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Stripe order and magnetic anisotropy in the S = 1 antiferromagnet BaMoP2O8
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Magnetic behavior of yavapaiite-type BaMoP2O8 with the spatially anisotropic triangular arrangement of the
S = 1 Mo4+ ions is explored using thermodynamic measurements, neutron diffraction, and density-functional
band-structure calculations. A broad maximum in the magnetic susceptibility around 46 K is followed by the
stripe antiferromagnetic order with the propagation vector k = ( 1

2 , 1
2 , 1

2 ) formed below TN � 21 K. This stripe
phase is triggered by a pronounced one-dimensionality of the spin lattice, where one of the in-plane couplings,
J2 � 4.6 meV, is much stronger than its J1 � 0.4 meV counterpart, and stabilized by the weak easy-axis
anisotropy. The ordered moment of 1.42(9)μB at 1.5 K is significantly lower than the spin-only moment of
2μB due to a combined effect of quantum fluctuations and spin-orbit coupling.

DOI: 10.1103/PhysRevB.98.094406

I. INTRODUCTION

4d and 5d transition metals are largely different from their
3d counterparts, especially in terms of magnetism. The pro-
clivity to low-spin states and the sizable spin-orbit coupling
render 4d and 5d spins highly anisotropic, giving rise to
unusual frustrated scenarios and nontrivial ground states, in-
cluding the enticing quantum spin liquid phase of Kitaev mag-
nets [1–4]. The Kitaev model is defined on the honeycomb
lattice with nearest-neighbor exchange interactions, where no
geometrical frustration occurs, and long-range magnetic order
is solely destabilized by the exchange anisotropy (exchange
frustration). Combining geometrical and exchange frustration,
e.g., on a triangular lattice, may be another interesting direc-
tion. It received a thorough theoretical consideration [5–9] but
has not been realized experimentally yet. A general problem
in this case is that 4d and 5d ions rarely form triangular con-
figurations, and only a few suitable structure types exist. One
of them is the yavapaiite structure with triangular layers of
octahedrally coordinated transition-metal ions. These ions are
typically trivalent, as in the yavapaiite mineral KFe(SO4)2 and
related compounds that serve as good examples of triangular
Heisenberg antiferromagnets [10–12].

Here, we explore the magnetic behavior of BaMoP2O8

that also belongs to the yavapaiite family, but features the
tetravalent Mo4+ (4d2) cation in the place of Fe3+ (3d5).
As the 4+ oxidation state is by far more common for 4d

and 5d metals in oxides, BaMoP2O8 could be a promising
testing ground for creating triangular arrangements of heavier
transition-metal ions.

Only the crystal structure of BaMoP2O8 has been reported
to date [14]. It features layers formed by MoO6 octahedra
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linked together via PO4 tetrahedra, with Ba atoms separating
the layers (Fig. 1). The overall structure is remarkably sim-
ple and has only one formula unit per cell. Our combined
experimental and computational study reveals signatures of
quantum magnetism in BaMoP2O8. The broad maximum in
the magnetic susceptibility around 46 K indicates short-range
spin order, whereas the Néel temperature of TN � 21 K
is suppressed compared to the Curie-Weiss temperature of
about 100 K. However, these features are accompanied by a
sizable distortion of the triangular spin lattice, where the cou-
pling along one direction is predominant. We conclude that
BaMoP2O8 can be viewed as a spin-1 chain antiferromagnet,
and we discuss the role of frustration and magnetic anisotropy
in this material.

II. METHODS

A. Experimental

Polycrystalline samples of BaMoP2O8 were synthesized
using a two-step procedure. First, a mixture of BaCO3,
NH4H2PO4, and MoO3 was annealed at 600 ◦C for 24 h in
air. The amount of MoO3 corresponded to two-thirds of the
stoichiometric amount of Mo in BaMoP2O8. On the second
step, the precursor was mixed with metallic molybdenum and
annealed in an evacuated and sealed quartz tube at 900 ◦C
for 24 h. Best results were obtained using twofold excess of
metallic molybdenum [15], which was eventually washed out
using 23% HNO3 after the synthesis.

Sample quality was checked by powder x-ray diffraction
(XRD). Besides the main phase of BaMoP2O8, only 2.5 wt. %
of the MoO2 impurity was detected. Magnetic susceptibility
of MoO2 is low and weakly temperature-dependent within
the temperature range of our study [16], so its contribution
can be safely neglected. Lab XRD data were collected on the
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FIG. 1. (a) Crystal structure of BaMoP2O8. (b) Triangular ar-
rangement of the Mo4+ ions and the corresponding magnetic model
obtained from ab initio calculations. The arrows show stripe anti-
ferromagnetic order determined by neutron diffraction. The a and
b vectors of the crystal coordinate frame are along the Cartesian
x and y vectors, respectively. The local coordinate frame x ′y ′z′ of
the MoO6 octahedron is depicted in the upper panel. (c) Magnetic
moment direction within the MoO6 octahedron. VESTA software was
used for crystal structure visualization [13].

Rigaku MiniFlex and PANalytical Empyrean diffractometers
(Bragg-Brentano geometry, Cu Kα radiation). Several repre-
sentative samples were further measured at the ID22 beam-
line of the European Synchrotron Radiation Facility (ESRF,
Grenoble, λ = 0.4002 Å), where the capillary geometry with
point detectors preceded by Si analyzer crystals was used.
The measurements were performed at room temperature and
20 K using a He cryostat. The small reflection width in the
synchrotron measurements [�(2θ ) � 0.01◦] confirmed the
absence of major structural defects, such as stacking faults.

Magnetic susceptibility was measured between 1.8 and
350 K using the MPMS SQUID magnetometer from Quantum
Design. Heat capacity was measured with Quantum Design
PPMS using the relaxation method.

Neutron diffraction data were collected on a 5 g powder
sample at the D20 diffractometer equipped with the Orange
cryostat at the ILL, Grenoble (λ = 2.42 Å). Additionally,
high-resolution room-temperature data were collected on D2B
(λ = 1.594 Å). JANA2006 [17] and FULLPROF [18] were used
for the crystal and magnetic structure refinement, respectively.

B. Computational

Density-functional (DFT) band-structure calculations were
performed within the generalized gradient approximation

(GGA) [19]. QUANTUM ESPRESSO [20] and Vienna ab ini-
tio Simulation Package (VASP) [21,22] codes were used. In
these calculations, we set the energy cutoff in the plane-wave
construction to 400 eV and the energy convergence criteria
to 10−6 eV. For the Brillouin-zone integration, an 8 × 8 × 8
Monkhorst-Pack mesh was used.

Correlations effects were taken into account on the mean-
field level using DFT+U [23]. The difference between the
on-site Coulomb repulsion U and Hund’s coupling JH was
obtained by the linear-response method [24] resulting in U −
JH = 2.0–2.5 eV. We fixed JH = 0.8 eV and U = 3 eV and
used these values in all calculations. Our parametrization is
similar to the previous DFT+U reports on molybdates [25,26]
and other 4d oxides [27].

The magnetic behavior of BaMoP2O8 is described by the
spin Hamiltonian

Ĥ =
∑
i<j

Jij Ŝi Ŝj +
∑
i�j

Ŝμ

i �
μν

ij Ŝν
j + gμB

∑
i

ŜiB, (1)

where Jij are isotropic exchange interactions between the
spins, and B is the external magnetic field. The matrix �

μν

ij

stands for the traceless anisotropic intersite term �
μν

ij at i �= j

and for the single-ion term A
μν

i at i = j . The latter part
appears due to the fact that the Mo4+ ions have spin S = 1.
The parameters of Eq. (1) are defined with respect to the
Cartesian coordinate frame xyz, where x and y are along a

and b, respectively, whereas z deviates from c because of the
monoclinic symmetry.

Isotropic exchange integrals Jij were calculated from total
energies of collinear spin configurations by a mapping proce-
dure [28], utilizing a supercell with eight molybdenum atoms.
Alternatively, the local force theorem can be used, and the
exchange integrals are given by [29,30]

Jij = 1

2πS2

×
∫ EF

−∞
dε Im

( ∑
m,m′,n,n′

�mm′
i Gm′n

ij↓ (ε)�nn′
j Gn′m

ji↑ (ε)

)
,

where m,m′, n, n′ are orbital quantum numbers, S is the spin
quantum number, and �mm′

i = Hmm′
ii↑ − Hmm′

ii↓ is the on-site
potential. In turn, the one-particle Green’s function is defined
as

Gmm′
ijσ (ε) = 1

NK

M∑
k,l

cml
iσ (k)cm′l∗

jσ (k)

ε − El
σ (k)

. (2)

In this equation, cml
iσ (k) stands for the component of the

lth eigenstate, and El
σ (k) is the corresponding eigenvalue.

Both quantities are obtained from the electronic structure,
where electronic correlations have been taken into account
within DFT+U , and thus they inherit the underlying Coulomb
repulsion. The summation runs within the first Brillouin zone
with the total amount of k-points NK and in all states M

involved in the calculation. This approach yields not only
total values of the exchange couplings, but also their partial,
orbital-resolved contributions.

Magnetic susceptibility of the S = 1 chain was obtained
using the stochastic series expansion (SSE) [31] method
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FIG. 2. Top: Magnetic susceptibility of BaMoP2O8. The green
line shows the QMC simulation for the S = 1 chain model. Bottom:
The temperature dependence of 1/χ (T ) and corresponding Curie-
Weiss fit. The insets show the specific heat Cp and Fisher’s heat
capacity d (χT )/dT as a function of temperature.

implemented in the loop [32] algorithm of the ALPS [33]
simulation package. We performed simulations for chains
with the length L � 100 and periodic boundary conditions.

III. RESULTS

A. Thermodynamic properties

Temperature-dependent magnetic susceptibility of
BaMoP2O8 is shown in Fig. 2. A broad maximum around
46 K is followed by a minimum around 21 K and a sharp
upturn at low temperatures. This upturn shows a strong
field dependence typical of a paramagnetic (Curie-like)
impurity contribution. The susceptibility curve is rather
smooth even around the minimum. However, Fisher’s heat
capacity d(χT )/dT reveals a weak kink at TN = 21 K that,
as we confirm below (Sec. III B), marks the transition into
the long-range-ordered state. Interestingly, no transition
anomaly could be seen in the zero-field heat-capacity data
(Fig. 2), which are dominated by the lattice contribution and
do not show any characteristic signatures of low-dimensional
magnetism.

Inverse susceptibility is linear above 150 K and identifies
the Curie-Weiss regime. The fit with χ = χ0 + C/(T + �)
in the range 150–300 K yields the temperature-independent
part χ0 = 0.80 ± 0.08 × 10−4 emu/mol, Curie-Weiss tem-
perature � = −111 ± 11 K, and Curie constant C = 0.67 ±
0.06 emu K/mol. The negative Curie-Weiss temperature re-
veals predominant antiferromagnetic (AFM) interactions.

The Curie constant corresponds to the effective moment of
2.31μB to be compared with the spin-only value of 2.83μB

for the S = 1 Mo4+ ion. This discrepancy implies the pres-
ence of an orbital moment that, according to Hund’s rules,
should be opposite to the spin moment for the less than
half-filled shell of the 4d2 ion, and thus reduces μeff . Using
C = NA(gμB )2S(S + 1)/3kB , one arrives at g = 1.63.

The θ/TN ratio of 5.3 suggests that the long-range mag-
netic order in BaMoP2O8 is strongly impeded. Indeed, the
magnetic transition takes place well below the susceptibility

FIG. 3. Magnetic neutron scattering obtained by subtracting the
25 K data (above TN ) from the 1.5 K data (below TN ). All magnetic
peaks are indexed with the propagation vector ( 1

2 , 1
2 , 1

2 ). The red line
is the fit with the covalent form factor for the magnetic structure
shown in Fig. 1 (bottom), and the green line is the difference. The
inset shows the temperature dependence of the ordered moment and
its empirical fit, as described in the text.

maximum. This suppression of TN implies that only a small
amount of the magnetic entropy is available at the transi-
tion, thus rendering the λ-type anomaly of the specific heat
diminutively small. The absence of the transition anomaly
in the specific-heat data of quasi-2D antiferromagnets has
been demonstrated both experimentally [34,35] and theo-
retically [36]. In this case, magnetic susceptibility (and the
associated Fisher’s heat capacity) serves as a more sensitive
probe of the transition because the susceptibility kink is driven
by the anisotropy of the ordered state and does not depend
on the dimensionality. Microscopic probes are even more
useful [34].

B. Magnetic structure

Neutron diffraction data collected at 1.5 and 25 K look
very similar, but the difference pattern (Fig. 3) reveals several
clear magnetic peaks that could be indexed with the propa-
gation vector k = ( 1

2 , 1
2 , 1

2 ). These peaks gradually weaken
upon heating and disappear around 21 K, thus confirming the
formation of long-range magnetic order.

The refined magnetic structure features antiferromagnetic
(AFM) order between the triangular planes. The order within
the planes is stripe-type, with stripes of parallel spins along
the [110] direction and antiparallel spins along the [010] and
[11̄0] directions (Fig. 1). Details of the refinement depend on
the magnetic form factor, which has not been reported for
Mo4+ to date. We thus used the ionic approximation derived
for Mo5+ in Ref. [37]. Alternatively, the covalent form factor
is calculated ab initio [38] and includes effects of both Mo 4d

and O 2p orbitals, as further explained in the next section.
Both form factors lead to very similar magnetic moment
directions, but different fit quality and size of the ordered
moment (Table I). The ionic form factor yields the higher
refinement residual and the lower ordered moment, because
all spin density is concentrated on Mo. The covalent form
factor additionally accounts for the spin density on oxygens
and should be more realistic.

By monitoring the ordered moment as a function of tem-
perature and using the empirical fit with μ = μ0(1 − T/TN )β ,
we arrive at β = 0.14(1) and TN = 21.24(3) K. This estimate
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TABLE I. Magnetic structure refinement using the difference
data, I1.5 K − I25 K, and the ionic as well as covalent (ab initio)
form factors for Mo4+. Magnetic moments μ and their x- and z-
components are in μB , whereas the μy component was zero within
the error bar. The normalized vector of the spin direction is γ ∼
(0.57, 0, 0.82) based on the refinement with the covalent form factor.
Rmag is the refinement residual.

Form factor μx μz μ Rmag

ionic 0.82(3) 0.84(3) 1.17(7) 0.121
covalent 0.81(4) 1.16(3) 1.42(9) 0.062

of TN is well in line with the anomaly in Fisher’s heat capacity
(Fig. 2). The β value should not be confused with the true
critical exponent for the magnetization, because we fit the data
in the broad temperature range. More sensitive probes like nu-
clear magnetic resonance or single-crystal neutron diffraction
would be needed to extract the true critical behavior in the
vicinity of TN .

Magnetic reflections of BaMoP2O8 are broader than the
nuclear ones. Given the high crystallinity of our samples, as
probed by synchrotron XRD, we can use the width of nuclear
reflections as instrumental broadening and estimate the inte-
gral breadth associated with the additional size broadening as
ζ = 0.36◦ for the strongest magnetic reflection at 2θ = 17.6◦.
This corresponds to the domain size of 39 nm according
to Scherrer’s formula. We thus find that the magnetic order
in BaMoP2O8 breaks down into relatively small domains,
possibly due to frustration of the underlying spin lattice, as
further discussed in Sec. IV.

C. Electronic structure

The uncorrelated (GGA) band structure of BaMoP2O8 is
shown in Fig. 4. Its apparent metallicity is due to the fact that
Coulomb correlations responsible for opening the band gap in
a Mott insulator were not taken into account. The bands below
−3 eV mostly comprise O 2p states, the bands at the Fermi

FIG. 4. Left: GGA band structure of BaMoP2O8. The
high-symmetry k-points of the first Brillouin zone are
defined as � = (0, 0, 0), X = (0.5, 0, 0), M = (0.5, 0.778, 0),
Y = (0, 0.778, 0), N = (0, 0.778, 0.525), K = (0.5, 0.778, 0.525),
and Z = (0, 0, 0.525), where all coordinates are given in crystal
coordinates in units of 2π/a. Right: Corresponding density of states
(DOS) with the atomic contributions. The Fermi level is at zero
energy.

level are due to the t2g orbitals of Mo, whereas the bands above
2.5 eV are formed by the eg orbitals of Mo followed by Ba 5d.

The d-levels are weakly split within the t2g manifold.
Using the tight-binding model parametrized via maximally
localized Wannier functions [39], we obtain orbital energies of
εx ′y ′ = 17 meV, εx ′z′ = 116 meV, and εy ′z′ = 110 meV. They
are consistent with crystal-field levels expected from the weak
local distortion of the MoO6 octahedra that feature two shorter
Mo-O distances of 1.95 Å and four longer distances of 2.03 Å.
We define the local coordinate frame x ′y ′z′, where the z′ axis
is directed along the shorter axial Mo-O bonds and the x ′ and
y ′ axes are directed along the longer equatorial bonds (Fig. 1).
Then, the distortion decreases the energy of the |x ′y ′〉 orbital
lying within the plane formed by the longer Mo-O bonds, and
it increases the energies of the |x ′z′〉 and |y ′z′〉 orbitals that do
not lie in this plane. Placing two electrons onto such orbitals
leads to an orbitally degenerate scenario, because the |x ′z′〉
and |y ′z′〉 states are very close in energy. Whereas one electron
should occupy the |x ′y ′〉 state, the second electron can choose
between |x ′z′〉 and |y ′z′〉.

The ground-state orbital configuration was obtained from
DFT+U+SO calculations [40] considering a ferromagnetic
spin state by computing the matrix of orbital occupation
numbers as

nmm′ = − 1

π
Im

(∫ EF

−∞
Gmm′

ii (ε)dε

)
. (3)

We find that the |x ′y ′〉 state hosts one electron indeed, whereas
the second electron occupies the mixed |ϕ1〉 = 1√

2
(|x ′z′〉 +

|y ′z′〉) state. Back on the GGA level, such a linear combina-
tion of |x ′z′〉 and |y ′z′〉 has a lower energy of 60 meV, whereas
its orthogonal counterpart, |ϕ2〉 = 1√

2
(|x ′z′〉 − |y ′z′〉), lies

higher at 166 meV. This splitting between |ϕ1〉 and |ϕ2〉 can
be traced back to the scissorlike distortion in the x ′y ′ plane,
where the O-Mo-O angles are 85.2◦ and 94.8◦, rendering the
x ′ + y ′ (ϕ1) and x ′ − y ′ (ϕ2) directions nonequivalent. How-
ever, the lower-energy |ϕ1〉 state corresponds to the direction
that bisects the angle of 85.2◦, where oxygens are closer to the
d-orbital than in the |ϕ2〉 state that follows the x ′-y ′ direction
bisecting the angle of 94.8◦. More distant neighbors may
play a role here, as in the yavapaiite-type KTi(SO4)2 [41],
where the selection of the ground-state orbital also contradicts
geometrical crystal-field arguments.

The Wannier functions associated with the half-filled states
|x ′y ′〉 and |ϕ1〉 are shown in Fig. 5. They are further used to
obtain the covalent magnetic form factor that, in the standard
parametrization [42], is given by A = 0.31, a = 93.14, B =
0.53, b = 31.01, C = 0.07, c = 292.09, and D = 0.09. In
Fig. 5, we compare the q-dependence of the ionic and covalent
form factors for Mo4+. The covalent form factor is more
localized in the reciprocal space, and thus it has a larger span
in the real space because O 2p orbitals admixed to the Mo 4d

are included.
The DFT+U+SO calculations not only lift the orbital

degeneracy and choose |x ′y ′〉 and |ϕ1〉 as the half-filled states,
but they also restore the insulating energy spectrum with a
band gap of about 2 eV. The total spin moment within the
unit cell containing one Mo atom is equal to 2μB according
to the S = 1 nature of Mo4+. By placing the spin along the
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FIG. 5. Top: Bands near the Fermi level and their fit using Wan-
nier functions. Bottom: Squared ionic [37] and covalent magnetic
form factors of Mo4+. The inset shows the combination of Wannier
functions contributing to the magnetic form factor, |x ′y ′〉 and |ϕ1〉 =

1√
2
(|x ′z′〉 + |y ′z′〉).

experimental direction γ (Table I), we find that the spin-
orbit coupling generates a sizable orbital moment of 0.35μB

directed opposite to the spin moment. The resulting total
magnetic moment μDFT = gSμB = 1.65μB corresponds to
g = 1.65, in excellent agreement with g = 1.63 from the
Curie-Weiss fit. On the other hand, μDFT is clearly larger than
ordered moments obtained from neutron diffraction. Part of
this discrepancy is due to the spread of the spin density onto
oxygen. However, even the full account of the oxygen atoms
via the covalent form factor leaves μDFT and g = 1.63 from
the Curie-Weiss fit somewhat higher than the ordered moment
of 1.42(9)μB determined experimentally. This remaining dis-
crepancy can be ascribed to quantum fluctuations in the low-
dimensional and frustrated spin lattice of BaMoP2O8.

D. Isotropic magnetic interactions

To determine magnetic interactions in BaMoP2O8, we first
analyze electron hoppings within the t2g manifold. In the case
of J1, the hoppings between the |x ′y ′〉 and |ϕ1〉 states are
0.7 and 51.9 meV, respectively. Much larger hoppings of,
respectively, −153.7 and 35.4 meV are found in the case
of J2. No significant hoppings beyond nearest neighbors are
observed. Therefore, the magnetic model can be restricted
to only two in-plane couplings, J1 and J2. Additionally, we
consider the out-of-plane coupling J3 that is responsible for
the magnetic order along the c direction. Here, the hopping
between the |x ′y ′〉 states is −20.5 meV, and that between the
|ϕ1〉 states is negligible.

TABLE II. Interatomic distances dMo-Mo (in Å) and isotropic
exchange interactions (in meV) in BaMoP2O8 calculated using
the local force theorem (Green’s-functions technique) for different
orbital manifolds (J G

I−III; see text for details) and by a mapping
procedure from total energies (J E). The corresponding interaction
paths are visualized in Fig. 1 (bottom).

dMo-Mo J G
I J G

II J G
III J E

J1 4.880 0.4 0.3 0.2 0.4
J2 5.275 7.7 5.1 4.7 4.6
J3 7.816 0.2 0.0 0.0 0.2

Total exchange couplings Ji obtained by a mapping proce-
dure are listed in the last column of Table II. As expected from
the size of the hopping elements, the in-plane coupling J2 is
much larger than J1. The interplane coupling J3 is comparable
to J1 and also weak, as expected from the layered nature of the
crystal structure.

To explore the striking difference between J2 and J1,
we take advantage of the local force theorem and construct
Green’s functions from the Wannier functions for different
orbital manifolds: (I) only Mo(t2g ), (II) Mo(t2g ) + O(p),
and (III) Mo(t2g + eg ) + O(p) states. The resulting exchange
couplings are also listed in Table II. Whereas model I over-
estimates J2, the combination of Mo t2g and O p states is
already sufficient to reproduce the microscopic scenario. A
closer examination of different orbital contributions shows
that the largest contribution to J2 originates from the x ′y ′
orbitals (∼94%) that overlap on the oxygen atoms of the PO4

tetrahedra (Fig. 6), while the interaction J1 is mostly due to
the ϕ1 orbitals.

This interaction mechanism is common to transition-metal
phosphates, where the magnitude of the coupling is deter-
mined by the linearity of the superexchange pathway [43,44].
For example, lateral and vertical displacements of the metal-

FIG. 6. The superexchange pathways for J1 and J2 with Wannier
functions based on the Mo ϕ1 and x ′y ′ orbitals, respectively. Differ-
ent colors indicate different phases of the Wannier functions.
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oxygen polyhedra are known to be important in V4+ phos-
phates [45] and Cu2+ phosphates [46]. Similar arguments
can be applied to our case. The coupling J2 runs along the
b direction (twofold symmetry axis), such that both lateral
and vertical displacements are zero. In contrast, the coupling
J1 features sizable lateral and vertical displacements allowed
by symmetry. Indeed, the overlap of the oxygen “tails” is
much stronger in the case of J2, which renders this coupling
dominant compared to J1 (Fig. 6).

Our exchange couplings yield the Curie-Weiss tempera-
ture � = −2(4J1 + 2J2 + 2J3)/(3kB ) ∼ −88 K, in reason-
able agreement with the experimental value of −111 K. The
J2  J1, J3 regime leads to the S = 1 uniform (Haldane)
chain as the minimum magnetic model. Indeed, simulated
magnetic susceptibility for such a chain with J2 = 4.6 meV
from Table II describes the experimental magnetic suscepti-
bility down to 90 K with the effective g-factor of g = 1.63
(Fig. 2). Deviations at lower temperatures may be due to the
interchain couplings J1 and J3.

Weak interchain exchange interactions are responsible
for the formation of the long-range magnetic order below
TN/[J2S(S + 1)] � 0.2. According to Ref. [47], this value
of TN corresponds to J ′/J2 ∼ 0.1, where J ′ is an effective
interchain exchange interaction in the quasi-one-dimensional
limit. The ensuing J ′ ∼ 0.46 meV is of the same order as J1

and J3. Therefore, the interchain couplings obtained ab initio
are compatible with the formation of the long-range order
below TN � 21 K.

E. Magnetic anisotropy

In BaMoP2O8, magnetic anisotropy comprises the on-site
term represented by the single-ion tensor A

μν

i , and the intersite
term represented by the traceless �

μν

ij tensor. We begin with
the first part. To evaluate the on-site anisotropic term A

μν

i , we
rotate the magnetic moment of an individual Mo atom within
the xz plane while keeping the magnetic moments of other Mo
atoms along the y direction, which cancels all isotropic ex-
change interactions. The resulting energies given with respect
to the experimental spin direction γ are shown in Fig. 7. This
direction is not the energy minimum. Instead, we find emin =
(0.98, 0,−0.18) as the easy-axis direction according to the
on-site anisotropy, and �EA = Emax − Emin = 0.28 meV.

As for the intersite anisotropy, its individual components
are determined using the mapping procedure [28] similarly
to the isotropic exchange interactions Jij , but in this case we
use noncollinear spin configurations and take the spin-orbit
coupling effects into account. For the dominant coupling J2,
we find (in meV)

�
μν
2 =

⎛
⎜⎝

−0.033 0.000 −0.090

0.000 0.036 0.000

−0.090 0.000 −0.003

⎞
⎟⎠.

This anisotropy tensor is compatible with the symmetry of the
Mo-Mo bond, the twofold rotation axis along b that cancels
out all off-diagonal components but xz and zx.

By combining this anisotropy term with the on-site
anisotropy, we find only a small change in the easy direction,
which still does not fit to the experimental one. On the

FIG. 7. (a) Single-ion anisotropy energy depending on the spin
direction in the xz plane. The experimental spin direction γ ∼
(0.57, 0, 0.82) is chosen as zero. (b) Angular dependence of the
orbital moment. (c) The angle between the spin and orbital moments.

other hand, the experimental spin direction clearly correlates
with the direction where the maximum value of the orbital
moment is achieved [Fig. 7(b)]. This is in agreement with the
conventional argument that magnetocrystalline anisotropy is
fully determined by the orbital moment [48,49]. Moreover,
γ is close to the special direction where spin and orbital
moments are collinear, i.e., it is a principal direction of the
g-tensor. One can, therefore, elucidate the easy direction of
BaMoP2O8 in terms of the g-tensor anisotropy.

IV. DISCUSSION AND SUMMARY

BaMoP2O8 is a rare material showing a triangular arrange-
ment of the 4d ions. However, monoclinic distortion of the
crystal structure has a strong effect on its magnetic interac-
tions and renders the spin lattice quasi-one-dimensional, with
S = 1 chains running along the b direction. Experimentally,
BaMoP2O8 reveals two features typical for quantum mag-
nets, namely (i) the broad susceptibility maximum due to
the short-range order around 46 K that precedes the long-
range magnetic order formed below TN � 21 K, and (ii) the
reduction in the ordered moment due to quantum fluctuations.
Both features are likely a combined effect of the magnetic
one-dimensionality driven by the monoclinic distortion, and
frustration caused by the competing interchain couplings J1.

Stripe magnetic order observed in BaMoP2O8 is not un-
expected in spatially anisotropic triangular antiferromagnets
approaching the one-dimensional limit [50]. The ordered state
features antiparallel spins along the spin chains formed by
the leading coupling J2. Such chains are decoupled on the
mean-field level, because the interchain couplings J1 are fully
frustrated. Nevertheless, collinear interchain order forms, with
ferromagnetic spin alignment on half of the J1 bonds. In the
case of spin- 1

2 , this stripe order can be stabilized by quantum
fluctuations [51–53], although a disordered phase with stripe
fluctuations was also reported in the J1 � J2 limit [54–57].

The S = 1 magnets should be less prone to the stripe
order in the J1 � J2 limit, because quantum fluctuations are
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reduced [58]. Moreover, decoupled chains form the Haldane
phase protected by a spin gap, and a sizable J1/J2 � 0.3 =
0.4 [51,59] would be needed to induce the ordering. Since
BaMoP2O8 with its J1/J2 � 0.1 is clearly below this thresh-
old value, we conclude that J1 cannot cause long-range order
in this system.

The interlayer coupling J3 is a more plausible candi-
date, because it is nonfrustrated and couples the spin chains
more efficiently. Our estimate of J3/J2 � 0.043 is surpris-
ingly close to the reported threshold value of Jinter/Jintra =
0.042–0.044 [59–62], although one should keep in mind
that the interaction J3 acts to induce the long-range or-
der in the bc plane only, whereas the couplings in the ab

plane remain frustrated. Finally, the single-ion anisotropy of
A/J2 � 0.06 is too weak to close the Haldane gap on its
own, as higher values of A/J2 � 0.31 would be required
in the absence of interchain couplings [63]. Therefore, we
conclude that the combined effect of easy-axis anisotropy
and J3 [64] is required to stabilize long-range magnetic order
in BaMoP2O8. The remarkably small size of the ordered
domains, on the order of 10 interatomic distances, corrobo-
rates the frustrated nature of the system and is in agreement
with recent predictions of the reduced correlation length at
J1 � J2 [55,65].

BaMoP2O8 shows close similarity to other monoclinically
distorted yavapaiites. For example, KTi(SO4)2 is a quasi-one-
dimensional spin- 1

2 antiferromagnet [41]. In both Ti and Mo
compounds, orbital order on the transition-metal site supports
magnetic one-dimensionality. The anisotropic nature of the
magnetic orbital(s) leads to a large difference between J1 and
J2 in the monoclinic structure, because the superexchange
pathway of J2 is more linear and constrained by the twofold
symmetry axis, whereas the J1 pathway has no symmetry
constraints and thus departs from linearity. On the other hand,
4d ions with more isotropic orbitals, such as Rh4+ with
its putative jeff = 1

2 state [66], may produce a more regular
triangular spin lattice even in the presence of the monoclinic
distortion. Given the similar ionic radii of Mo4+ and Rh4+,
accommodating Rh in the yavapaiite structure is an interesting
direction for further studies. It may also be possible to sup-
press the monoclinic distortion itself. For example, among the
Fe-based yavapaiites, only KFe(SO4)2 is monoclinic, whereas
RbFe(SO4)2 and CsFe(SO4)2 show robust trigonal symmetry
that imposes J1 = J2 [10].

The local physics of Mo4+ may be of interest, too. The
4d2 electronic configuration leads to an orbitally degenerate
scenario for an octahedrally coordinated ion. This orbital de-
generacy is usually lifted by the formation of Mo-Mo bonds,
as in the dimerized Y2Mo2O7 [67] or trimerized Zn2Mo3O8

[68]. However, large Mo-Mo distances and relatively weak
electronic interactions in BaMoP2O8 prevent the dimeriza-
tion, such that local distortions of the MoO6 octahedron are
left to choose the orbital configuration. The orbital moment is
far from being fully quenched and amounts to about 0.35μB .
Despite this sizable orbital moment, magnetic interactions
between the Mo4+ ions are nearly isotropic. Only a weak
exchange anisotropy is revealed by our ab initio studies. An
interesting question at this point is whether such an orbital
state is generic for all Mo4+ phosphates, or different local
distortions of MoO6 may cause a variable orbital ground state
and stronger exchange anisotropy.

In summary, we used thermodynamic measurements, neu-
tron diffraction, and ab initio calculations to explore the mag-
netic behavior of yavapaiite-structured BaMoP2O8 with the
triangular arrangement of the 4d2 Mo4+ ions. The monoclinic
distortion has a drastic influence on the magnetic scenario and
breaks down the triangular spin lattice into weakly coupled
S = 1 chains. The stripe order with the propagation vector
k = ( 1

2 , 1
2 , 1

2 ) forms below TN � 21 K following the com-
bined effect of magnetic one-dimensionality and easy-axis
anisotropy. The ordered moment of 1.42(9)μB at 1.5 K shows
significant reduction compared to the spin-only value due to
the interplay of quantum fluctuations and spin-orbit coupling.
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