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Stream Reasoning to Improve Decision Making in Cognitive Systems 

Cognitive Vision Systems have gained a lot of interest from industry and 

academia recently, due to their potential to revolutionize human life as they are 

designed to work under complex scenes, adapting to a range of unforeseen 

situations, changing accordingly to new scenarios and exhibiting prospective 

behaviour. The combination of these properties aims to mimic the human 

capabilities and create more intelligent and efficient environments. Contextual 

information plays an important role when the objective is to reason such as 

humans do, as it can make the difference between achieving a weak, generalized 

set of outputs and a clear, target and confident understanding of a given situation. 

Nevertheless, dealing with contextual information still remains a challenge in 

cognitive systems applications due to the complexity of reasoning about it in real 

time in a flexible but yet efficient way. In this paper, we enrich a cognitive 

system with contextual information coming from different sensors and propose 

the use of stream reasoning to integrate/process all these data in real time, and 

provide a better understanding of the situation in analysis, therefore improving 

decision making. The proposed approach has been applied to a Cognitive Vision 

System for Hazard Control (CVP-HC) which is based on Set of Experience 

Knowledge Structure (SOEKS) and Decisional DNA (DDNA) and has been 

designed to ensure that workers remain safe and compliant with Health and 

Safety policy for use of Personal Protective Equipment (PPE). 

Keywords: Cognitive Vision Systems, Knowledge Representation, SOEKS, 

DDNA, PPE compliance, Hazard Control, Stream Reasoning, Industry 4.0  
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Introduction and Background 

Cognitive Vision Systems have gained a lot of interest from industry and academia 

recently due to their potential to revolutionize human life, as they are designed to work 

under complex scenes, adapting to a range of unforeseen situations, changing 

accordingly to new scenarios and exhibiting prospective behaviour (Sanin, Haoxi, 

Shafiq, Waris, de Oliveira & Szczerbicki, 2018). The combination of these properties 

aims to mimic the human capabilities and create more intelligent and efficient 

environments (Vernon, 2006). Contextual information plays an important role when the 

objective is to perceive the environment and reason such as humans do, as it can make 

the difference between achieving a weak, generalized set of outputs and a clear, target 

and confident understanding of a given situation (Chmaj, 2019).  

Nonetheless, dealing with contextual information still remains a challenge in cognitive 

systems applications due to the complexity of reasoning about it in real time in a 

flexible but yet efficient way. It involves gathering visual and other sensorial 

information available and translating it into knowledge to be useful. Moreover, past 

experiences is also an important element of this process and must also be considered if 

the objective is to improve perception (Gregory, 1973). 

In this context, approaches have been proposed aiming to gather and integrate 

contextual knowledge to prior models, improving learning and reasoning of systems and 

providing promising guidelines to improve decision making process in various domains 

(Fritsch, 2003; Bauckhage, Wachsmuth, Hanheide, Wrede, Sagerer, Heidemann & 

Ritter, 2008; Crowley, Coutaz, Rey & Reignier, 2002). However, in real time industrial 

applications, when an incident occurs, systems have only a few minutes to forge a 

representation of the given issue, gather information on the situation, analyse the 

incident and undertake the correcting actions (Brézillon, 2003). Unfortunately, most of 
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available methodologies cannot guarantee real time performance in such complex 

situation. 

Stream reasoning appeared as an initiative to overcome this issue. Stream reasoning is, 

in short, the task of continuously deriving conclusions based on the continuous 

processing of data (Beck, Dao-Tran, Eiter, & Folie, 2018). For application in Cognitive 

Vision Systems, this approach may enables the integration of rich visual content with 

sensor data from a variety of sensors in different frequencies for the creation of a 

context in which a visual event is occurring, deriving useful information, reasoning on it 

and inferring new knowledge. 

The approach proposed in this paper makes use of the stream reasoning presented in 

Giustozzi, Saunier and Zanni-Merk (2019) work in combination with rich structured 

visual and non-visual knowledge for applicability in cognitive systems. The objective is 

to integrate and process all input data in real time, and provide a better understanding of 

the situation in analysis, therefore improving decision making. The proposed approach 

has been applied to a Cognitive Vision System for Hazard Control (CVP-HC) which is 

based on Set of Experience Knowledge Structure (SOEKS) and Decisional DNA 

(DDNA) and has been designed to ensure that workers remain safe and compliant with 

Health and Safety policy for use of Personal Protective Equipment (PPE). 

This paper is organized as follow: In Section 2, some fundamental concepts are 

presented, including cognitive technologies, the challenge of representation and 

management of knowledge in these systems, as well as the stream reasoning to process 

contextual information for inference of new knowledge. In Section 3 a case study for 

the case of PPE compliance is presented, including its applicability and design. In 

Section 4 experimental results achieved so far are discussed. Finally, in Section 5 

conclusions and future work are presented. 
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Fundamental Concepts 

In order to offer a more complete view, we briefly introduce concepts that have driven 

the proposed research as well as the technologies involved.  

Cognitive Systems  

The use of computer vision techniques can support automatic detection and tracking of 

objects and people with reasonable accuracy (Han & Lee, 2013; Ciresan, Meier, Masci, 

Maria Gambardella & Schmidhuber, 2011; Little, Jargalsaikhan, Clawson, Nieto, Li, 

Direkoglu & Liu 2013; Krizhevsky, Sutskever & Hinton, 2012; Mosberger, Andreasson 

& Lilienthal, 2013). Visual sensing facilities, such as video cameras can gather a large 

amount of data, such as video sequences or digitized visual information that, with 

support of machine learning technologies and powerful machines, can operate in real 

time (Chen, Hoey, Nugent, Cook, & Yu, 2012). For those reasons, computer vision 

systems have been a research focus for a long time in surveillance systems, human 

detection, and tracking. 

However, computer vision systems have their own inherent limits, especially those 

whose task is to work in unidentified environments and deal with unknown scenarios 

and specifications. Besides the significant improvements in computer vision 

technologies, they are still challenged by issues such as occlusion or position accuracy; 

and background changes result in the necessity of adapting the algorithms for different 

conditions, clients and situations. To date, the creation of a general-purpose vision 

system with the robustness and resilience comparable to human vision still remains a 

challenge (Mosberger, Andreasson & Lilienthal, 2013). 

In this context, methods incorporating prior knowledge and context information have 

gained interest. The understanding about scene composition in an image (which set of 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6 

 

objects are present) can improve recognition performance about the scene where they 

are inserted (Zambrano, Toro, Nieto, Sotaquirá, Sanín & Szczerbicki, 2015). For 

instance, the presence of multiple cutlery items in an image can aid the recognition of a 

kitchen image. This relationship is held both ways, as contextual knowledge can also 

offer insights about the function of an object in a scene, reducing the impacts of sensor 

noise or occlusions (Aditya, Yang, Baral, Aloimonos & Fermuller, 2017). These 

technologies are known as knowledge-based systems. For instance, an automatic 

semantic and flexible annotation service able to work in a variety of video analysis with 

little modification to the code using Set of Experience Knowledge Structure (SOEKS) 

was proposed in work by Zambrano et al. (2015). This system is a pathway towards 

cognitive vision and it is composed, basically, by the combinations of detection 

algorithms and an experience based approximation. 

The design of a general-purpose vision system with the robustness and resilience of the 

human vision is still a challenge. One of the latest trends in computer vision research to 

mimic the human-like capabilities is the joining of cognition and computer vision into 

cognitive computer vision. Cognitive Systems have been defined as “a system that can 

modify its behaviour on the basis of experience” (Hollnagel & Woods, 2005). Although, 

most experts tend to agree that such systems only exists in theory, that is, systems that 

can independently process, reason and create in the same capacity as the human brain 

has not yet been implemented successfully (Cole, 1990). 

In this scenario, the concept of Augmented Intelligence, also known as Cognitive 

Augmentation or Intelligence Amplification (IA) comes into play (Ashby, 1961). For 

any specific application humans being and machines have both their own strengths and 

weaknesses. Machines are very efficient in numerical computation, information 

retrieval, statistical reasoning, with almost unlimited storage. Machines can capture 
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many categories of information from the environment through various sensors, such as 

range sensors, visual sensors, vibration sensors, acoustic sensors, and location sensors 

(Yu, Pan, Gong, Xu, Zheng, Hua & Wu, 2016). On the other hand, humans have their 

own cognitive capabilities which includes consciousness, problem-solving, learning, 

planning, reasoning, creativity, and perception. These cognitive functions allows 

humans to learn from last experiences and use this experiential knowledge to adapt to 

new situations and to handle abstract ideas to change their environment. Therefore, the 

combination of both human experiential knowledge and information collected by a 

system can be used to enhance smartness of systems and for improved decision making 

(Pathak, 2017). 

 

Knowledge Representation for Cognitive Systems 

The implementation of cognitive vision systems require the design of functionalities for 

knowledge engineering (acquisition and formalism), recognition and categorization, 

reasoning about events for decision making, and goal specification, all of which are 

concerned with the semantics of the relationship between the visual agents and their 

environments i.e. context (Vernon, 2006). These functionalities direct cognitive vision 

systems towards purposeful behaviour, adaptability, anticipation, such as human beings. 

In this context, knowledge and leaning are central to cognitive vision. To be readily 

articulated, codified, accessed and shared, knowledge must be represented in an explicit 

and structured way (Brézillon & Pomerol, 1999). In addition, the choice of a suitable 

representation greatly facilitates obtaining methods that efficiently learn the relevant 

information available. Therefore, an appropriate knowledge representation is crucial for 

the success in designing of cognitive systems. 

Nevertheless, most approaches that have been proposed on past years, even though they 
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present some principles for intelligent cognitive vision, they fail in providing a unique 

standard that could integrate image/video modularization, its virtualization, and capture 

its knowledge (Sanin & Szczerbicki, 2009). To address these issues an experience-based 

technology that allows a standardization of image/video and the entities within together 

with any other information as a multi-source knowledge representation (required for the 

further development of cognitive vision) without limiting their operations to a specific 

domain and/or following a vendor’s specification has been proposed (de Oliveira, Sanin 

& Szczerbicki, 2019). This representation supports mechanisms for storing and reusing 

experience gained during cognitive vision decision-making processes through a unique, 

dynamic, and single structure called Decisional DNA (DDNA) (Sanin, Toro, Haoxi, 

Sanchez, Szczerbicki, Carrasco & Mancilla-Amaya, 2012). DDNA makes use of Set of 

Experience (SOE) in an extended version for the use of storing formal decision events 

related to image and video. DDNA and SOE provide a knowledge structure that has 

been proven to be multi-domain independent (Sanin & Szczerbicki, 2008). 

Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA)  

The Set of Experience Knowledge Structure (SOEKS) is a knowledge representation 

structure created to acquire and store formal decision events in a structured and explicit 

way. It is composed by four key elements: variables, functions, constraints, and rules. 

Variables are commonly used to represent knowledge in an attribute-value form, 

following the traditional approach for knowledge representation. Functions, Constraints, 

and Rules of SOEKS are ways of relating variables. Functions define relationships be-

tween a set of input variables and a dependent variable; thus, SOEKS uses functions as 

a way to create links among variables and to build multi-objective goals. Constraints are 

functions that act as a way to limit possibilities, limit the set of possible solutions and 

control the performance of the system in relation to its goals. Lastly, rules are 
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relationships that operate in the universe of variables and express the condition-

consequence connection as “if-then-else” and are used to represent inferences and 

associate actions with the conditions under which they should be implemented (Sanin & 

Szczerbicki, 2009). Rules are also ways of inputting expert knowledge into the system. 

The Decisional DNA consists in a structure capable of capturing decisional fingerprints 

of an individual or organization and has the SOEKS as its basis. Multiple Sets of 

Experience can be collected, classified, organized and then grouped into decisional 

chromosomes, which accumulate decisional strategies for a specific area of an 

organization. The set of chromosomes comprise, finally, what is called the Decisional 

DNA (DDNA) of the organization (Sanin, Toro, Haoxi, Sanchez, Szczerbicki, Carrasco 

& Mancilla-Amaya, 2012). 

Stream Reasoning Engines   

Data streams have become more and more important as a basis for higher level decision 

processes that require complex reasoning over data streams and rich background 

knowledge (Stuckenschmidt, Ceri, Della Vall & Harmelen, Milano, 2019). New data is 

continually being produced by sensors and humans. A stream is a sequence of 

incrementally available data. Streaming data is dynamic, temporal, spatial and 

heterogeneous in nature. In order to integrate these data from multiple data sources, the 

Semantic Sensor Web (SSW) proposed by Sheth, Henson and Sahoo (2008) introduces 

semantic annotations for describing: (i) the data produced by the sensors, introducing 

spatial, temporal, or situation/context semantics; and (ii) the sensors and the sensor 

networks that provide such data. Furthermore, there are also works on defining suitable 

ontologies for data and sensors to enable both the integration of data from multiple 

sensor networks and external sources, and reasoning on such data. As an example, the 
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W3C Semantic Sensor Network Incubator Group developed an ontology to describe 

sensors and sensor networks, the Semantic Sensor Network Ontology (SSN) (Haller, 

Janowicz, Cox, Lefranc¸ois, Taylor, Le Phuoc, Lieberman, Garc´ıa-Castro, Atkinson & 

Stadler, 2018). However, current solutions to perform reasoning on ontologies are 

limited to work on rather static scenarios. 

Stream reasoning appeared as an initiative to perform reasoning over these streams to 

draw conclusions and make decisions in real-time. Since streams are conceptually 

infinite, this reasoning has to be done incrementally as new information becomes 

available. It has been applied in many fields, such as smart cities, to process and 

understand the information relevant for the life of a city and use it to make the city 

services run better and faster (Tallevi-Diotallevi, Kotoulas, Foschini, Lecue & Corradi, 

2013; Lecue, Kotoulas & Aonghusa, 2012), remote health monitoring, to generate 

automated and personalized systems for remote patient monitoring (Calbimonte, 

Ranvier, Dubosson & Aberer, 2017; Shojanoori & Juric, 2013), maritime safety and 

security, to represent and to perform reasoning over ship trajectories (Santipantakis, 

Vlachou, Doulkeridis, Artikis, Kontopoulos & Vouros, 2018), semantic analysis of 

social media, to extend traditional analysis based on graphs enriching the connections 

between people and concepts with semantic annotations (Ereteo, Buffa, Gandon & 

Corby, 2009; Mika, 2005), among others. 

Sensor data applied to cognitive systems represents an ideal scenario for stream 

reasoning mainly for two reasons. Firstly, the amount of data collected from sensors is 

considerable, and it is produced at high (and low) frequencies. Secondly, integrating 

data coming from different sensors (and from different sensor networks) that measure 

different properties of the environment is necessary in many settings for deriving useful 

information such as the detection of abnormal situations or risk situations. 
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Personal Protective Equipment Safety Compliance 

Hazards are present in all workplaces and can result in serious injuries, short and long-

term illnesses, or death (Safe Work Australia, 2012). Reports HSE UK report has shown 

that over 80% of reported workplace injuries are sustained due to a person not wearing 

correct protective clothing (Health and Safety Executive, 2018). In this context, the 

verification of PPE compliance becomes essential in the management of safety to 

ensure the occupational health of workers. Technologies to support its practical and 

automated implementation have emerged as a need, but the current technologies 

available still face considerable limitations (Deloy, 2005). 

The combination of vision and sensor data together with the resulting necessity for 

explicit and formal representations builds a central element of an autonomous system 

for detection and tracking of labourers in workplaces environments. To be able to 

perform in a variety of plants and scenes, making sure employees remain safe and 

compliant with Health & Safety policy without the necessity of recoding the application 

for each specific case scenario, the system must be adaptable and perceive the 

environment as automatically as possible and change its behaviour accordingly. 

However, computer vision systems have their own inherent limits, especially those 

whose task is to work in unidentified environments and deal with unknown scenarios 

and specifications (de Oliveira, Sanin & Szczerbicki, 2018). 

The gaps of current systems may be filled by connecting the probabilistic area of 

detection of events with the logical area of formal reasoning in a Cognitive Vision 

Platform for Hazard Control (CVP-HC) (de Oliveira, Sanin & Szczerbicki, 2018). This 

platform verifies the PPE compliance in variety of video analysis scenarios whilst 

meeting specific safety requirements of industries (de Oliveira, Sanin & Szczerbicki, 

2019).  
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The proposed system is based on the Set of Experience Knowledge Structure (SOEKS 

or SOE in short) and Decisional DNA (DDNA) and uses the stream reasoning based 

approach proposed by Giustozzi, Saunier and Zanni-Merk (2019) to integrate and 

process all input data in real time, and provide a better understanding of the situation in 

analysis, therefore improving decision making. The overall scheme of the proposed 

approach is presented in Figure 1. 

 

Figure 1. Overall Scheme of the proposed approach. 

 

Automated verification of PPE compliance can be useful in a variety of industries (e.g. 

Oil & Gas, Manufacturing & Production, Construction, Engineering, Pharmaceuticals, 

etc.) and applied in a range use case scenarios to ensure employees remain safe (Au, 

Davalos, Venkatesha, Khurana, Bedros, Mohideen & Cabuz, 2017). Below we 

exemplify two main applications that the proposed solution can address. 
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Application 1: Access Control  

With cameras positioned above an entrance/exit of a site or facility, the system is able to 

visually verify that labourers are wearing the protective equipment according to the 

safety requirements of that industry/area before allowing entry. In case of any 

equipment being missed at the point of entry, then safety status of the situation can be 

tagged as unsafe and the system will not permit a gate to open and will advise which 

items must be worn in order to enable access. Once all the mandatory equipment are 

detected, the status can change to safe and the access granted. Figure 2 presents a 

general overview of applications for access control using visual content. 

 

Sensorial data applied to access control 

The visual information from the cameras can be combined with other sensor data 

collected moments before decision of granting or not the access is given by the system. 

This extra contextual information about, for instance, crucial required equipment (e.g. 

oxygen mask when oxygen level read from sensors is critically low) can change the 

output of system or increase the confidence of the safety status of the scene. 

Application 2: Continuous Monitoring 

Another solution can address the continuous monitoring of works by the use of cameras 

covering the site or facility to ensure that employees remain wearing the required PPE 

in a given context. If labourers remove a required equipment then the system will 

recognize this in real-time and carry out an action based on a set of given preferences or 

recommendations. For instance, an alert can be sent directly to the employee or manager 

for correction on site; the event can be logged for future reports and analysis, etc.  
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Sensor data applied to continuous monitoring 

Such as for access control, sensor data can be combined with visual information from 

the cameras for a creation of a context and a better understanding of the situation being 

monitored. For instance, if sensors detect any abnormality, safety status of the scene can 

be updated accordingly, and workers advised of that for a quick action. 

Case Study Scenarios 

In this paper we analyse four different situations in which sensorial data might modify 

the status of safety visual scene in analysis, giving a more suitable output for a given 

setting. The first scenario checks if employees are wearing respirators to grant access to 

a restricted area where dust is being monitored. Sensorial data simulating the levels of 

dust inside that area is given to either increase confidence or to adjust safety status in 

real time. For the second situation, one more PPE is considered (earmuffs) as well as the 

measurement of levels of noise in the room. The sequence of frames in analysis for the 

first two case scenarios are presented in Figure 2 (a) and (b), respectively.      

 

 
(a) 

 
(b) 

Figure 2. Sequences of frames for case scenario 1 (a) and 2 (b). 

The third case scenario simulates the continuous monitoring setting. In this case, light 

intensity is monitored to adjust the necessity (how crucial it is) the wearing or not of 
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high visibility clothing to ensure the safety of the scene. The brightness of images have 

been manually modified to suit the use case scenario. The last scenario also considers 

oxygen mask as a required PPE and the safety status of the scene is adjusted according 

to the oxygen concentration in the area. The sequence of frames in analysis for the third 

and fourth case scenarios are presented in Figure 3 (a) and (b), respectively.      

 
(a) 

 
(b) 

Figure 3. Sequences of frames for case scenario 3 (a) and 4 (b). 

Visual Information: SOEKS representation 

For the case study in analysis, a set of variables and rules are represented as a Set of 

Experience Knowledge Structure (SOEKS). SOEKS allows the representation, use, 

storing and retrieval of visual and non-visual knowledge content together in one single 

standardized structure (Sanin & Szczerbicki, 2009).  

The variables in our system are composed by each image/frame being analysed, 

bounding boxes containing body parts of workers and each Personal Protective 

Equipment (PPE) in scene. In addition, we include, as part of the set of variables, the 

overlap value        between the body part area and corresponding PPE area, and the 

safety status of the scene, to be assigned according to the set of rules. For this analysis 

workers are considered wearing the equipment if the overlap value is equal to or 

superior 0.4. Table 1 shows values of the overlap between head and helmet             

for a sequence of frames and the status of wearing/not wearing associated with them.  
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Table 1. Examples of           and respective wearing/not wearing status. 

Frame 

     

          0.49 0.44 0.40 0.00 0.00 

Wearing helmet? YES YES YES NO NO 

To ensure flexibility and as well as to attend each specific requirements of different 

industries and scenarios, a set of rules is created. These rules are also a way of allowing 

expert knowledge to be included in the system reasoning as they can be easily changed 

and adjusted to attend specific requisites and situations. For this analysis in specific, the 

following set of rules are considered, each representing a different use case scenario: 

 

Access Control 

 

Rule 1: 

IF               > threshold 

THEN safety_status = SAFE 

ELSE safety_status = UNSAFE 

 

Rule 2: 

IF               > threshold &            > 

threshold 

THEN safety_status = SAFE 

ELSE safety_status = UNSAFE 

 

Continuous Monitoring 

 

Rule 3: 

IF           > threshold 

THEN safety_status = SAFE 

ELSE safety_status = UNSAFE 

 

Rule 4: 

IF          > threshold & 

               > threshold 

THEN safety_status = SAFE 

ELSE safety_status = UNSAFE

Sensorial Information: Stream reasoning 

As mentioned previously, detection of risk situations that may lead to severe incidents 

in the industrial scenario requires the integration of data from different data sources, 
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with different underlying meanings, different temporal resolutions as well as the need to 

process these data in real time. Thus, we propose to use stream reasoning to face these 

issues and add contextual information. In other words, our proposal uses a combination 

of these approaches to meet the requirements for the detection of risk situations. 

The Stream Generator module is mainly responsible for acquiring data from sensors and 

converting it to RDF streams. It performs semantic annotation of the acquired data, 

using their corresponding metadata, such as the sensors which made the observation, the 

observed property, the time, etc. This allows the module to stream out semantic 

annotated data streams that are then consumed by the Stream Reasoner. The output 

streams are RDF streams. An RDF stream is defined as an ordered sequence of pairs, 

where each pair is constituted by an RDF triple and its timestamp  : 

                              .  An RDF triple is defined as 

                           ∈ (I ∪ B) x I x (I ∪ B ∪ L), where   is a set 

of IRIs (Internationalized Resource Identifiers),   is a set of blank nodes 

and   is a set of literals. 

Once the data from the distributed and heterogeneous data sources is available in a 

homogeneous, contextualized and ordered representation, the streams can be explored 

to generate new information. A set of queries, which combine background knowledge, 

expert knowledge (rules) and some parts of the streams that are relevant, are registered 

and executed by the Stream Reasoner over the data streams. These queries represent 

particular situations to be identified and they include mainly temporal dependencies 

between observations and/or anomalies. The Stream Reasoner represents queries as 

query graphs, with query evaluation performed through graph pattern matching over 

graphs formed by the incoming data streams. 
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For this component, C-SPARQL (Barbieri, Braga, Ceri, Della Valle & Grossniklaus, 

2010) is used to execute queries against the streaming data. This module generates a 

new classification of the image considering the context information and the rules 

defined by experts. This classification can be the same as the one generated without 

considering the context information or not. In this way, the Stream Reasoner itself can 

be seen as an advanced sensor able to produce high level data, which considers 

contextual data according to the defined rules. It is important to mention that, the 

sensorial data has been simulated based on real life values. Below, the sensorial 

information considered is briefly explained and the thresholds and new range of outputs 

summarized in Figure 4. 

Oxygen Concentration 

The concentration of oxygen in our atmosphere is 20.9476 %. When oxygen levels fall 

below the safe threshold, which is 19.5 percent, health hazards may occur. With only a 

few breaths of oxygen deficient air, you could fall unconscious and suffocate. Levels 

below 6% are considered critically low and human body would not survive when 

exposed to those concentrations. On the other hand, levels above 23.5 % can cause 

oxidizing free radicals to form, which can attack the tissues and cells of the body and 

cause muscle twitching. 

Dust Level 

Dust monitoring is one aspect of air quality that industrial hygienist use to determine the 

amount of dust particles present in the workplace over a given period of time. It an 

abstract term that usually comprises measuring several indicators. It is measured 

in      . In our analysis we consider the PM10 sized particles and as advised by the 

Australian National Standards for Criteria Air Pollutants (Department of the 
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Environment and Heritage, 2005), concentrations below          as safe (yearly 

average) and above          as critically unsafe as exceeds the daily maximum limit.  

Noise Level 

Measuring noise levels and workers' noise exposures is the most important part of a 

workplace hearing conservation and noise control program. For this analysis we 

consider the noise exposure limits when Criterion Level is 85 dB(A) (exposure standard 

for noise in Australia) in a 8 hour shift and 3dB exchange rate to be safe (Safe Work 

Australia, 2019). We also consider the maximum peak level (140 dB) as a critical level, 

which workers can’t be exposed to as can cause instant damage to hearing.  

Light Intensity 

Measuring illumination has become a common practice in workplaces as a way to make 

sure employee are operating in safe working conditions. The level of light 

recommended is different for each workspace/activity and can vary from 50 to 20k lux. 

For normal Drawing Work, Detailed Mechanical Workshops, Operation Theatres, etc, 

the recommended light level is around 1k lux, which we consider safe in our analysis. 

In addition, we consider 50 lux as a critical level as it is comparable to a dark day and 

visibility is considered difficult. 

Experimental Results 

The system has been tested over four different settings of fifteen sequences of frames in 

which detections of body and/or parts and PPEs has occurred. For each setting sensor 

data has been added to create a context in which the visual scene is being analysed. The 

output of system (c_value of safety_status variable) has, then, been optimised (e_value) 

according to the sensorial information. Figure 4 shows the results for each rule in 

analysis. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Results for Rule 1(a), Rule 2 (b), Rule 3 (c) and Rule 4 (d). 

 

From Figure 4 we can observe the change in the final outputs (e_value) for cases in 

which the sensorial information provided are in critical levels (in this case we have 

UNSAFE status becoming CRITICALLY UNSAFE). This can be used to give the 

employees an idea of the severity of not wearing the required equipment. In addition, 

when properties values in analysis are considered normal, even having the set of rules 
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already set up, a momentarily SAFE status can be granted. Finally, for the unchanged 

status, the sensorial information can be used to improve the confidence of safety of the 

scene in analysis. 

One of drawbacks of such approach is when the detector fails to detected the PPE. In 

this case, when sensorial information is taken in consideration, misleading outputs, such 

as observation number 9 from Figure 4 (b), can be given, worsening the output status of 

the scene. This issue can, however, be minimised by retraining of classifiers to improve 

accuracy, or by considering a higher number of frames per second to determine the 

presence of not of PPEs and body parts. 

Table 2 shows examples of the outputs representing the safety status (c_value) of 

frames for the given rule and the updated value (e_value) after adding the sensorial 

information. 

 

Table 2. Example of Output of system for each given set of rules. 

 Rule 1 Rule 2 Rule 3 Rule 4 

Frame (or sequence) 

    

Frame number 004 011 002 015 

Required Equipment Respirator 
Respirator and 

Earmuffs 

High Visibility 

Clothing (Hi-Viz) 

High-Visibility 

Clothing (Hi-Viz) 

and Oxygen Mask 

Wearing PPE? No Yes No No 

Safety Status (c_value) UNSAFE SAFE UNSAFE UNSAFE 

Sensorial Information 

(property) 
Dust Level 

Dust and Noise 

Levels 
Light Intensity 

Light Intensity and 

Oxygen 

Concentration 

Value(s) 5.03E+01       
5.07E+01       
and  1.53E+02    

1.86E+03     
44.77     and  

4.57   

Optimised Safety Status 

(e_value) 

CRITICALLY 

UNSAFE 
SAFE 

TEMPORA-

RILLY SAFE 

CRITICALLY 

UNSAFE 
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Conclusion and Future Work 

This study has presented a cognitive system enriched with contextual information 

coming from different sensors and proposed the use of stream reasoning to integrate and 

process all these data in real time. The proposed approach has been tested on a 

Cognitive Vision System for Hazard Control (CVP-HC) which is based on Set of 

Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA). Four 

different settings have been analysed and the use of stream reasoning has demonstrated 

being useful to provide a better understanding of the situation in analysis, therefore 

improving decision making and ensuring that workers remain safe and compliant with 

Health and Safety policy for use of Personal Protective Equipment (PPE). 

For next steps, more complex scenarios will be explored for the creation of more 

complex set of rules and a deeper analyse of the results presented for online operation of 

the system in which the input images and context variables are gathered from video 

cameras and sensors in real time. 
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