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a b s t r a c t

For a given graph G, a nonempty subset S contained in V (G) is an alliance iff for each vertex
v ∈ S there are at least as many vertices from the closed neighbourhood of v in S as
in V (G) − S. An alliance is global if it is also a dominating set of G. The alliance partition
number of Gwas defined in Hedetniemi et al. (2004) to be the maximum number of sets in
a partition of V (G) such that each set is an alliance. Similarly, in Eroh and Gera (2008) the
global alliance partition number is defined for global alliances, where the authors studied
the problem for (binary) trees.

In the paperwe introduce a new concept of strategic balance in graphs: for a given graph
G, determine whether there is a partition of vertex set V (G) into three subsets N , S and
I such that both N and S are global alliances. We give a survey of its general properties,
e.g., showing that a graph G has a strategic balance iff its global alliance partition number
equals at least 2. We construct a linear time algorithm for solving the problem in trees
(thus giving an answer to the open question stated in Eroh and Gera (2008)) and studied
this problem for many classes of graphs: paths, cycles, wheels, stars, complete graphs and
complete k-partite graphs. Moreover, we prove that this problem is N P -complete for
graphs with a degree bounded by 4 and state an open question regarding subcubic graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problem definition

In the following we consider solely simple connected finite non-empty graphs, and we use standard notation of graph
theory. Let G be a graph where V (G) is a set of vertices and E(G) is a set of edges. By ∆ we denote the maximum degree
in graph. For each vertex v ∈ V (G) sets N(v) = {u ∈ V (G) : {u, v} ∈ E} and N[v] = N(v) ∪ {v} are open and closed
neighbourhood of vertex v, respectively. Similarly, for a subset X ⊂ V (G) sets N(X) =


u∈X N(u) and N[X] = N(X) ∪ X are

open and closed neighbourhood of set X , respectively.
In this paperwe study the problemof strategic balance. The problem is connected to the problemof global alliance, which

was introduced in [6] and [7]. For a graph G, a nonempty subset S contained in V (G) is an alliance if for each vertex v ∈ S
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there are at least as many vertices from the closed neighbourhood of v in S as in V (G) − S, i.e. |N[v] ∩ S| ≥ |N[v] − S|.
An alliance is global if it is also a dominating set of G, i.e. N[S] = V .

Definition 1. For a partition of V (G) into three setsN, S, I whereN and S are global alliances the pair ({N, S}, I) is a strategic
balance. If I is an empty set, the strategic balance is perfect and denoted as {N, S}.

Intuitively sets N and S can be seen as two sides of the conflict, for example North and South. Both sets are safe in terms
of the alliance and they have the same global scope i.e. each global alliance has an access to the whole graph (dominating
property). Therefore, there is no essential difference between sets N and S. Set I is formed by intermediate vertices which
have not chosen any side of the conflict. We cannot assume that they will support or attack any side of the conflict. Sets N
and S must be prepared for the worst case thus both consider members of set I as potential enemies.

The question whether there exists a strategic balance in a graph is Strategic Balance (SB) problem. Similarly, we define
Perfect Strategic Balance (PSB) problem as the question whether there exists a perfect strategic balance in a graph.

1.2. Related problems and our contribution

The global alliance problem was naturally motivated as a model of conflict situations. Examples of problems such as
alliances between people, countries or plants in botany are mentioned in [2]. The strategic balance problem models the
situation when the two sides of the conflict are present.

In [7] the authors defined the alliance partition number of graphG to be themaximumnumber of sets in a partition of V (G)
such that each set is an alliance. Similarly, the global alliance partition number is defined for global alliances in [3], where the
authors studied the problem in trees. By definition, a strategic balance is close to the case when the global alliance partition
number equals at least 2. In fact, we proved that these problems are equivalent.

In [3] the authors studied the global alliance partition number problem in trees and observed that this number is equal
to 1 or 2 in a tree. They gave partial results regarding the characterization of the trees that cannot have two disjoint global
alliances and left the problem of full characterization open. In this paper we give a linear time algorithm that finds the
global alliance partition number of a tree, and constructs the partition. We also solved the problem for complete graphs and
complete k-partite graphs, as well as basic classes: paths, cycles, wheels and stars.

In the paper [10] the authors proved that the problem of partition into 2 global alliances is N P -complete. We improve
this result and show that this problem is N P -complete even for graphs with ∆ ≤ 4. The case ∆ ≤ 3 is still open, and we
conjecture that it can be solved in polynomial time.

2. Strategic balance and perfect strategic balance

The main result in this section is the equivalence between the existence of a strategic balance and a perfect strategic
balance in a graph.

In the following, for the sake of notation simplicity, we define Av
df
=N[v] ∩ A. Let G be a graph.

Proposition 1. For each A ⊆ B ⊆ V (G) and for each v ∈ V (G) we have |Bv| ≥ |Av|.

Proof. Since A ⊆ B, we have |Bv| = |N[v] ∩ B| ≥ |N[v] ∩ A| = |Av|. �

Proposition 2. For every two (global) alliances A and B in graph G we have that A ∪ B is a (global) alliance in G.

Proof. Let v ∈ A∪B, and without loss of generality let v ∈ A. By Proposition 1 we have |(A∪B)v| ≥ |Av| ≥ |(V (G)−A)v| ≥

|(V (G) − (A ∪ B))v|. If A and B are the dominating sets of G, then obviously, A ∪ B is the dominating set of G. �

Proposition 3. There is a perfect strategic balance in a graph G iff its global alliance partition number equals at least 2.

Proof. If there is a perfect strategic balance in a graph, then we have two disjoint global alliances which cover the whole
vertex set. Let us assume that we have a partition of vertex set V (G) into global alliances S1, . . . , Sk, where k ≥ 2. By
Proposition 2we have that

k−1
i=1 Si is the global alliance, thus

k−1
i=1 Si and Sk is the partition of V (G) into global alliances. �

For a given graph G and a global alliance N ⊆ V (G) the question whether there exists a subset S ′
⊆ (V (G) − N) such

that there exists a strategic balance ({N ′, S ′
}, I), where N ⊆ N ′ is referred to as Strategic Balance Opponent (SBO) problem.

If we additionally require I = ∅, we refer to this problem as Perfect Strategic Balance Opponent (PSBO) problem.

Lemma 4. Let N ⊆ V (G) be a global alliance in a graph G. For each v ∈ V (G) − N, if |Nv| > |(V (G) − N)v|, then there is no
alliance S ⊆ V (G) − N containing vertex v. Moreover, N ∪ {v} is a global alliance.

Proof. Let v ∈ V (G)−N and |Nv| > |(V (G)−N)v|. Let us assume, to the contrary, that there is an alliance S ⊆ V (G)−N such
that v ∈ S. Hence, by an alliance property we have |Sv| ≥ |(V (G)−S)v| and by Proposition 1we have |(V (G)−N)v| ≥ |Sv|.
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SinceN ⊆ V (G)−S, thenby Proposition 1wehave |(V (G)−S)v| ≥ |Nv|, thusweget |(V (G)−S)v| ≥ |Nv| > |(V (G)−N)v| ≥

|Sv|, a contradiction.
Let N ′

= N ∪{v}. Since N is a dominating set, N ′ is a dominating set, and since N is an alliance and |Nv| > |(V (G)−N)v|,
for each u ∈ N ′ by Proposition 1 we have |N ′u| ≥ |Nu| ≥ |(V (G) − N)u| ≥ |(V (G) − N ′)u|, thus N ′ is a global alliance. �

Lemma 5. Let N ( V (G) be a global alliance in a graph G and let us define U = {v ∈ V (G) − N : |Nv| > |(V (G) − N)v|}. We
have

(1) N ′
= N ∪ U is a global alliance.

(2) If U = ∅, then S = V (G) − N is an alliance.
(3) For each alliance S ⊆ V (G) − N we have S ⊆ V (G) − N ′.

Proof. (1) By N ∪ U =


u∈U(N ∪ {u}), from Lemma 4 and by Proposition 2 we have that N ′ is a global alliance.
(2) If U = ∅, then by definition of U , for every v ∈ V (G) − N , we have |Nv| ≤ |(V (G) − N)v|, thus S = V (G) − N is an
alliance.
(3) Let u ∈ U ∩ S, where S ⊆ V (G) − N is an alliance. By Lemma 4 we have a contradiction. �

Lemma 6. Let N ( V (G) be a global alliance in a graph G and let us define N0 = N, U0 = ∅, Ui = {v ∈ V (G)−Ni−1 : |Ni−1v| >
|(V (G) −Ni−1)v|}, and Ni = Ni−1 ∪ Ui, for i = 1, 2, . . .. There is 1 ≤ k ≤ n, where n = |V (G)|, such that Uk = ∅, and we have:

(1) Nk = Nk−1 = N0 ∪ U1 ∪ · · · ∪ Uk−1 is a global alliance.
(2) S = V (G) − Nk−1 is an alliance or an empty set.
(3) For each alliance S∗

⊆ V (G) − N we have S∗
⊆ S = V (G) − Nk−1.

Proof. If Ui ≠ ∅ for some i ≥ 1, then for each j = 1, . . . , iwe have |Nj| = |Nj−1|+ |Uj| > |Nj−1|, hence we get |Ni| > |N|+ i,
thus there is 1 ≤ k ≤ n such that Uk = ∅. The thesis (1–3) follows by induction from Lemma 5(1–3). �

Theorem 1. The problem SBO is equivalent to the problem PSBO and it can be solved in O(m) time, where m = |E(G)|.

Proof. Let N ⊆ V (G) be a global alliance in a graph G. The decision problem SBO is as follows: is there a subset
S∗

⊆ (V (G) − N) such that there exists a strategic balance ({N ′, S∗
}, I), where N ⊆ N ′? In the problem PSBO we

additionally require that I = ∅.
Let us assume that there exists a strategic balance ({N ′, S∗

}, I), where N ⊆ N ′. Since S∗
⊆ V (G) − N ′

⊆ V (G) − N , by
Lemma 6(3) we have S∗

⊆ S = V (G)−Nk−1, and by Lemma 6(2) we have that set S is an alliance. Since S∗ is the dominating
set of G, S is obviously the dominating set of G, thus by Lemma 6(1) we get that {Nk−1, V (G) − Nk−1} is a perfect strategic
balance.

The algorithm solving the problem SBO proceeds as follows: for a given global alliance N ( V (G) in G by Lemma 6 we
construct Nk−1 and V (G) − Nk−1. If V (G) − Nk−1 is non-empty, then it is an alliance, hence problem SBO is equivalent to
verifying if V (G) − Nk−1 is the dominating set of G. The time complexity of the optimized algorithm can be bounded by
O(


v∈V (G)−N deg(v)) = O(m). Note that the calculations of Ui can be optimized solely by updating |(V (G) − N0)v| − |N0v|

by −2 if there is u ∈ Uj, where j < i such that {u, v} ∈ E(G). �

Theorem 2. The problem SB is equivalent to the problem PSB . Moreover, if ({N, S}, I) is a strategic balance in graph G, then
there is a perfect strategic balance {N ′, S ′

} such that N ⊆ N ′ and S ⊆ S ′.

Proof. Let ({N, S}, I) be a strategic balance in graph G, thus by Theorem 1we have a perfect strategic balance {Nk−1, V (G)−

Nk−1}, where Nk−1 = N ∪ U0 ∪ . . .Uk−1, thus by Lemma 6(3) we have N ⊆ N ′
= Nk−1 and S ⊆ S ′

= V (G) − Nk−1. Sets N ′

and S ′ are both dominating sets of graph G as supersets of sets N and S. �

By Proposition 3 and Theorem 2 we have:

Theorem 3. The problem SB is equivalent to verifying if the global alliance partition number is at least 2. �

3. Balance in a strategic balance

One may ask how unbalanced a strategic balance can be. We can measure it as the ratio of the sizes of the bigger global
alliance to the smaller one. From [5] we know that the size of the smallest global alliance in a graph is at least

√
4n+1−1

2 ,
where n is the size of a vertex set, and this bound is tight.

Definition 2. For a given graph Gwe construct graph SN(G) called a supernova of G by appending deg(v) + 1 new pendant
vertices to each vertex v ∈ V (G) (see Fig. 1).

Lemma 7. For each k ≥ 1 there exists a perfect strategic balance {N, S} in the supernova of the complete graph Kk such that
|N|

|S| =

√
4n+1−1

2 , where n = |V (SN(Kk))|.
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Fig. 1. Supernovas SN(K5) and SN(K3,3).

Proof. Let N = {u ∈ V (SN(Kk)): deg(u) = 1} and S = V (SN(Kk)) − N . It is easy to notice that {N, S} is the required perfect
strategic balance. �

Theorem 4. Let {{N, S}, I} be a strategic balance in a graph G and let n = |V (G)|. The following inequality holds:

|N|

|S|
≤

√
4n + 1 − 1

2

and this bound is tight.

Proof. Let |S| = k and assume that |N| ≥ |S| (the case |S| ≥ |N| is trivial). By [5]we have k ≥

√
4n+1−1

2 and since |N| ≤ n−k,
we get:

|N|

|S|
≤

n − k
k

=
n
k

− 1 ≤
2n

√
4n + 1 − 1

− 1 =

√
4n + 1 − 1

2
.

By Lemma 7 this bound is tight for the family {SN(Kk)}k≥1. �

Analogously, we may construct the unbalanced perfect strategic balance for bipartite graphs. The ratio of the sizes of the
bigger to the smaller global alliance is equal to


n
2 + 1, where n is the number of vertices of SN(Kk,k). The tight example for

this bound is the family {SN(Kk,k)}k≥1 of supernovas of complete bipartite graphs.

4. N P -completeness of the PSB problem

In this section we will prove the N P -completeness of the PSB problem for graphs with ∆ ≤ 4, thus improving the
result given by [10].

Let us denote by 3SAT the restriction of the classical 3SAT problem, defined as follows: 3SAT is the problem of the
satisfiability of a given CNF formula with 2 or 3 literals in each clause and satisfying the condition that for each variable
x the total number of clauses with literals x or ¬x is no more than 3. Moreover, we may assume that for each variable both
x and ¬x appear in the formula. This problem is known to be N P -complete [4].

Theorem 5. The PSB problem is N P -complete for graphs with ∆ ≤ 4.

Proof. We construct a polynomial time reduction from 3SAT to the problem PSB. For a given formula φ with n variables
x1, . . . , xn, such that φ = C1 ∧ . . . ∧ Ck ∧ Ck+1 ∧ . . . ∧ Ck+l, where for j = 1, . . . , k each clause Cj contains two literals, and
for j = k + 1, . . . , k + l each clause Cj contains three literals, we construct a graph G(φ) with ∆ ≤ 4 as follows:

(c1) we assign a new vertex cj to each clause Cj, for j = 1, . . . , k + l,
(c2) if literal xi or ¬xi is in a clause Cj, then we add a new vertex vi,j to the graph, for i = 1, . . . , n,
(c3) we join vertices cj and vi,j, for all legal i and j,
(c4) we join all vertices vi,j corresponding to the variable xi (for i = 1, . . . , n), as follows: if there are only two such

vertices (i.e. variable xi occurs twice in the formula, one as literal xi and one as literal ¬xi), we join these vertices,
otherwise the variable occurs three times, and in that case we form a path with leaves corresponding to the same
literal, i.e. xi, ¬xi, xi or ¬xi, xi, ¬xi; next we put a new vertex on each edge of the path and obtain a path vi,j1 , ai,1, vi,j2
or vi,j1 , ai,1, vi,j2 , ai,2, vi,j3 , respectively,

(c5) we add new vertices bj, uj and wj, for j = 1, . . . , k + l,
(c6) we create a cycle b1, w1, b2, w2, . . . , bk+l, wk+l, b1; and next, we put a new vertex on each edge of this cycle: vertex pj

on edge bjwj, vertex qj on edge wjbj+1, and qk+l on edge wk+lb1,
(c7) we join vertex uj with vertices cj and bj, for j = 1, . . . , k + l,
(c8) we add new vertices yj and zj, for j = 1, . . . , k,
(c9) we add three edges {wj, yj}, {yj, zj}, {zj, cj}, for j = 1, . . . , k.
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Fig. 2. Graph G(φ) corresponding to the formula φ = (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4).

Fig. 3. B is coloured with black, and W is coloured with white. Vertices vi,j (literals) with the value true are white, and with false are black.

Let us observe that each vertex from V (G(φ)) − {c1, . . . , ck+l} has a degree equal to 2 or 3, and since each clause
Cj contains 2 or 3 literals, by (c9) we have deg(cj) = 4, thus ∆(G(φ)) ≤ 4. An example graph G(φ) for a formula
φ = (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) is shown in Fig. 2.

Now, we will show that the formula φ is satisfiable if and only if the graph G(φ) admits a perfect strategic balance.
(⇒) Let us assume that the formula φ is satisfiable and let f be an assignment of values true and false to each variable

such that f (φ) is true, i.e. each clause contains at least one literal xi (or ¬xi) for which f (xi) = true (or f (¬xi) = true). We
construct the perfect strategic balance {W , B} in graph G as follows:

(p1) cj, qj, wj ∈ W and bj, pj, yj, zj ∈ B, for j = 1, . . . , k + l,
(p2) ai,s ∈ B, for all legal i and s,
(p3) if the literal xi is in a clause Cj, then vi,j ∈


W if f (xi) = true
B if f (xi) = false

(p4) if the literal ¬xi is in a clause Cj, then vi,j ∈


W if f (¬xi) = true
B if f (¬xi) = false

(p5) uj ∈ W , for j = 1, . . . , k
(p6) for j = k + 1, . . . , k + l, uj ∈ B if all other neighbours of cj are in W (i.e. each literal in Cj is true), otherwise, if at least

one other neighbour of cj is in B, then uj ∈ W .

The strategic balance for the example formula φ and the assignment satisfying φ (f (x1) = f (x2) = f (x3) = true, f (x4) =

false) is shown in Fig. 3.
We will prove that both setsW and B are global alliances in graph G(φ).
Let us observe the following:

Claim 8. For each vertex v ∈ V (G(φ)) of the degree 2 or 3, if v has a neighbour fromW and a neighbour from B, then an alliance
property holds for v and v is dominated by both W and B. �

Since the assignment f is legal, i.e. f (xi) = ¬f (¬xi), by (c4) we have that each vertex ai,s has one neighbour fromW and
one neighbour from B. Thus we may easily observe that for each vertex of degree 2 or degree 3 there is a neighbour fromW
and a neighbour from B, hence by Claim 8 the alliance property holds for these vertices and they are dominated by both W
and B.

Since the assignment f is satisfying the formula φ, i.e. each clause Cj contains at least one true literal, by (p3) and (p4)
each vertex cj, for j = 1, . . . , k + l, has at least one neighbour vi,j that is in W . Moreover, if j ≤ k, then by (p5) we have
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Fig. 4. A tree along with the values s and d.

Fig. 5. Strategic balance in a tree.

uj ∈ W and by (p1) we have zj ∈ B, and if j > k, then by (p6) we have two cases: if all neighbours of cj other than uj are
in W , then uj ∈ B, or if at least one neighbour of cj other than uj is in B, then uj ∈ W . Hence, the vertex cj has at least two
neighbours from W and at least one neighbour from B, thus the alliance property holds for vertex cj and it is dominated by
bothW and B.

(⇐) Let as assume that there exists a perfect strategic balance {W , B} in graph G(φ). Let us observe the following general
property of vertices of degree 2 in a graph with a perfect strategic balance.

Claim 9. For each vertex v ∈ V (G(φ)) of degree 2, one of its neighbour belongs to W and the second one belongs to B. �

First, let us observe that from deg(pj) = deg(qj) = 2, for j = 1, . . . , k + l, by Claim 9 we have that all vertices bj are in
the same set, analogously for vertices wj. Let us assume without loss of generality that bj ∈ B and wj ∈ W , and by Claim 9
since deg(uj) = 2, we have that cj ∈ W , and since deg(yj) = 2, we have that zj ∈ B, for j = 1, . . . , k + l.

From the alliance property for vertex cj, by deg(cj) = 4 and cj ∈ W we have |N[cj] ∩W | ≥ 3, hence by zj ∈ Bwe get that
at least one vertex vi,j belongs to W . Let us define the assignment f as follows:

(f1) if the literal xi is in clause Cj, then f (xj) =


true if vi,j ∈ W
false if vi,j ∈ B

(f2) if the literal ¬xi is in clause Cj, then f (xj) =


false if vi,j ∈ W
true if vi,j ∈ B.

We will prove that the assignment f is legal and satisfying the formula φ. From deg(ai,s) = 2, by Claim 9 we have that
both neighbours of ai,s are in different sets W and B. By the construction (c4) we have that one of the neighbours of ai,s is
corresponding to xi and the other is corresponding to ¬xi, thus by (f1) and (f2) the assignment f is legal.

Since at least one vertex vi,j neighbouring with cj belongs to W , if the literal xi is in clause Cj and vi,j ∈ W , then by (f1)
we have f (Cj) = f (xi) = true, and if the literal ¬xi is in clause Cj and vi,j ∈ W , then by (f2) we have f (Cj) = f (¬xi) = true,
thus the formula φ is satisfied. �

Note, that the distance between each two vertices of the degree 4 (i.e. vertices from {c1, . . . , ck+l}) is equal to 4, hence
these vertices form an independent set in G3 (i.e. the third power of graph Gwhich is the same graph with additional edges
between all pairs of vertices of distance at most 3), and thus we have:

Corollary 10. The PSB problem is N P -complete for graphs G with ∆(G) ≤ 4 and with the property that all vertices of the
degree 4 form an independent set in G3. �

5. Strategic balance in elementary classes

By Theorem2 theSB problem is equivalent toPSB. In this sectionwe analyse the existence of a perfect strategic balance
in elementary graph classes: paths, cycles and wheels.
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Theorem 6. There is a perfect strategic balance in a path iff its number of vertices is even.

Proof. (⇒) Let {N, S} be a perfect strategic balance in a path v1v2 . . . vn. Let us assumewithout loss of generality that v1 ∈ N ,
hence v2 ∈ S. Analogously to Claim 9, for every i = 2, . . . , n − 1 we have that vi−1 ∈ N and vi+1 ∈ S, or conversely, thus
we have v2, v3 ∈ S, v4, v5 ∈ N , v6, v7 ∈ S, and so on and so forth. Since vn−1 and vn have to be in different sets, we get that
n is even.

(⇐) Take any path v1v2 . . . v2n, where n ≥ 1. We can easily define two sets as follows: v1 ∈ N , v2, v3 ∈ S, v4, v5 ∈ N ,
v6, v7 ∈ S, and so on and so forth. If n = 2k, then v4k−2, v4k−1 ∈ S, and let v4k ∈ N . If n = 2k − 1, then v4k−4, v4k−3 ∈ N and
let v4k−2 ∈ S. It is easy to verify that {N, S} is a strategic balance in the path. �

By the proof of Theorem 6 we have the following:

Corollary 11. For each perfect strategic alliance {N, S} of a path of n vertices, we have that both leaves of the path belong to the
same partition iff n = 4k. �

Theorem 7. There is a perfect strategic balance in a cycle iff its number of vertices is divided by 4.

Proof. (⇒) Let {N, S} be a perfect strategic balance in a cycle v1v2 . . . vnv1. We can assume without loss of generality
that v1, vn ∈ N , otherwise, by Claim 9 we can take any two successive vertices belonging to the same set and change
the numeration of vertices. By Corollary 11 we have that n = 4k.

(⇐) If n = 4k, then we can define a perfect strategic balance analogously to the proof for paths. �

Theorem 8. There is a perfect strategic balance in a wheel Wn = ({s} ∪ L, E) with a central vertex s and |L| = n outer vertices
iff n = 4k + l, for k ≥ 1 and l ∈ {−1, 0, 1}.

Proof. (⇒) Let {N, S} be a perfect strategic balance in a wheel Wn, with n outer vertices L = {v1, . . . , vn} and a central
vertex s. Let us assume without loss of generality that s ∈ N and note that graph Wn is dominated by vertex s. Since the
alliance property holds for vertex s, we have |N ∩ L| + 1 = |N ∩ L| + |{s}| = |N[s] ∩N| ≥ |N[s] −N| = |N[s] ∩ S| = |S ∩ L|.
Consider that C = v1v2 . . . vnv1 is a cycle ofWn.

By a compact group of N we mean any subset of N ∩ L of consecutive vertices from a cycle C (i.e. of the form vivi+1 . . .
or . . . vnv1 . . .). Analogously, we define a compact group of S. Let us observe that the size (i.e. the number of vertices) of
any compact group of S is at least 2, and the size of any compact group of N is at most 2. Let us define by g1 and g2
the number of compact groups of N of the size equal to 1 and of the size equal to 2, respectively, and let us define by
h2 and h>2 the number of compact groups of S of the size equal to 2 and of the size greater than 2, respectively. Hence,
we get |N ∩ L| = g1 + 2g2 and |S ∩ L| ≥ 2h2 + 3h>2. It is easy to observe that g1 + g2 = h2 + h>2, hence we get
1 + g1 + 2g2 = 1 + |N ∩ L| ≥ |S ∩ L| ≥ 2h2 + 3h>2 = 2g1 + 2g2 + h>2, thus 1 ≥ g1 + h>2. If g1 = 0 and h>2 = 0, then
n = 2(g2 + h2) = 4g2, where g2 ≥ 1. If g1 = 1 and h>2 = 0, then n = g1 + 2g2 + 2h2 = 4h2 − 1, where h2 ≥ 1. If g1 = 0
and h>2 = 1, then 2h2 + 3 = 1 + 2g2 = 1 + |N ∩ L| ≥ |S ∩ L| = 2h2 + x, where x is the size of the compact group of S of
the size greater than 2, hence we get x = 3. Thus n = 2g2 + 2h2 + x = 4g2 + 1, where g2 ≥ 1.

(⇐) Take any wheelWn such that n = 4k+ l, where k ≥ 1 and l ∈ {−1, 0, 1}. Let us define the perfect strategic balance
{N, S} as follows:

• if n = 4k, then N = {s} ∪ {vi : i mod 4 ∈ {1, 2}, i ≤ 4k} and S = V (Wn) − N ,
• if n = 4k + 1, then N = {s} ∪ {vi : i mod 4 ∈ {1, 2}, i ≤ 4k} and S = V (Wn) − N ,
• if n = 4k − 1, then N = {s} ∪ {vi : i mod 4 ∈ {1, 2}, i ≤ 4k − 3} and S = V (Wn) − N . �

6. Strategic balance in complete k-partite graphs

In this sectionwe fully characterize the existence of a perfect strategic balance in complete k-partite graphs, for the cases:
k = 1 (i.e. complete graphs), k = 2 (i.e. complete bipartite graphs) and for k ≥ 3.

Theorem 9. There is a perfect strategic balance in a complete graph Kn iff n is an even number.

Proof. If n is an odd number, then every alliance must have at least (n + 1)/2 vertices, hence it impossible to find two
disjoint alliances in Kn. If n is an even number, then any partition of vertex set into two sets of equal sizes (i.e. n/2) is a
perfect strategic balance. �

Theorem 10. There is a perfect strategic balance in a complete bipartite graph Kn,m iff n > 1 and m > 1 or n = m = 1.

Proof. Let us define Kn,m = (V1 ∪ V2, E) where V1 and V2 are disjoint independent sets of cardinality n andm, respectively.
Since obviously there is no strategic balance in K1,m, where m > 1, we have that m = 1, and in that case we have a trivial
solution.

Let us assume that n > 1 and m > 1. Let us split the partitions V1 into subsets S1 and N1, and V2 into subsets S2 and N2,
in such a way that |S1| = ⌊n/2⌋, |N1| = ⌈n/2⌉, |S2| = ⌈m/2⌉ and |N2| = ⌊m/2⌋, thus {N1 ∪N2, S1 ∪ S2} is a perfect strategic
balance in Kn,m. �
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Corollary 12. There is a perfect strategic balance in a star Sn iff n = 1. �

Let Kn1,...,nk be a complete k-partite graph (k ≥ 1) with the vertex set V = V1 ∪ · · · ∪Vk, where |Vi| = ni, for i = 1, . . . , k.
For any partition of vertex set V into {N, S} let us denote by Ni = N ∩ Vi and by Si = S ∩ Vi, for i = 1, . . . , k.

Lemma 13. For any strategic balance {N, S} in a graph G = Kn1,...,nk , where k ≥ 2, we have that ||Ni| − |Si|| ≤ 1, for
i = 1, . . . , k.

Proof. Let us assume, to the contrary, that there is a strategic balance {N, S} in G, and there is i0 ∈ {1, . . . , k} such thatNi0

 −
Si0  ≥ 2. Let us assume without loss of generality that

Ni0

 −
Si0  ≥ 2. For each vertex v ∈ Ni0 we have

|Nv| ≥ |Sv|, and it is equivalent to


i≠i0
|Si| −


i≠i0

|Ni| ≤ 1.
Take any i1 ≠ i0 such that

Si1  >
Ni1

, hence Si1 ≠ ∅. For each v ∈ Si1 we have |Sv| = 1 +


i≠i1
|Si| =

1 +


i≠i0
|Si| −

Si1  +
Si0  and |Nv| =


i≠i1

|Ni| =


i≠i0
|Ni| −

Ni1

 +
Ni0

, hence we have |Sv| − |Nv| =

1+ (


i≠i0
|Si|−


i≠i0

|Ni|)− (
Si1 − Ni1

)+ (
Si0 − Ni0

) < 0, thus S is not an alliance, a contradiction. As a consequence,
we have |Si| ≤ |Ni| for each i ≠ i0. Since S is dominating set and |Ni0 | > 0, there is i1 ≠ i0 such that Si1 ≠ ∅. For each v ∈ Si1
we have |Sv| = 1 +

Si0  +


i∉{i0,i1}
|Si| <

Ni0

 +


i∉{i0,i1}
|Ni| = |Nv|, thus S is not an alliance, a contradiction. �

By Lemma 13 we have:

Lemma 14. Let {N, S} be a perfect strategic balance in a graph Kn1,...,nk , where k ≥ 2. For every 1 ≤ j ≤ k such that |Vj| > 1,
we have that Nj ≠ ∅ and Sj ≠ ∅. �

Theorem 11. For every k ≥ 3 there is a perfect strategic balance in a complete k-partite graph G = Kn1,...,nk iff the number of
partitions of odd cardinality is even or equal to 1.

Proof. If for every 1 ≤ i ≤ kwe have that ni = |Vi| is an even number, then split each Vi into two subsets Ni and Si of equal
cardinality. Obviously, {N1 ∪ · · · ∪ Nk, S1 ∪ · · · ∪ Sk} is a perfect strategic balance.

If there is only one set Vi such that |Vi| is an odd number, then we can split every even partition (i.e. partition of even
cardinality) Vj into two subsets Nj and Sj of equal cardinality, and split an odd partition into two subsets such that one of
them is equal to (|Vi| − 1)/2. Obviously, this is a perfect strategic balance.

Let us assume that the number of partitions of odd cardinality is even, and without loss of generality let V1, . . . , V2r
be set of all partitions of odd cardinality, thus V2r+1, . . . , Vk are even partitions. Now, we split each even partition Vj, for
j = 2r + 1, . . . , k, into two subsets Nj and Sj of equal cardinality, and each odd partition Vj, for j = 1, . . . , 2r , we split
into two subsets Nj and Sj such that |Sj| = |Nj| + 1, for j = 1, . . . , r and |Sj| + 1 = |Nj|, for j = r + 1, . . . , 2r . Obviously,
{N1 ∪ · · · ∪ Nk, S1 ∪ · · · ∪ Sk} is a perfect strategic balance.

Now, let us assume that the number p of odd partitions is odd and greater than 1, and let {N, S} be a perfect strategic
balance in G. By Lemma 13 we have |Ni| = |Si| for every even partition, and ||Ni| − |Si|| ≤ 1 for every odd partition. Since p
is odd, we can assume without loss of generality that q = |i : i ∈ {1, . . . , k}∧ |Si| > |Ni|| > p/2. If q = p, then obviously for
each v ∈ N the alliance property does not hold. If q < p, then there is an odd partition such that |Si| ≤ |Ni|, thus for v ∈ Ni
the alliance property does not hold, thus we get a contradiction. �

7. Polynomial time algorithm for the PSB problem in trees

In this section we present a dynamic programming algorithm for the PSB problem in trees which runs in O(n)-time,
where n is the size of a vertex set of a tree. In [3] the authors studied the global alliance partition number problem for trees
and they observed that this number is equal to 1 or 2 in a tree. They gave some partial results regarding the characterization
of the trees that cannot have two disjoint global alliances and left the problem of full characterization open. In this section
we give a polynomial time algorithm that finds the global alliance partition number of a tree, and constructs the partition.

7.1. A dynamic algorithm for the PSB problem in trees

To construct the strategic balance (or give a negative answer to the PSB problem) we use the bottom-up-bottom
technique in accordance to the defined orientation of T . First, we orient all edges of T in an in-tree manner with a root,
i.e. we choose any vertex r as root and orient all edges of the tree T towards the root r . We start from the leafs to assign two
bits of information to each vertex of the tree. If the construction is possible we start from the root r and we construct the
PSB using assigned bits of information.

By Tv we denote a subtree of T rooted at v and consisting of all (oriented) edges that lead to the vertex v. For each vertex
v ∈ V (T )−{r} there is exactly one oriented edge outcoming froma vertex v towards r , let us denote this edge by ev = {v, rv}.
For each vertex v ∈ V (T ) − {r} we define T ∗

v to be a tree Tv with an attached edge ev , i.e. T ∗
v = (V (Tv) ∪ {rv}, E(Tv) ∪ {ev})

rooted at vertex rv . By C(v) we denote the set of all children (vertices) of vertex v i.e. C(r) is a set of all vertices adjacent to
r and for each v ∈ V (T ) − {r} set C(v) consist of all vertices adjacent to v and different from rv .
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For a tree T rooted at vertex r an almost perfect strategic balance is a partition of V (T ) into two sets, such that one of them
is a global alliance and the second one is an alliance, which dominates V (T ) − {r}.

We assign two bits of information to each vertex v ∈ V (T ) − {r}:

• sv = 1 iff there exists an almost perfect strategic balance in the subtree T ∗
v , such that v and rv are in the same alliance,

• dv = 1 iff there exists an almost perfect strategic balance in the subtree T ∗
v , such that v and rv are in different alliances.

For each leaf l ∈ V (T ) − {r} we have sl = 0 and dl = 1. For each v ∈ V (T ) and i, j ∈ {0, 1} we define
C ij

v = {w ∈ C(v) : sw = i and dw = j}.

Proposition 15. For each v ∈ V (T ) − {r} which is not a leaf and whose all children have assigned values s and d we have:

1. sv = 1 iff C00
v = ∅ and C01

v ∪ C11
v ≠ ∅ and 2 +

C10
v ∪ C11

v

 ≥
C01

v

,
2. dv = 1 iff C00

v = ∅ and
C10

v ∪ C11
v

 ≥
C01

v

.
Proof. Proof of the statement (1):

(⇒) Let {N, S} be an almost perfect strategic balance in the subtree T ∗
v . We can assume without loss of generality that

v ∈ N and rv ∈ N . Vertex v is not a leaf thus C(v) ≠ ∅. For each child c ∈ C(v) we consider subtree T ∗
c . The pair

{V (T ∗
c ) ∩ N, V (T ∗

c ) ∩ S} is an almost perfect strategic balance in the subtree T ∗
c . Therefore, at least one of the values sc

and dc is equal to 1, thus we have that C00
v = ∅. Set S dominates each vertex except for the vertex rv thus there exist a

vertex c ∈ C(v) for which dc = 1, therefore, C01
v ≠ ∅ or C11

v ≠ ∅. Finally, by the alliance condition for the vertex v we have
2 +

C10
v ∪ C11

v

 ≥ 2 + |C(v) ∩ N| ≥ |C(v) ∩ S| ≥
C01

v

.
(⇐) We have C00

v = ∅, thus for each vertex c ∈ C(v) there is an almost perfect strategic balance in the subtree T ∗
c .

We construct an almost perfect strategic balance {N, S} in the following way:

1. v, rv ∈ N ,
2. C01

v ⊆ S,
3. C10

v ⊆ N ,
4. if C01

v = ∅, then
C11

v ∩ S
 = 1 and

C11
v ∩ N

 =
C11

v

 − 1,
5. if C01

v ≠ ∅, then C11
v ⊆ N ,

6. for each vertex c ∈ C(v) ∩ N which is not a leaf we can repeat presented steps,
7. for each vertex c ∈ C(v) ∩ S which is not a leaf we can apply the steps defined for assigning the value dc (see proof of

the statement (2) with swapped N and S).

The alliance condition holds for vertex rv because 2 = |N[rv] ∩ N| ≥ |N[rv] − N| = 0. By the construction if C01
v = ∅, then

|N[v] ∩ N| = 2+
C10

v ∪ C11
v

−1 ≥ 1 = |N[v] − N|, thus the alliance condition for the vertex v holds. Similarly, if C01
v ≠ ∅,

then |N[v] ∩ N| = 2+
C10

v ∪ C11
v

 ≥
C01

v

 = |N[v] − N|, thus again the alliance condition for the vertex v holds. By the 4th
or the 5th step of the construction we have that vertex v is dominated by the set S. We have C00

v = ∅ and by the 3rd, 4th and
5th step of the construction we have that if c ∈ C(v) ∩ N , then sc = 1 and by the induction vertex c is dominated by the set
S and the alliance condition for this vertex holds. Similarly, if c ∈ C(v) ∩ S, then dc = 1 and we can use corresponding part
of the proof for assigning d value to confirm that vertex c is dominated by the set N and the alliance condition for this vertex
holds. By the induction, for each vertex u ∈ V (T ∗

v ) − {{rv} ∪ {v} ∪ C(v)} which is not a leaf we have that u is dominated by
both sets N and S and the alliance property for this vertex holds. Finally, for each leaf other than the root rv we use the 2nd
step of the construction, thus we have dominating property for both setsN and S as well as the alliance condition. Therefore,
{N, S} is an almost perfect strategic balance.

Proof of the statement (2):
(⇒) Let {N, S} be an almost perfect strategic balance in the subtree T ∗

v . We can assume without loss of generality that
v ∈ N and rv ∈ S. Vertex v is not a leaf thus C(v) ≠ ∅. For each child c ∈ C(v) we consider subtree T ∗

c . The pair
{V (T ∗

c ) ∩ N, V (T ∗
c ) ∩ S} is an almost perfect strategic balance in the subtree T ∗

c . Therefore, at least one of the values sc and
dc is equal to 1, thus we have that C00

v = ∅. By the alliance condition for the vertex v we have
C10

v ∪ C11
v

 ≥ |C(v) ∩ N| ≥

|C(v) ∩ S| ≥
C01

v

.
(⇐) We have C00

v = ∅, thus for each vertex c ∈ C(v) there is an almost perfect strategic balance in the subtree T ∗
c .

We construct an almost perfect strategic balance {N, S} in the following way:

1. v ∈ N , rv ∈ S,
2. C01

v ⊆ S,
3. C10

v ∪ C11
v ⊆ N ,

4. for each vertex c ∈ C(v) ∩ S which is not a leaf we can repeat presented steps (with swapped N and S),
5. for each vertex c ∈ C(v) ∩ N which is not a leaf we can apply the steps defined for assigning the value sc (see proof of

the statement (1)).
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The alliance condition holds for vertex rv because 1 = |N[rv] ∩ S| = |N[rv] − S| = 1. Moreover vertex rv is dominated by
both sets N and S. By the construction |N[v] ∩ N| = 1 +

C10
v ∪ C11

v

 ≥ 1 +
C10

v

 = |N[v] − N|, thus the alliance condition
for the vertex v holds. Vertex v is dominated by the set S as rv ∈ S. We have C00

v = ∅ and by the 2nd and 3rd step of the
construction we have that if c ∈ C(v) ∩ S, then dc = 1 and by the induction vertex c is dominated by the set N and the
alliance condition for this vertex holds. Similarly, if c ∈ C(v) ∩ N , then sc = 1 and we can use corresponding part of the
proof for assigning s value to confirm that vertex c is dominated by the set S and the alliance condition for this vertex holds.
By the induction, for each vertex u ∈ V (T ∗

v ) − {rv} ∪ {v} ∪ C(v) which is not a leaf we have that u is dominated by both sets
N and S and the alliance property for this vertex holds. Finally, for each leaf other than the root rv we use the 2nd step of the
construction, thus we have dominating property for both sets N and S as well as the alliance condition. Therefore, {N, S} is
an almost perfect strategic balance. �

Proposition 16. A perfect strategic balance in a tree T exists iff C00
r = ∅ and C01

r ∪ C11
r ≠ ∅ and 1 +

C10
r ∪ C11

r

 ≥
C01

r

,
Proof. (⇒) Let {N, S} be a perfect strategic balance in the tree T rooted at vertex r . We can assume without loss of
generality that r ∈ N . Set S dominates the root r thus C(v) ≠ ∅. For each child c ∈ C(r) we consider subtree T ∗

c .
The pair {V (T ∗

c ) ∩ N, V (T ∗
c ) ∩ S} is an almost perfect strategic balance in the subtree T ∗

c . Therefore, at least one of the
values sc and dc is equal to 1, thus we have that C00

r = ∅. As the set S dominates the root r there exist a vertex
c ∈ C(r) for which dc = 1, therefore, C01

r ≠ ∅ or C11
r ≠ ∅. Finally, by the alliance condition for the root r we have

1 +
C10

r ∪ C11
r

 ≥ 1 + |C(r) ∩ N| ≥ |C(r) ∩ S| ≥
C01

r

.
(⇐) We have C00

r = ∅, thus for each vertex c ∈ C(r) there is an almost perfect strategic balance in the subtree T ∗
c .

We construct a perfect strategic balance {N, S} in the following way:

1. r ∈ N ,
2. C01

r ⊆ S,
3. C10

r ⊆ N ,
4. if C01

r = ∅, then
C11

r ∩ S
 = 1 and

C11
r ∩ N

 =
C11

r

 − 1,
5. if C01

r ≠ ∅, then C11
r ⊆ N ,

6. for each vertex c ∈ C(r) ∩ N which is not a leaf we can apply the steps defined for assigning the value sc in the proof of
the statement (1) in the Proposition 15,

7. for each vertex c ∈ C(r) ∩ S which is not a leaf we can apply the steps defined for assigning the value dc in the proof of
the statement (2) in the Proposition 15 (with swapped N and S).

It is enough to verify the domination and the alliance property for the root r . By the 4th or 5th step of the construction we
have that set S dominates the root r . By the 2nd, 3rd, 4th and 5th step of the construction if C01

r = ∅, then |N[r] ∩ N| =

1 +
C10

r ∪ C11
r

 − 1 ≥ 1 = |N[r] − N|, thus the alliance condition for the root r holds. Similarly, if C01
r ≠ ∅, then

|N[r] ∩ N| = 1 +
C10

r ∪ C11
r

 ≥
C01

r

 = |N[v] − N|, thus again the alliance condition for the root r holds. For now we
can follow the proof of the Proposition 15 to verify that {N, S} is a perfect strategic balance. �

7.2. Construction of the strategic balance

If the values s and d are set on every vertex and there exists a perfect strategic balance, it is easy to make a construction.
We start from the root r with any assignment and dominate it by one of its children (we prefer the one from the set C01

r ).
From the rest of the children we greedily make as many children, in the same alliance as parent, as possible. For any other
vertex v which is not a leaf we have two options. If its parent is in a different alliance, again, if possible, we greedily make
the children of v alliances. If the parent of v is in the same alliance as v, first, we dominate it (again we prefer vertex from
set C01

v ) and then, again, we greedily make as many children, in the same alliance as parent, as possible. For each leaf l we
choose an opposite alliance to its parent. See Figs. 4 and 5 as an example of the construction.

Since for each vertex v we calculate the values s and d based on its children’s values, and there is at most deg(v)
neighbours for each vertex, we get that the complexity of this algorithm can be bounded by O(


v∈V (T ) deg(v)) = O(n).

8. Final remarks and open problems

In the paper we introduced the strategic balance concept and gave a survey of its general properties, e.g., showing that
a graph has a strategic balance iff its global alliance partition number equals at least 2, which means that every strategic
balance can be extended to a perfect strategic balance, i.e. partition into two disjoint global alliances. We constructed an
algorithm for solving the problem for trees working in time O(n), thus giving an answer to the open question stated in [3],
and studied this problem for certain common classes of graphs: paths, cycles, wheels, stars, complete graphs and complete
k-partite graphs. Moreover, we proved that this problem is N P -complete for graphs with a degree bounded by 4.
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8.1. Strategic balance in cubic graphs

Based on Theorem 5, we know that the problem of verifying the existence of strategic balance in graphs isN P -complete
for graphs with ∆ ≤ 4. We considered the problem for subcubic and cubic graphs. The problem of the existence of a perfect
strategic balance in a cubic graph is equivalent to the existence of two disjoint total dominating sets in this graph.

Proposition 17. Let G be a cubic graph. The partition {N, S} is a perfect strategic balance in G iff N and S are disjoint total
dominating sets of G. �

We have conducted numerical calculations to verify how many cubic graphs do not have a strategic balance. We used
the nauty package [9] to generate all connected cubic graphs up to 20 vertices, and we found only one cubic graph which
has no strategic balance. The graph in question is the so-called Heawood graph [1], which has 14 vertices and is obtained
from the Fano plane as the graph of incidences between points and lines in that geometry.

In [8] Henning and Southey showed that every cubic graph has a dominating set and a total dominating set which are
disjoint. However, the full characterization of cubic and subcubic graphs which have no partition into two total dominating
sets remains still open and appears to be a very challenging problem.
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