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Abstract: In the paper, the properties of the stochastic equivalence scales 6 
(SES) are analysed when expenditure distributions are log-normal. The SES 7 
provides the equivalent distribution of expenditures when the population of 8 
households is heterogeneous with respect to such attributes as household size, 9 
demographic composition, etc. For log-normal expenditure distributions, the 10 
non-parametric SES deflators are proportional to the ration of geometric 11 
means in compared distributions. The statistical analysis of expenditure 12 
distributions for Poland in the years 2005-2010 shows that these deflators 13 
perform quite well.  14 
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INTRODUCTION 17 

The main purpose of this paper is to develop the formulae and estimators of 18 
nonparametric stochastic equivalence scales when expenditure distributions are 19 
log-normal. We also estimate such scales using data from Polish Household Budget 20 
Surveys for the years 2005-2010.  21 

When households differ in all aspects other than expenditures1, e.g., the size 22 
and the composition of the household, the age of the adults, the age of the children, 23 
the disabilities of the household members, etc., serious problems arise when 24 
making judgments and decisions to address inequality, welfare and poverty. 25 
Traditionally, equivalence scales have been used to homogenize heterogeneous 26 
household populations [Buhmann et al. 1988, Jones and O’Donnell, 1995]. 27 

                                                 
1 In this paper, we confine ourselves to expenditures; however, a significant amount of our 

considerations also relates to incomes. 
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Muellbauer (1977) defines equivalence scales as budget deflators that are used to 1 
calculate the relative amounts of money two different types of households 2 
necessary to attain the same standard of living. The distribution of the expenditures 3 
or incomes of heterogeneous household populations is adjusted by such deflators. 4 
As a result, the initial heterogeneous population becomes homogeneous. It is this 5 
adjusted distribution of expenditures in this now homogeneous population that is 6 
used to assess welfare, poverty, inequality, etc. 7 

However, various practical advantages of equivalence scales are offset by a 8 
significant disadvantage, as the specification of an equivalence scale requires 9 
strong assumptions concerning the relationship between income and needs, and 10 
there may not be wide agreement concerning the validation of the appropriate 11 
assumptions. Furthermore, numerous severe identification issues arise in the 12 
estimation of equivalence scales (see, in particular, [Pollak and Wales, 1979, 13 
1992], [Blundell and Lewbel, 1991], [Blackorby and Donaldson, 1993], and the 14 
surveys of [Lewbel, 1997, and Slesnick, 1998]). Moreover, there are evidences that 15 
the results of distributional comparisons are sensitive to the choice of the 16 
equivalence scale (Coulter et al. 1992a,b).  17 

The aforementioned approaches to the problem of equivalence scales seem 18 
to be unsatisfactory. Many economists maintain that, “There is no single ‘correct’ 19 
equivalence scale for adjusting incomes - a range of scale relativities is both 20 
justifiable and inevitable” [Coulter et al. 1992a]. Jäntti and Danziger [2000, p.319] 21 
remark that, “There is no optimal method for deriving an equivalence scale”. 22 
Indeed, without additional assumptions, there is no way of selecting the basis for 23 
choosing an equivalence scale. The independence of base (IB) (or exactness of 24 
equivalence scale) is one such assumption. Several papers have tested this 25 
assumption and have ultimately rejected it [Blundell and Lewbel, 1991, Blundell 26 
et al. 1998, Dickens et al. 1993, Pashardes, 1995, Gozalo, 1997, Pedankur, 1999]. 27 

The concept of the stochastic equivalence scale (SES)offers the method for 28 
the adjustment of expenditure distributions in heterogeneous populations [Kot, 29 
2012]. The SES is any function that transforms the expenditure distribution of a 30 
specific group of households in such a way that the resulting distribution is 31 
stochastically indifferent from the expenditure distribution of a reference group of 32 
households. The stochastic indifference criteria are also used in developing the 33 
method of the estimation of the SES. 34 

In this paper, the  SES is applied when theoretical expenditure distributions 35 
are log-normal. The formula for such scales is developed. Then the SES are 36 
estimated using data from Polish Household Budget Surveys for the years 2005-37 
2010. 38 

The rest of the paper is organized as follows. Section THEORETICAL 39 
BACKGROUND offers a theoretical background concerning the SES and the formula 40 
of deflators when log-normal distribution is assumed. In Section EMPIRICAL 41 
RESULTS FOR POLAND 2005-2010, the results of estimation of deflators are 42 
presented. Section CONCLUSIONS summarize the paper. 43 
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THEORETICAL BACKGROUD 1 

Suppose that a society is composed of heterogeneous households and each 2 
household is distinguished by two attributes: expenditures and a type. The 3 
household type may be interpreted in various ways, e.g., as an index of neediness 4 
which increases with family size.2 We also allow for an analysis of the household 5 
types, which may not necessarily reflect household needs. We assume that there 6 
exists a given and finite number (m+1  2) of types of household groups that differ 7 
in many respects other than their expenditures.  8 

We arbitrarily chose certain type of households as the ‘reference group’. The 9 
expenditure distribution for this group will be called the ‘reference distribution’. 10 
This distribution will be described by a positive continuous random variable Y with 11 
the distribution function G(y) (abbreviated Y  G(y)). The remaining m groups 12 
of households will be called the ‘evaluated groups’. The corresponding evaluated 13 
distribution of the expenditures will represent the set of the positive continuous 14 
random variables X1,…,Xm with the distribution functions F1(x),…,Fm(x), 15 
respectively. The random variables Y, X1,…,Xm describe the distribution 16 
of expenditures per household.  17 

Formally, the SES is defined as follows. Let s() = [si(),…,sm()] be a vector 18 
function for which the inverse function s-1() = [si 

-1(),…,sm 
-1()] exists and is 19 

differentiable. Let the random variable Zi = si(Xi) with the distribution function 20 
Hi(z) be the transformation of evaluated expenditure distribution Xi. Hereafter, the 21 
random variable Zi  Hi(z) will be called the ‘transformed expenditure distribution’. 22 
Definition 1. With the above notations, the function s() will be called the 23 
stochastic equivalence scale (SES) if and only if the following equality holds: 24 

 z>0, i=1,…,m; Hi(z) = G(z). (1) 25 

When the function s() is the SES, Zi = si(Xi)  will be called ‘the equivalent 26 
expenditure distribution’. 27 

Definition 1 of the SES is axiomatic in the sense that it only postulates the 28 
criterion for a function to be recognized as an SES. This definition does not 29 
describe how an SES should be constructed or its conditions of existence. In other 30 
words, any function s() that fulfils condition (1) has to be recognized as an SES.  31 

The validation of condition (1) can be verified by Kolmogorov-Smirnov K-S 32 
test. The K-S statistic can be also used as the loss function in developing estimators 33 
of parametric or nonparametric SES. Details of the statistical procedures of testing 34 
and estimating the SES are presented in Kot (2012).  35 

                                                 
2We follow Ebert and Moyes (2003) in associating the household type with family size for 

convenience. However, this framework can be extended by taking into account the vector 

of the household attributes comprising the number of adults, the number of children, the 

age of household members, etc.    
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The relative SES can be defined as follows. Let d = [di], i = 1,…,m, be the 1 
vector of positive numbers called ‘deflators’ which transforms the evaluated 2 
expenditure distributions X1,…,Xm as follows: 3 

 Zi = Xi/di Hi(z),i = 1,…,m. (2) 4 

Definition 2. Under the above notations, the vector d will be called the relative SES 5 
if and only if the deflators d1,…,dm are such that equality (1) holds.  6 

The following corollary summarizes the properties of SES: 7 
Corollary 1. Let X be the distribution of expenditures of the evaluated group  8 
of households, Y the distribution of expenditures of the reference group  9 
of households, and Z = s(X).If s is the SES, then the following equivalent 10 
conditions hold: 11 

 Z is stochastically indifferent to Y, or 12 

 Social welfare in Z is exactly the same as in Y,  for all von Neuman–13 
Morgenstern utility functions, or 14 

 Poverty in Z is exactly the same as in Y for all poverty lines, or 15 

 Inequalities in Z are exactly the same as in Y. 16 
[Davidson, 2008]. 17 

One may ask what kind of homogeneity SES provides. If an initial 18 
heterogeneous population of households consists of m+1 subpopulations (including 19 
reference subpopulation), then the adjustment of each m different expenditure 20 
distribution by the SES will give new fictitious subpopulations which are 21 
homogeneous with respect to utilitarian social welfare, inequality and poverty. 22 

Let expenditure distributions be two-parameter log-normal X ~Λ(µ, σ ) with 23 
the density function given by 24 
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[Kleiber, Kotz, 2003, p. 107]. The kth  moment in this distributions is given by 26 
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and the geometric mean (xgeom) is given by 28 

 
exgeom   (5) 29 

which coincides with the median [Kleiber, Kotz, 2003, p. 112]. 30 
Let Y ~ Λ(µy, σy ) and X ~Λ(µx, σx ) denote the expenditure distributions  31 

of the reference group and the evaluated group respectively. If we adjust X by the d 32 
deflator, as in (2), then the transformed distribution Z=X/d will be log-normal 33 
Λ(µz,,σz ),where µz =µx – log d, and  σz = σx. 34 
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It is easy to see that the d deflator will provide the SES if compared 1 
distributions Z and Y have the same parameters, i.e., µy= µx – ln d and σy= σx. Then 2 
the d deflator is given by 3 

 
geom

geom

yx
y

x
d  }exp{  . (6) 4 

In other words, the deflator d of the relative SES (2) in log-normal expenditure 5 
distributions will be simply the ratio of geometric means (RGM) if the condition 6 
σy

 = σx holds. The validation of this condition can be easily checked using standard 7 
statistical test. 8 

It might happen, however, that statistical test rejects the aforementioned 9 
condition σy= σx. In order to assess how the violation of  this condition affects the 10 
d deflator we use the fact that the SES implies the equality of moments (4) for all k. 11 
After simple algebra, we can get the following formula for an adjusted d* 12 
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Obviously, (7) coincides with (6) if σy = σx. Because of that σy > σx in practice, the 14 
greater disparity between σx and σy, the lower d, for all k. This means that the 15 
violation of the σy = σx condition leads to underestimation of the d deflator.  16 

EMPIRICAL RESULTS FOR POLAND 2005-2010 17 

We will use expenditure distributions for estimating the relative SESs. The 18 
monthly micro-data come from the Polish Household Budget Surveys for the years 19 
2005-2010. The expenditures are expressed in constant 2010 year prices. The 20 
household groups are distinguished according to the number of members 21 
(household size). The households of single childless persons are chosen as the 22 
reference group. 23 

The chi-square test rejects the null hypothesis that expenditure distributions 24 
are log-normal. This result is not uncommon in applications involving large sample 25 
sizes. In fact, all theoretical models of income or expenditure distributions have 26 
been usually rejected at conventional level of significance [McDonald, Xu, 1995].   27 

Table 1 presents estimates of RGM d  and d* deflators given by eq. (6) and 28 
(7) respectively. These deflators are estimated separately for each household group. 29 
We calculate the d* deflator assuming k=1. 30 

31 
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Table 1. The estimates of RGM deflators for Poland 2005-2010 1 

Year 2005 2006 2007 2008 2009 2010 

Size d d* d d* d d* d d* d d* d d* 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 1.617 1.609 1.604 1.609 1.672 1.668 1.699 1.693 1.667 1.650 1.678 1.676 

3 1.889 1.875 1.928 1.921 2.038 2.031 2.103 2.078 2.066 2.036 2.063 2.039 

4 2.049 2.019 2.075 2.056 2.239 2.215 2.292 2.246 2.245 2.185 2.220 2.172 

5 2.028 1.964 2.108 2.051 2.257 2.179 2.348 2.277 2.272 2.175 2.251 2.163 

6 or more 2.183 2.105 2.299 2.212 2.477 2.380 2.495 2.387 2.460 2.330 2.505 2.405 

Source: own calculations using data from Polish Household Budget Surveys 2 

An analysis of the results presented in Table 1 shows that differences 3 
between d and d* are rather small and they can be neglected if one decimal place is 4 
taken into account. This means that the violation of the assumption σy = σx does not 5 
seriously affect the estimates of deflators. Because of  that variances σ2 6 
of logarithms of expenditures within each year have turned out non-homogeneous, 7 
the adjusted d* deflator seems to be more adequate approximation of the SES than 8 
d deflator. 9 

CONCLUSIONS 10 

The possibility of estimating non-parametric SESs opens new interesting 11 
perspectives for applications when expenditures have log-normal distribution. The 12 
estimation of non-parametric deflators is very easy because it requires estimates 13 
of geometric means of compared distributions only. 14 

Empirical results exhibit two important features. First, equivalence scale 15 
varies over time. This means that one definite form of the scale does not exists. 16 
Second, Polish equivalence scale are very flat. This is an indication  17 
of the economies of scale enjoyed by Polish households in the years 2005-2010. 18 
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