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Abstract. The paper addresses stress analysis of a strip with a circular hole under uniform uniaxial tension based on
circumferential stress expression ρπ. Stresses are analyzed in the infinite-length strips under tension with holes, the ratio
of the hole radius a to the strip half-width b is either equal to: κ = a/b = 0.1 or κ =  0.5.  Circumferential  stresses  are
determined in selected cross-sections of the strip. The stress diagrams display local stress concentration near the hole.
The analytical solutions are compared with the numerical solutions the finite elements method (FEM), the latter using the
ABAQUS software due to various κ ratios. The results show the maximum circumferential stress at hole boundary,
affected by the ratio of the hole radius to the width of the strip.
The work was created as part of B.Sc. engineering thesis at Gdansk University of Technology, Faculty of Civil and
Environmental Engineering.

INTRODUCTION

Stress concentration problems are significant in structural mechanics, thus widely considered and analysed in
literature. The present day technical and scientific literature often regards stress concentration problems in plates and
shells. It proves validity of problem and challenge in searching for solutions. Three-dimensional solution for the
stress field around a circular hole in a plate far-field tension is presented in [1]. Stress concentration factor of a plate
with a circular hole under tension is analysed in the work [2] by means of the finite element method. Numerical
methods to deal with stress concentration in isotropic plates with discontinuities are included in the paper [3]. The
article [4] analyses an isotropic plate with a noncircular hole under uniform tension. Stress concentration in finite
metallic plates with regular holes under uniaxial loading is considered in [5]. In the paper [6] elastic stress and strain
fields of plates with a single central hole and two auxiliary holes subjected to uniaxial tension are investigated by
means of the finite element method. The FEM-based analysis of plates with holes of different shapes: circular,
square and rectangular are analysed in [7]. In [8] the authors present geometric elasticity problem of stress
concentration in a plate with a circular hole under uniaxial tension, biaxial tension and shear. Theoretical solution of
a rectangular plate with an arbitrarily located circular hole subjected to in-plane bending moment is presented in [9].
Interaction between two neighbouring circular holes in an orthotropic strip subjected to bending is considered in
[10]. In [11] the authors analyse stress concentration in an elastic square plate with a full-strength hole under
bending. The 3D FEM-based analysis of the stress and strain concentration in an elastic plate of finite thickness with
a circular hole subjected to tension is included in the papers [12], [13]. The elliptical hole core is considered in [14],
two interacting holes are investigated in [15]. Shape optimization of a hole in an orthotropic plate at the biaxial
compression is presented in [16]. The stress concentration problem is also important in shell structures, e.g. in [17]
stresses are analysed around holes in cylindrical parts of prestressed concrete protective shells. Simplified stress
distributions in plate with circular hole under uniform tension can be found in the works [18], [19]. Other stress
distribution functions around holes in plates and girders are included in [20], [21].

The paper concerns stress analysis of a strip under tension with a circular hole and considers the plane stress
continuous theory of elasticity, addressed in [22]. In the work three well-known approaches are compared: the
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analytical ones, proposed by Girkmann [18] and Howland [20] and the FEM-based numerical solution. Sufficient
accuracy of the results is observed within the scope of the stated assumptions.

FIGURE 1. Static diagram.

FIGURE 2. Numerical examples – data.

PLANE STRESS

The paper is focused on structural analysis of plates. The structure is analysed in plane stress assuming that the
in-plane loads act only, the stress components perpendicular to the plate are zero. Thus stresses in the system are
presented in the form of a symmetric two-dimensional Cauchy tensor consisting of three independent components:
ρ00, ρ11, ρ01 defined in the Cartesian coordinate system. The following basic equations of theory of elasticity hold:

- local equilibrium equations (involving Cauchy stress tensor)
11 12

1
1 2

12 22
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1 2
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where X1 and X2 are body force components in x1 and x2 directions, respectively,
- the compatibility equation
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where 1 2
11 22 12, ,
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δ δ δ < are strain components in the Cartesian coordinate system, 
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-Hook’s law - linearly elastic stress-strain relations in plane stress
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where E is the Young’s modulus, G is the shear modulus and µ is the Poisson’s ratio.
A possible solution strategy for a plane stress problem is the definition of the so-called Airy stress function
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This definition is compatible with local equilibrium equations (1). The equation (2) expressed in terms of F
function leads to the biharmonic equation

4 4 4

4 4 2 2
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∝ ∝ ∝ ∝
(5)

The methodology, reflected equation (5) is valid only for continuous, isotropic and homogeneous material
fulfilling the Hooke’s law. In the case of constant body forces X1, X2 the equation (5) is material-invariant (constants
not affected by E, µ), and is also valid for plane strain cases.
The biharmonic equation (5) can be rewritten in polar coordinates (r, π) as

2 2 2 2
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∝∝ ∝
.

These initial considerations finally allow to formulate two main patterns describing the state of stress around the
holes in thin plates. The first, simplified attempt was proposed by Girkmann [18], the second, more general,
proposed by Howland [20].

ANALYTICAL SOLUTIONS

Let us consider a strip under tension with a circular hole, the stress state is described in polar coordinates (see
Fig. 1). The circular hole is situated in the middle of the strip of the width 2b, and the radius of the hole is a (a < b).
Furthermore, a constant strip thickness t = 1 is assumed. The strip is subjected to tension under uniaxial load
p = const.. The origin of the coordinate system is defined in the centre of the hole. In the analytical solutions [18],
[20] the plate is infinitely thin and is made of isotropic, homogeneous and linearly elastic, Hookean material.

Girkmann’s Solution

The Girkmann’s solution [18] presents a large, thin plate containing a small circular hole is subjected to simple
tension. The stress distribution is expressed by equations

2 2 4

2 2 4

4 31 1 cos 2
2 2
( ) ( )r

p a p a a
r r r

ρ π< , , , ∗ (7)
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2 4

2 4
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2 4
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2
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where rρ  is the radial stress, πρ  is the circumferential stress and rπρ  is the shear stress.
TABLE 1. Coefficients d, e, l, m for κ = 0.1 and 0.5.

κ 0.1 0.5
d0 5.01‧ 10-3 1.32‧ 10-1

d2 2.54‧ 10-5 2.33‧ 10-2

d4 3.15‧ 10-11 3.14‧ 10-4

d6 1.40‧ 10-15 7.51‧ 10-6

d8 5.00‧ 10-20 1.45‧ 10-7

e2 -5.08‧ 10-3 -1.89‧ 10-1

e4 -4.21‧ 10-9 -1.70‧ 10-3

e6 -1.68‧ 10-13 -3.64‧ 10-5

e8 -5.72‧ 10-18 -6.70‧ 10-7

l2 4.13‧ 10-3 1.40‧ 10-1

l4 1.06‧ 10-3 3.27‧ 10-2

l6 2.83‧ 10-4 8.09‧ 10-3

l8 7.24‧ 10-5 1.95‧ 10-3

l10 1.82‧ 10-5 4.71‧ 10-4

l12 4.65‧ 10-6 1.14‧ 10-4

l14 1.15‧ 10-6 2.80‧ 10-5

m0 5.69‧ 10-4 1.40‧ 10-2

m2 -1.13‧ 10-3 -3.62‧ 10-2

m4 -5.95‧ 10-4 -1.78‧ 10-2

m6 -2.28‧ 10-4 -6.47‧ 10-3

m8 -7.65‧ 10-5 -2.08‧ 10-3

m10 -2.39‧ 10-5 -6.30‧ 10-4

m12 -7.30‧ 10-6 -1.84‧ 10-4

Howland’s Solution

The problem of a plate with a circular hole is also addressed by R.C.J. Howland [20]. This solution assumes the
strip is infinitely long.
In the analytical solution proposed by Howland, the stresses are expressed as follows
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where /r bθ <  is the dimensionless coordinate, b is the strip half-width, n is the n-th expression of the series, e, d,
l, m are the coefficients dependent on the ratio /a bκ <  and a is the hole radius.

The coefficients e, d, l, m are presented in the paper [20], computed for ζ |0.1, 0.2, 0.3, 0.4, 0.5κ ⊆ . The selected
coefficient values in the case of κ = 0.1 and κ = 0.5 are listed in Tab. 1.

a) b)

FIGURE 3. Howland’s solution - contour lines of the circumferential stresses πρ  [MPa] in the Cartesian
coordinate system in the case of the hole with the radius a) a = 0.05 m and b) a = 0.25 m.

a) b)
FIGURE 4. Circumferential stresses πρ  [MPa] vs. radius r - distance of a given point from the centre of the

hole for π = 0o for a) a = 0.05 m and b) a = 0.25 m.

NUMERICAL EXAMPLES – RESULTS AND CONCLUSIONS

Let us consider two strips of width 2b = 1 m and thickness t = 0.001 m with holes of different diameters. The
first case assumes the hole of the radius a = 0.05 m (κ = a/b = 0.05/0.5 = 0.1), the second case shows a = 0.25 m
(κ = a/b = 0.25/0.5 = 0.5). It is assumed that the strips are subjected to axial load p=q/t=10 MN/m2 which
corresponds to the edge load q = 10 kN/m for t = 0.001 m.

In order to confirm the analytical results, numerical analysis has been performed by the FEM ABAQUS package
[23]. The stresses were determined by a general static procedure. The applied FEM models are shown in Fig. 2. The
strips are modelled by 3-node triangular general-purpose shell, finite membrane-strain elements type - S3. In both
numerical examples the finite element mesh is subdivided around the holes. Material behaviour is modelled by a
linearly elastic procedure available in the ABAQUS (E = 210 GPa, µ = 0.33).
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The major numerical results are shown in Figs. 3, 4 and in Tabs. 2, 3. The stresses are compared due to two
analytical approaches [18], [20] and the FEM procedures.

Tab. 2 presents the stresses due to Howland’s solution, in the section π =  0o, in both cases a = 0.05 m and
0.25 m. The smaller hole case shows extreme circumferential stresses equal 30.348 MPa and for the larger hole case
result is 43.158 MPa. In both cases the extreme stresses appear at the hole boundary. As the distance from the hole
boundary increases, circumferential stresses decrease.

TABLE 2. Howland’s solution - stresses [MPa] vs. radius r [m] - distance
of a given point from the center of the hole for π = 0o for a = 0.05 m and 0.25 m.

a = 0.05 m a = 0.25 m
r[m] ρr ρπ ρrπ ρr ρπ ρrπ

0.05 -0.001 30.348 0.00
0.10 2.799 12.298 0.00
0.15 1.430 10.837 0.00
0.20 0.805 10.463 0.00
0.25 0.484 10.309 0.00 0.081 43.158 0.00
0.30 0.295 10.225 0.00 3.732 27.447 0.00
0.35 0.172 10.108 0.00 3.278 20.386 0.00
0.40 0.086 10.098 0.00 1.964 16.097 0.00
0.45 0.026 10.014 0.00 0.685 12.394 0.00
0.50 -0.008 9.888 0.00 -0.151 8.018 0.00

TABLE 3. Howland’s solution - stresses [MPa] vs. degree of θ [o]
for r = a = 0.05 m and r = a = 0.25 m.

r = a = 0.05 m r = a = 0.25 m
θ[o] ρr ρπ ρrπ ρr ρπ ρrπ

0 -0.001 30.348 0.00 0.081 43.158 0.00
15 -0.001 27.623 0.001 0.066 37.241 0.008
30 0.00 20.180 0.002 0.031 23.125 0.010
45 0.001 10.016 0.002 -0.007 7.570 0.008
60 0.003 -0.142 0.002 -0.039 -5.084 0.005
75 0.004 -7.575 0.001 -0.059 -13.131 0.002
90 0.004 -10.295 0.00 -0.065 -15.880 0.00

In the considered section π =0o, the maximum radial stresses are 2.799 MPa at a distance 0.05 m from the hole
boundary in the small hole case (see Tab. 2). In the case of bigger hole the maximum radial stress is 3.732 MPa at
the same distance 0.05 m from the hole edge (see Tab. 2). Shear stresses in both cases are zero. Tab. 3 presents
stress variation on the hole boundary in the function of π. The circumferential stresses are extreme on the edge of the
hole. Radial and shear stresses at the entire edge of the hole tend to zero. Figs. 3 and 4 present circumferential
stresses. Fig. 3 shows the contours of circumferential stresses in the Cartesian coordinate system. Fig. 4 shows
circumferential stresses for π = 0o only. Due to both hole sizes, the circumferential stresses curves indicate a local
stress concentration at the edges hole boundaries. Fig. 4 compares the analytical results due to Girkmann’s and
Howland’s solutions with the FEM its assumption. In the small hole case (κ = 0.1, a = 0.05 m), all three approaches
converge. However, in the larger hole area the Girkmann’s solution, due its assumption significantly differs from the
Howland’s proposal results and the FEM solution.

Comparison of the analytical solutions with the FEM solutions leads to the conclusion that the Howland’s
version [20] is dedicated to stress analysis around circular holes in all the proportions of hole areas to the
strips/plates areas. On the other hand the Girkmann’s solution [18], is limited only to the cases of the hole area
significantly smaller than the plate area (see Fig. 4).
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