maybe
just a few times in the entire design cycle–to verify if the
design obtained from faster, less accurate approaches is good
enough. Thus a variety of techniques that operate with two
(or more) mathematical models of a microwave structure have
been proposed. The first of the two models is simplified,
but can be evaluated very quickly, and crucially often gives
sensitivities with respect to the design parameters. This allows
designers to use gradient-based optimizers. Using a simplified
model, the optimizer converges to an approximate solution,
and the accuracy of the design is verified against a second
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(costly) high-fidelity model. This shows how the crude model
can be corrected to improve its accuracy. The whole process
is then repeated. There are various ways to create a low-
fidelity model and subsquently improve it. The model can
take the form of an equivalent circuit of a structure—or of
a mathematical multiparametric surrogate metamodel that has
been constructed upfront—or it may be purely numerical,
provided by the same solver as the high-fidelity approach,
though executed with relaxed accuracy settings. In surrogate-
based optimization, the metamodel can be constructed using
a response surface [5], through kriging [6], [7], or by using
radial basis function [8] interpolation techniques. Artificial
neural networks [8]–[10] and extreme learning techniques [11]
have also been described. If we want to improve model quality,
we can use either sample-point refinement (where the model is
augmented with new samples around the optimum) or various
space-mapping approaches (such as input, output, implicit,
and aggressive manifold mapping). These approaches have
been successfully employed to conduct efficient and highly
accurate EM-based design optimization [12]–[14]. They have
also often been used in other areas of engineering when
evaluating the response would take too long [15]–[17]. When
designing filters using FEM, exceptionally good results have
been obtained with multifidelity (two-level) manifold mapping
with frequency correction [18] where, for a fifth-order linear-
phase filter involving as many as fifteen design variables, as
well as two complex and two imaginary transmission zeros,
only three high-fidelity model evaluations (and just one set of
derivatives on the fine level) were needed to reach the design
specification, starting from a very poor initial design.

Besides these ideas, remarkably fast optimization can also
be carried out by directly running full-wave solvers. In the
remainder of this paper, we will discuss only this approach
and show some ways to reduce runtime. We used InventSIM
for all the numerical examples; this is a commercial FEM
simulation and optimization framework [19] that implements
many of the techniques that we discuss in this paper. Other
commercial FEM tools, including ANSYS HFSS and CST
Studio Suite® (Frequency Domain Solver), also provide fea-
tures that can speed up computations. Both CST Studio Suite®

and InventSIM offer special modules intended to expedite
microwave filter designs.

I. UNDER THE HOOD: THE FINITE-ELEMENT METHOD

To understand the key factors affecting the speed and
accuracy of EM-based CAD of microwave filters, we will
first recall the basics of the finite-element method and of
the numerical techniques for finding a solution. In FEM, a
partial differential equation governing the physics underlying
the problem (a wave equation in electromagnetics) is converted
into a system of linear equations [3], [4]. To this end, the
entire domain of interest is meshed; the most popular shape
in three dimensions is tetrahedral. In each tetrahedron, the
field is represented as a linear combination of basis functions
with unknown coefficients. To find these coefficients, the wave
equation is first converted to the weak form, and the Galerkin
procedure is then applied with the basis functions that are also

used for testing. Boundary conditions are applied at this stage
too. This process results in a large system of equations with the
unknowns—referred to as degrees of freedom (DoF)—being
the coefficients of the basis functions in each tetrahedron. It
is important to note that the number of DoF is large, but
the coefficient matrix for the system of equations is sparse.
In practice, the matrix can have over one million rows and
columns, with about 20 nonzero elements per row. The matrix
is usually symmetric, but may be complex-valued. Once the
system has been solved, the EM field can be found inside
the structure, and processing this field at the ports yields the
scattering matrix needed to represent the properties of the
microwave filter.

A typical simulation scenario involves setting up the mesh
and solving the resulting sparse system of linear equations for
each frequency of interest. For better accuracy, the mesh is
created in an adaptive way, beginning with a low-resolution
mesh and moving to increasingly refined ones. At each itera-
tion, the local error in the mesh is monitored and the mesh
density is increased in the critical areas. To find the best mesh
for a given problem, it is necessary to repetitively solve the
system of FEM equations with an increasing number of DoF
in each iteration; this is a rather time-consuming process.

This brief outline of FEM is intended to provide a back-
ground for the approaches to accelerating EM-based CAD.
The most time-consuming of these is to solve a system of
FEM equations with the form:

(Γ + sG + s2C)E(s) = sBI,

U = BTE(s), (1)

with the transfer function (which is the impedance matrix)
defined as follows:

Z(s) = BH(Γ + sG + s2C)−1sB. (2)

In this system of equations, Γ, G, and C are FEM system
matrices with n rows and columns, B is the normalized n×m
port selection matrix, where n and m are the number of DoF
and the number of ports, respectively; finally, s = jω/c is the
complex frequency, and c is the speed of light.

The system of equations (1) is solved many times during
the simulation process: initially during mesh adaptation and
then during the frequency sweeps, when a solution has to
be found at each frequency point. Let’s look at this step in
more detail: for moderate-sized systems, with up to 3 or 4
million DoF and a workstation with about 64 GB of RAM,
the fastest way to find a solution will be to use a direct
method. In a direct method, the coefficient matrix is factorized.
Because storing the factors requires much more memory than
storing the matrix, factorization is performed in two stages.
The first stage is symbolic factorization, the goal of which is
to determine the nonzero pattern for the factors and to permute
the rows and columns in such a way that the factors occupy
the least memory. The factors are computed in the next stage,
called numerical factorization. Using the factors, the solution
can be found very rapidly. Fig. 1 shows pie charts with the
fraction of time spent in each stage, for two cases, with the
problem solved at 1 or 101 frequency points, respectively. Two
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Fig. 1. Pie charts showing the time spent on each stage of the FEM process,
with the problem solved at 1 and 101 frequency points, respectively. Two
filters are shown, with FEM problems with about 1.4 and 3.5 million DoF.

filters are considered, generating FEM problems with about
1.4 and 3.5 million variables (see Section II for details). It is
evident that factorization is the most time-consuming element,
so it should be done as infrequently as possible. It is also
important to remember that the symbolic factorization results
can be reused as long as the size and sparsity pattern of the
matrix do not change. This happens during frequency sweeps,
so the symbolic factorization is performed only once during
the process. However, if we analyze the filter at nF points
using a so-called discrete sweep, we have to carry out the
numerical factorization nF times. This number can be large
if we are trying to resolve fine filter features like the location
of transmission and reflection zeros, or to carry out wideband
analysis so as to find a spurious passband.

II. FAST FREQUENCY SWEEP

It should be remembered that EM-based CAD with an
FEM simulator involves numerical optimization requiring at
least several iterations for design closure. This means that, in
order to design a filter, we need to perform FEM simulations
repeatedly, each time calculating the filter response at many
points in the frequency band of interest. One way to reduce the
total time needed for the design is to perform the frequency
sweeps as fast as possible. The simplest way to carry out a
fast frequency sweep is to use the results of the EM analysis
at a few frequency points to gather data for interpolation, in an
approach called an interpolating sweep. The response of the
EM system can be approximated by a rational function [20].
A rational interpolant can be found by means of the Cauchy
method [21], [22], the Bulirsch–Stoer algorithm [23], [24],
vector fitting [25], or a Loewner matrix [26], [27].

Interpolating sweeps with adaptive sampling greatly reduces
the number of matrix factorizations. However, there are other
approaches that can result in even greater time savings. These

make use of the concept of model-order reduction (MORe).
The basic idea here is to replace the original complex model
with a much simpler reduced-order model (ROM) that re-
tains the original features with sufficient accuracy. Rational
interpolation is one way to create these models. Here we
are concerned only with finding a compact representation of
the input–output behavior of our system within the desired
band and do not get any information regarding the EM field
at frequencies other than interpolation nodes. This is a data-
driven MORe [28]. The other technique, model-driven MORe,
gives us both the transfer function and the field. At the heart
of a model-driven MORe lies the assumption that the EM field
inside a structure (here a filter) at any given frequency can be
expressed as a superposition of a small number of orthogonal
vectors. The idea behind this can be understood intuitively.
If we consider the field distributions inside the structure at
two frequencies close to each other, we expect them to be
“similar.” Going one step further, if we were to collect all the
field solutions within a frequency range and determine how
linearly independent they are (this can be done numerically
by computing the singular value decomposition (SVD) of the
block matrix containing all the collected field samples), we
would discover that, indeed, they can all be expressed as a
linear combination of a small number of orthogonal vectors.
These vectors form the basis of a linear subspace in which
all possible field solutions for a given band reside. If by Q
we denote the block matrix composed of r orthogonal basis
vectors qi, i = 1 · · · r for this subspace, then any field within
this frequency range could be expressed as:

E(s) ≈ QEr(s). (3)

All that remains is to find the expansion coefficients Er(s).
The Galerkin method can be used to project the original system
of FEM equations (the full-order model or FOM) onto a
subspace spanned by the basis Q.

The projected system is solved for each frequency, yielding
a vector of coefficients Er(s) of the frequency-dependent
coefficients. Since the projected system has a size r × r and
r � n, with n being the number of DoF in an FOM, the
frequency sweep can be performed extremely rapidly.

The choice of the basis is not unique. There are various
model-driven MORe techniques that differ in how the projec-
tion basis Q is constructed. Intuitively, the simplest technique
is called the reduced basis method (RBM), which samples
the field at different frequencies. These samples or snapshots
are then assembled in a matrix and the basis is computed
directly via singular value decomposition. The location of the
snapshots is elegantly determined using a greedy algorithm:
the next snapshot is evaluated at the frequency point at which
the current low-order model has the largest error [29]–[33].
A basis can also be constructed from a mixture of RBM
snapshots and modal fields at resonant frequencies [34].

The second technique for finding the projection basis starts
from the idea that the field can be expanded around a given fre-
quency into a Taylor series. In the past, the coefficients for the
expansion were computed in an explicit way, as with asymp-
totic waveform evaluation (AWE) [35]. Currently, this is done
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in a more numerically stable manner through various moment-
matching techniques. In these procedures, the resulting ROM
has the property that, at a certain frequency (expansion point),
the frequency derivatives of its transfer function agree up to
a certain order with the derivatives of the transfer for the
original full-order model. Many moment-matching techniques
have been described, including the efficient nodal order re-
duction (ENOR) [36], the passive reduced-order interconnect
macromodeling algorithm (PRIMA) [37], and the second-
order Arnoldi method for passive order reduction (SAPOR)
[38]. Other examples of moment-matching approaches are
provided in [39]–[42]. Many researchers have demonstrated
excellent results using moment-matching techniques for full-
wave analysis of microwave devices [40], [43]–[47].

The moment-matching algorithms have the very desirable
property that the matrix factorization only has to be per-
formed at a single frequency point (expansion point). Yet
this handy property cannot be used in wideband analysis
of some microwave structures, such as components excited
with dispersive transmission lines (e.g., microstrips, coplanar
waveguides), or where the material properties depend on fre-
quency (e.g., conductor loss). For such systems, either RBM-
based techniques [33], [48] or multipoint moment-matching
algorithms [49]–[53] are needed.

We have selected two examples that illustrate the time sa-
vings that can be obtained using various fast frequency sweep
techniques. The first is a sixth-order in-line pseudoelliptic
filter taken from [54]. The filter is excited with a coaxial line
and consists of six dielectric resonators with coupling screws
placed at an angle between the dielectric pucks, as shown
in the inset to Fig. 2. The filter is narrowband and has its
center frequency located at 2.17 GHz; two transmission zeros
(TZs) are separated by 1 MHz. The simulations are carried
out in a broader band (2–3GHz) in order to reveal spurious
transmission bands. Due to the very narrow passband, and
because the two transmission zeros are located very close to
each other, this example is a challenge that requires a very
high frequency resolution. The structure is closed, and we
assume there is no dielectric or conductor loss. This means
that the computations can be performed in real arithmetic. The
second structure is a dualband bandpass planar filter designed
to exhibit its lower and upper passbands centered at 0.63
and 2.37 GHz, respectively. The geometry of the structure is
shown in Fig. 3 and described in detail in [55]. Here, we
assume the structure is open, so the solver requires complex
arithmetic. The wave port excitation is also used and, because
the field pattern at the port changes with frequency, single-
point moment-matching algorithms cannot be applied. In both
examples, to emphasize the time savings resulting from fewer
matrix factorizations, a rather fine mesh and higher-order basis
functions are used, so that the FEM matrices are large (3.45
and 1.4 million DoF, respectively). We specified 0.1–3.0 GHz
as the band for numerical analysis of the microstrip filter. For
both filters, we first performed a discrete frequency sweep
using the full-order FEM model. We used 501 equidistant
points for the dielectric filter and 401 points for the microstrip
filter. The computed characteristics and the time taken by the
discrete sweep serve as reference results for assessing the
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Fig. 2. Scattering parameters of the pseudoelliptic dielectric resonator filter.

Fig. 3. A dualband bandpass planar filter [55].
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Fig. 4. Computed and measured scattering parameters of the dualband
bandpass planar filter [55].

speed and accuracy of the fast frequency sweep algorithms.
The computed characteristics are shown in Figs. 2 and 4. For
the dualband filter, we plotted the measurements taken from
[55].

We then ran simulations using various fast frequency sweep
algorithms, including an interpolating sweep, RBM, and single
or multipoint moment-matching model-order reduction tech-
niques. Fig. 5 shows the CPU time for computations performed
on a server with two Intel Xeon E5-2680 processors and 256
GB RAM. Two numbers are given on top of each bar: the
first (in black) is the runtime in seconds, while the second
(in blue) is the number of factorizations in each approach.
It can be seen that fast sweeps can result in huge savings.
For the pseudoelliptic filter, the runtime drops from almost 16
hours to 10 minutes 26 seconds, a 92-fold acceleration. For
the dualband planar filter, the duration of the discrete sweep
at 401 points is slightly less than 3 hours, while a fast sweep
takes 5 minutes and 16 seconds, so the speedup is 32.5 times.

It is important to note that these speed gains do not mean
that the accuracy is compromised. Projection-based (model-
driven) MORe techniques take advantage of error estimators
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Pseudoelliptic dielectric resonator filter
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Fig. 5. Comparison of simulation runtime for both filters and selected
frequency sweep methods. Numbers of factorizations are in blue. SP-MOR
and MP-MOR stand for single and multipoint MOR, respectively.
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Fig. 6. Actual and estimated errors computed using SP-MOR for the
pseudoelliptic dielectric resonator filter [54].

[29], [32], [56], [57], which are used as a stopping criterion,
and also to control the size of the projection basis, or as
indicators of frequency points at which the matrix should
be factorized. Fig. 6 shows the estimated and actual errors
for a moment-matching MOR. It is evident that machine
precision has been achieved across the entire band, while the
computations are almost two orders of magnitude faster.

III. POWER TOOLS FOR THE MICROWAVE FILTER ENGINEER

In the computer-aided design of microwave filters, the de-
sign goal is reached through many trials with candidate designs
generated by an optimization algorithm. The design variables
are geometric parameters, so the shape of the structure is
modified from one iteration to another; it then has to be
analyzed anew with FEM. The number of trials is large, so,
for EM-based optimization, the time taken for each FEM
simulation becomes crucial. If it is too long, the whole process
will take forever and exhaust the patience of the engineer (and
of the engineer’s boss). Obviously, what counts in the end is
the design quality and the time taken by the sum of all the
computational steps, so the faster the convergence the better.
The total number of iterations depends, among other things,
on the optimization algorithms. Here we consider gradient-
based optimization techniques that in general show the best
convergence. These algorithms require the computation of
derivatives, but this is not a problem, as the calculation of
gradients in FEM with the adjoint sensitivity approach does
not take long. An optimization algorithm itself does not
guarantee success, even if many iterations can be afforded.
There are two other aspects related to simulations that are
crucial for successful EM-based CAD. One is the consistency

of the results from one iteration to the next, and the second is
the choice of the cost function to be minimized.

A. Fighting meshing noise and gaining additional speed
boosts in the process

In many FEM packages that offer EM-based optimizations,
the computational engine is simply called by an optimizer
when the electromagnetic response needs to be calculated.
The FEM engine itself has no memory of earlier simulations,
and it is not aware of the optimization context. In each
iteration, the optimization procedure calls the FEM engine
with a modified structure, and the whole analysis starts again
from scratch. This means that a new mesh has to be generated
adaptively, and once it has converged, a new matrix must be
set up, followed by at least one factorization. This brute-force
approach not only involves redundant steps (mesh adaptation
and symbolic factorization), but it can also cause poor conver-
gence, or even a failure to converge.

d

h

Fig. 7. A 3D view of a combline resonator fed with a coax line.
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Fig. 8. Meshing noise in resonant frequency when changing combline
resonator dimensions: screw length d (top) and feed height (bottom) with
the corresponding number of mesh elements.

To see the pitfalls of decoupling the process of FEM ana-
lysis from optimization, consider how the resonant frequency
of the combline resonator (Fig. 7) changes as we alter the
length of the screw d. What we expect is a gradual change in
the resonant frequency as d varies. Fig. 8 shows the results
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of a series of FEM simulations performed independently of
each other. For each value of the parameter d, we generated a
mesh from scratch using several adaptation steps, in order to
ensure that the results were accurate. Even though the mesh
adaptation halts when the result converges, the meshes for
two different lengths are completely uncorrelated (e.g., the
mesh topology changes, which can be clearly seen when we
consider the number of mesh elements, as shown in Fig. 9).
This result is not what we would expect. The values computed
with uncorrelated meshes follow a general trend, but do not
lie on a straight line. A similar effect can be observed when
other geometric parameters are modified. The same figure
shows that changing the location of the feed point (h) leads
to even higher variations in the resonant frequency, since a
larger volume is affected by the parameter’s change. This
effect is called “mesh noise” and has sometimes been found
to produce fictitious minima of the goal function, preventing
convergence [58]. Mesh noise also introduces inconsistency
into the results, both for the objective function and for its
derivative with respect to geometric parameters from one point
in the design space to another; these all act to mislead the
optimizer. Gradient-based algorithms are particularly sensitive
to mesh noise, and the number of iterations needed to reach
a design goal depends strongly on the choice of parameters
related to the gradient computation and on Hessian updates of
the optimization procedure [59].

Mesh noise can be eliminated using mesh deformation
(also called mesh morphing), where the mesh is dynamically
modified as the geometry evolves: its nodes are relocated
without changing the mesh topology. Fig. 9 illustrates this
concept. As the inner hole moves, the original mesh (Fig. 9a)
can be regenerated (Fig. 9b) or deformed (Fig. 9c). To account
for the movement of the hole, the triangles above the hole
are compressed, while those below are stretched; its number
remains the same as in the original mesh (in this example,
196). In the remeshing approach, the new mesh has a different
number of triangles (188).

a) initial mesh

b) remeshing c) mesh deformation

Fig. 9. Mesh deformation vs. remeshing while moving the inner hole. The
original mesh and the deformed mesh have the same number of triangles
(196), while the regenerated mesh has fewer elements (188).

Fig. 10 shows the results for the same problem, but this
time using mesh morphing. It can be seen that the results are
now nicely aligned, and no mesh noise is visible. The number
of elements in the mesh is the same throughout the entire
parametric sweep. Obviously, there is a certain numerical cost
associated with mesh deformation, as the new position of each
node has to be computed. The CPU time needed for this
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Fig. 10. Resonant frequency of the combline resonator vs. geometric
parameters under mesh deformation.

process and the quality of the morphed mesh depend on the
algorithm used. In general, the algorithms for mesh movement
are either based on physical analogies (such as spring tension,
elasticity, or Laplace’s equation) or on interpolation (like
inverse distance weighting, algebraic damping, or radial basis
function interpolation) [60], [61]. Fast techniques—such as
Laplacian smoothing [62], inverse distance weighting [63], and
algebraic damping [64]—have only linear numerical complex-
ity. Also, one nice thing about mesh morphing is that if a fast
node movement algorithm is used, additional time savings are
obtained, compared to shape optimization with uncorrelated
meshes. First, there is no need to repeatedly generate and
adapt a mesh. Next, since the mesh topology has not changed,
the FEM matrix always has the same sparsity pattern, so the
symbolic factorization is performed only once. Finally, the
number of mesh nodes remains the same, so parametric model-
order reduction techniques can be used [65].

Mesh deformation techniques for FEM-based optimization
in electromagnetic problems were first considered over two
decades ago [66], but little work has been published using
this approach to analyze microwave devices [56], [67], [68].
We are aware of two commercial packages for microwave
circuits that currently offer this feature (CST Studio Suite®

and InventSIM). However, mesh deformation is often used in
other engineering fields for shape optimization based on FEM.

B. Cost function

As noted above, computer-aided design is tantamount to
solving an optimization problem with a suitably defined cost
function. The cost function (called also the goal, error, or
objective function) reaches its minimum when the design goals
are met. The final two ingredients required for successful
FEM-based design of microwave filters are the optimization
algorithm and the cost function. When optimizing, fast conver-
gence can be achieved using gradient-based techniques. With
mesh deformation, the gradient needed for shape-optimization
problems is consistent from one iteration to another, so we
recommend this approach, even though the solution reached
may be a local minimum. The cost function is extremely
important and several choices are possible for filter design. The
simplest cost function is constructed by selecting a number
of frequency points within and outside of the band, and
then computing either the absolute difference between the
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simulated response at these points and their specifications [69]
or dividing the desired value of the response at a given point
by the computed result [70]. The optimization then minimizes
the norm of a vector composed from these terms, possibly
with weights, either in the least squares (L2 norm) or min–
max (l∞ norm) sense [69]–[72]. The desired filter performance
is usually described as a set of numbers providing the upper
and lower bounds, imposed within a certain frequency interval
on a given scattering parameter. Recently, a cost function
built from feature points has been suggested [73], [74]. In
filters, the frequency points corresponding to passband edges,
transmission zeros locations, and local maxima of the reflec-
tion coefficient within the passband could be used as feature
points. Frequency locations are used, rather than expecting
the magnitude of the transmission or reflection characteristics
to satisfy the requirements at many frequency points. The
goal function is formed by taking the difference between the
location of the feature points in the mathematical model of
the filter and their location in the characteristics calculated by
a simulator. A third (quite common) choice is a cost function
involving the coupling matrix [75]–[78]. Here, the coupling
matrix extracted from the simulated filter response is compared
to the coupling matrix of a circuit model of the filter. Finally,
there is a cost function based on the zeros and poles of the
scattering parameters [79], [80].

IV. DOES IT WORK?

Now it is time to address the question of whether this
designer’s paradise will ever become a reality. Or is it per-
haps just a pipe dream? Has computational electromagnetics
reached a level of maturity where automated full-wave design
of microwave filters—based entirely on electromagnetic FEM
simulations—is feasible? To answer this, we selected three
examples of passband filters with generalized Chebyshev re-
sponses. The level of difficulty increases from one example to
the next.

A. Dual-mode waveguide filter

a1 a2 a3 a4 a5

l1

l2

l3

l4

l5

s1 s2

Fig. 11. Dual-mode waveguide filter.

The simplest of these filters to design is a dual-mode
filter with two real transmission zeros [81] (Fig. 11). FEM
simulations of this structure are quite fast: a single run with
a fast frequency sweep takes about 30 seconds on a desktop
computer. There are also only twelve design parameters. For
this filter we will, however, perform a stress test and try to
reach the specification, starting from various random designs.
This will show whether we still need to carry out dimensional
synthesis and whether a poor initial design will prevent the
optimizer from reaching an acceptable minimum. Since the

computations are rapid, we can afford to run many trials.
In each one, a randomly selected starting point is used. We
report the success rate and the number of iterations needed to
reach the design goal. The numerical tests were constructed as

TABLE I
SPECIFICATIONS OF A DUAL-MODE WAVEGUIDE FILTER

Design 1 Design 2 Design 3
fc (GHz) 11.05 11.4 10.9

BW (MHz) 100 150 170
TZs (GHz) 10.95, 11.15 11.21, 11.57 10.70, 11.09

RL (dB) 20 20 20

follows: Three different sets of specification parameters were
chosen (see Table I). For each specification, 100 trials were
performed, each with random initial dimensions. For each
trial, the number of iterations needed to reach the goal was
recorded. If the optimizer did not converge–because one of the
constraints was hit—we slightly extended the parameter range
and ran the optimization for a second time. The range of the
parameters considered in selecting the starting point, and then
to explore the design space, is shown in Table II. Note that
the allowed range for each design variable is quite broad, so
an initial design may be quite far from the target.

TABLE II
VARIATION RANGE OF DESIGN PARAMETERS (DUAL-MODE FILTER)

min – max value (mm) min – max value (mm)
a1 8.5 – 10.8 l1 2 – 3.2
a2 28 – 31 l2 25.5 – 30.5
a3 8.8 – 11.2 l3 10 – 12.5
a4 27.8 – 31.5 l4 27.2 – 31
a5 8.8 – 11.2 l5 2 – 3.8
s1 2 – 3.5 s3 1.5 – 3.2

Two objective functions were used for optimization. The
first was the zero-pole objective function:

U(x) =

Np∑
i=1

|P i
11spec − P i

11resp|2

+

Ntz∑
i=1

|Zi
21spec − Zi

21resp|2 +

Nrz∑
i=1

|Zi
11spec − Zi

11resp|2, (4)

where x is the vector of design variables, P11, Z11, and Z21

are poles, reflection zeros, and transmission zeros, respectively,
and Np, Ntz, and Nrz are the number of poles, transmission
zeros, and reflection zeros. The cost function is thus expressed
as the difference between the poles and zeros of the ideal
response (P11spec, Z11spec, Z21spec) and the poles and zeros of
the response in the k-th iteration (P11resp, Z11resp, Z21resp). The
second function, based on the scattering parameters, is defined
as follows:

U(x) =

N∑
i=1

|Si
11spec − Si

11resp|2 +

N∑
i=1

|Si
21spec − Si

21resp|2,

(5)

where Si
11spec and Si

21spec are the desired scattering parameters
and Si

11resp and Si
21resp are the computed scattering parameters
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at the i-th frequency point in the k-th iteration while N is the
number of frequency points.

Fig. 12 shows a typical starting point and the characteris-
tics obtained using the zero-pole goal function and the goal
function based on the scattering parameters.
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B
)

starting point

S parameter based optimization

Z-P optimization

Fig. 12. Filter specification: fc = 11.05 GHz, bandwidth 100 MHz, two
transmission zeros at 10.95 and 11.15 GHz (-2.0778i and 2.0028i in the
lowpass prototype domain), return loss level: 20 dB.

Table III shows the number of successful simulations for
each of the three filter specifications. For the cost function
of (5), the performance of the optimizer was very poor: it
succeeded in only 6.3% of the cases. So here we indeed need
to perform dimensional synthesis to get to a good starting
point. However, the story is totally different with the zero-pole
technique: all we need to do is click the start button, wait a few
moments—et voilà! The optimization converges in all cases!
Sometimes a little help is needed: the numbers in parentheses
are the number of simulations that converged after extending
the parameter variation ranges. Nevertheless, the robustness of
the zero-pole optimizer combined with the mesh-morphing is
amazing. Welcome to the designer’s paradise (almost)!

TABLE III
THE NUMBER OF SUCCESSFUL TRIALS FOR EACH OF THREE FILTER

SPECIFICATIONS.

number of trials number of successful trials
zero-pole standard

Design 1 100 100 (5) 3 (2)
Design 2 100 100 (6) 9 (7)
Design 3 100 100 (14) 7 (1)
summary 300 300 19 (6.3%)

The final piece of information is the number of iterations
involved in the zero-pole technique; this is shown for design 2
in Fig. 13. The height of each bar is the number of trials that
converged in a given number of iterations. On average, 15.4
iterations were needed and the median was 13.5.

B. Fifth-order filter with dispersive couplings

The next example is a linear-phase waveguide filter with
three frequency-dependent couplings, as described in [82].
This is a fifth-order filter that consists of a triplet featuring
one strongly dispersive cross-coupling with negative slope
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Fig. 13. Distribution of the number of optimization iterations for design 2
and the zero-pole approach. The average number of optimization iterations
was 15.4 and the median was 13.5.

that is coupled (via partial height posts, giving frequency-
dependent couplings with positive slope) to two resonators at
the input and output. The coupling with the negative slope
is implemented as a series stub. The dispersive couplings
introduce four transmission zeros—a complex pair and two
imaginary ones. The goals for the design are as follows: center
frequency 9.98 GHz, bandwidth 320 MHz (3.21%), return loss
level 20 dB, and imaginary transmission zeros at 9.66 GHz
and 10.3 GHz. The complex zeros are located at 1.5+j9.98e9
and -1.5+j9.98e9. A total of fifteen design variables are taken
into account in the optimization process: the lengths of five
resonators (R1, R2, R3, R4, R5), the length of the stub (L1)
and the length of the septum (L2), the lengths and the positions
of two partial-height posts (four design variables - p1, p2,
d1, d2), two parameters controlling input/output coupling (l1,
l4), and two parameters controlling coupling between the third
resonator and the second and the fourth (l2, l3).

This filter is more challenging than the first one because
it has flat-group delay requirements and there are dispersive
couplings, which limits the choice of the goal function. Since
there are complex transmission zeros, the goal function based
on features cannot be used. The goal function involving a
coupling matrix would require a special extraction procedure
that accounts for frequency-dependent terms (such a procedure
could be developed using the synthesis technique described in
[83] or [84]). We will thus use the zero-pole approach, where
there is no need to treat the optimization filters with dispersive
couplings in any special way.

The set of initial design parameters was [R1=15.25,
R2=19.4, R3=16.3, R4=20.9, R5=15.25, L1=12.4, L2=8.55,
p1=5.4, p2=5.2, d1=2.25, d2=2.25, l1=11.7, l4=10.2, l2=10.2,
l3=11.9] (all dimensions in mm). Fig. 15 shows the initial
design and the result of the EM-based zero-pole optimization.
The full-order model involved about 0.6 million degrees of
freedom, and one simulation with fast frequency sweep took
about 50 seconds on a desktop computer with an Intel Core
i7-7820X 8-core processor running at 3.60 GHz and 64 GB
RAM. Optimization converged in 26 iterations and during this
process the design parameters changed from 1.3 to 14.4%.
The dimensions of the final design are given in Fig. 14. The
simulated response agrees very well with the measured results
in [82].
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Fig. 14. A 3D view of the linear phase and side and top views, with the final
dimensions found by optimization.
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Fig. 15. Optimization of a fifth-order linear-phase filter with frequency
dependent couplings: – initial design, – optimized design. The dimensions
of the final design are given in Fig. 14. The simulated response agrees very
well with the measured results in [82].

C. Dielectric resonator filter

We now move on to the most challenging example: the
optimization of a sixth-order pseudoelliptic dielectric resonator
filter with a 2.164–2.176 GHz passband, with 20 dB return
loss, asymmetric response [54], and two transmission zeros
located very close to each other at 2.162 and 2.163 GHz, re-
sulting in very steep rejection. The filter structure is presented
in the inset in Fig. 2. The simulated results are sensitive to
meshing so this filter is very challenging; it is difficult even to
simulate it with FEM or other numerical techniques, let alone
optimize it. In the final design, two TZs and all six reflection
zeros have to be resolved, which is not easy to achieve. Note
that the separation between the zeros is just 1 MHz.

There were eighteen design variables: six screws controlling
the resonant frequencies, four screws controlling the couplings
(rotated 45 degrees), four parameters controlling the dielectric
resonator spacing, two parameters controlling the input/output
coupling, and two parameters controlling the iris dimensions
(width and thickness).

To simulate this filter, we employed a server equipped with
two Intel Xeon E5-2680 processors and a 256 GB RAM.
The optimization process was carried out within the frequency
interval from 2.12 to 2.2 GHz and involved two stages:
• Stage I: A coarse mesh was used, resulting in a problem

with ≈ 0.65 million unknowns. To find the mesh, six

iterations of adaptive mesh refinement were applied. In
total, twelve iterations were needed to improve the initial
design. The duration of this stage for three different
solver setups (with or without deformation and different
solver precision variants) are shown in Table IV. For
the scenario without mesh morphing, six steps of mesh
adaptation were performed at each iteration.

• Stage II: The solution obtained in Stage I was taken as a
starting point. Stage II used only a double precision solver
and mesh deformation. The fine mesh was computed in
ten iterations of an adaptive mesh refinement process,
resulting in a cumulative meshing time of 18.88 min.
This produced a problem with ≈ 1.28 million unknowns.
We then needed twenty iterations of a gradient-based
optimizer, taking a total of 120 min, to reach the design
goal.

The initial design, the design at the end of Stage I, and the
final design are shown in Fig. 16 in black, blue, and red,
respectively. Note that the reflection and transmission zeros are
well resolved in the final design. The relative change in design
parameters from the starting point to the final design was
significant. In quantitative terms the changes were as follows:
for the screws controlling the resonant frequencies – 23.1,
25.5, 19.2, 18.9, 24.2, and 23.6%, for the screws controlling
the couplings – 6.0, 14.6, 8.9, and 0.7%, for the resonator
spacing – 2.1,13.4, 8.5, and 3.6%, for the input/output coupling
– 2.4 and 14%, and for the iris dimensions – 5 and 32.6%.

TABLE IV
STAGE I OF OPTIMIZATION SHOWING TOTAL TIME

Type Duration
Double precision, no deformation 2 h 5 min 5 s

Double precision, with deformation 0 h 42 min 57 s
Mixed precision, with deformation 0 h 29 min 37 s
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Fig. 16. Optimization of DR filter: – inital design, – first stage; – second
stage.

V. WHAT’S NEXT ON THE HORIZON?

As we have shown, FEM-based optimization has reached
a level where its computation no longer tests the patience of
filter designers. With model-order reduction, mesh-morphing,
and robust optimizers, EM-based CAD has become reasonably
fast. Yet this is not the end of the process: more advances
are coming that will further accelerate the process, giving
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designers even more freedom in their choice of filter shape.
Here we highlight a few of these developments.

The last row of Table IV presents the runtime for a mixed
precision solver developed by our group. This solver performs
certain operations in double precision, while others use single
precision. This approach has two benefits: the computations
proceed roughly 1.5 times faster, and they also need less
memory. This mixed precision solver provides results with
an accuracy that is almost equal to the results of the double
precision analysis. The mixed precision curve coincides with
the double precision curve except when the signal level is very
low (S21 < −100dB).
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Fig. 17. Acceleration of MKL PARDISO and the new solver.

Numerical algorithms currently in use underutilize the
computational capabilities of modern computer architectures.
For instance, graphics processing units (GPUs) now contain
thousands of cores. Electromagnetic simulators based on time-
domain techniques like FD-TD make good use of these cores
[85]; however, not much success has been reported to date
in FEM. The benefits of using the extra processing power
provided by GPUs can be seen in FEM matrix generation
and assembly [86], [87], and in iterative solution of a sparse
system of linear equations [87]–[90]. However, the sparse
direct solvers needed for efficient MORe are yet to be devel-
oped. On the direct solver front, groups are also working on
sparse solvers with reduced computational complexity [91],
[92]. Additionally, there are efforts to develop new sparse
direct solvers for many-core architectures [93]. Recent CPUs,
such as Intel Xeons, support up to 56 cores. State-of-the art
vendor libraries like Intel’s MKL provide procedures for sparse
matrix factorization. Intel MKL includes the PARDISO sparse
solver which takes advantage of the multiple cores; however,
its parallel efficiency is still limited, so new algorithms are
needed to make better use of multiple cores. For instance,
an early version of a new parallel algorithm developed in our
group for sparse matrix factorization shows a better scalability
than MKL PARDISO for a problem with about 1.4 million
DoF and a server with two Intel Xeon E5-2687W processors
(Fig. 17). As the number of cores in CPUs is likely to increase
even further, scalable factorization techniques will allow faster
speeds than have been seen in the current generation of solvers
for sparse linear systems of equations.

Fig. 18. 3D view of microwave filter after mesh deformation to fit a given
surface.
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Fig. 19. Response of planar (red) vs. deformed (blue) filter versions.

Finally, another boost of at least an order of magnitude can
be expected from the development of parametrized reduced-
order models [65], [94]–[97].

Speed and optimization are important, but so are the shapes
that filter designers can model in software. The numerical
tools currently used in the industry allow the design of very
complex geometries. However, in most cases the geometry
is built from simple building blocks like boxes, cylinders,
cones, and basic boolean operations on such objects. Anything
that cannot be constructed from geometrical primitives is not
available. This imposes severe constraints on the shapes that
can be considered for electromagnetic simulations and design,
preventing designers from exploring shapes that could actually
be manufactured with (for example) additive manufacturing
technology. Additive manufacturing allows for unconventional
shapes to be used to improve the performance of the filters
in SatCom and other applications [98]. As noted in the
foreword to the Special Issue of the Proceedings of the IEEE
on Additive Manufacturing of Radio-Frequency Components,
improvements in software will be key in determining the speed
at which additive manufacturing techniques will be introduced
[99]. Finite-element-based software with mesh deformation
techniques should enable advances in this area. Figs. 18 and
19 show an example of the capabilities of this approach.
The substrate of the dualband filter considered earlier was
placed on a deformed substrate (Fig. 18). This structure was
then simulated in an FEM solver using its mesh deformation
capabilities. The results for the planar and deformed versions
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are given in Fig. 19.

VI. TAKEAWAY

We hope that this article has demonstrated that some com-
mon beliefs regarding EM-based filter design are no longer
valid, and in fact might be completely wrong. We offer the
following (somewhat tongue-in-cheek) rules of thumb:
• An elegant optimization procedure should be able to find

an acceptable solution, even without a good starting point.
• Brute-force optimization can be quite successful and it is

often enough to feed the specification to an optimizer.
A final word of advice for filter designers: keep an eye out
for the new generation of FEM solvers. They’re just around
the corner. Prepare for a bright future!
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