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Structural, electrical, and magnetic 
study of La‑, Eu‑, and Er‑ doped 
bismuth ferrite nanomaterials 
obtained by solution combustion 
synthesis
Angelika Wrzesińska1*, Alexander Khort2,3*, Marcin Witkowski4, Jacek Szczytko4, 
Jacek Ryl5, Jacek Gurgul6, Dmitry S. Kharitonov6,7, Kazimierz Łątka8, Tadeusz Szumiata9 & 
Aleksandra Wypych‑Puszkarz1

In this work, the multiferroic bismuth ferrite materials  Bi0.9RE0.1FeO3 doped by rare‑earth (RE = La, 
Eu, and Er) elements were obtained by the solution combustion synthesis. Structure, electrical, and 
magnetic properties of prepared samples were investigated by X‑ray photoelectron spectroscopy, 
Mössbauer spectroscopy, electrical hysteresis measurement, broadband dielectric spectroscopy, 
and SQUID magnetometry. All obtained nanomaterials are characterized by spontaneous electrical 
polarization, which confirmed their ferroelectric properties. Investigation of magnetic properties 
at 300.0 K and 2.0 K showed that all investigated  Bi0.9RE0.1FeO3 ferrites possess significantly higher 
magnetization in comparison to bismuth ferrites obtained by different methods. The highest 
saturation magnetisation of 5.161 emu/g at 300.0 K was observed for the BLaFO sample, while at 
2.0 K it was 12.07 emu/g for the BErFO sample. Several possible reasons for these phenomena were 
proposed and discussed.

Bismuth ferrite  BiFeO3 is a multiferroic that belongs to the group of materials with a perovskite-type  ABO3 crystal 
structure. Such crystal structure is formed through a network of corner-linked oxygen octahedra. The unit cell 
of  BiFeO3 has rhombohedral (R3c) symmetry with lattice parameters: a = 5.58 Å and c = 13.90 Å1. The larger 
cation  (Bi3+) occupies the A site in the corner position of the unit cell and mostly defines  BiFeO3 ferromagnetic 
polarisation. Smaller cations  (Fe3+) occupy the B site in the face-centered position and are related to the mag-
netic properties of  BiFeO3, while oxygen ions are located in the body-centered  positions2. Due to the ionic sizes 
of bismuth and oxygen, the  BiFeO3 structure does not perfectly match the ideal cubic unit cell. Therefore, the 
oxygen octahedra are tightened in order to fit into the reduced cell. This leads to the rotation of oxygen octahedra 
in  BiFeO3 around the polar [111] axis by the angle of 11–14° and directly affects the value of the Fe–O–Fe bond 
 angle3. The magnetic exchange interaction, which is related to the bond angle, and the orbital overlap between 
iron and oxygen can significantly influence the magnetic ordering temperature and the conductivity of the 
 BiFeO3 phase. These structural features lead to simultaneously ferroelectric (Curie temperature  TC = 1103 K) 
and magnetic (Néel temperature  TN = 643 K) behaviors of  BiFeO3 at ambient temperature.

Other important features of the  BiFeO3 phase are related to its magnetic structure. It adopts a G-type anti-
ferromagnetic ordering, i.e. each  Fe3+ spin is surrounded by six antiparallel spins of the closest Fe  neighbours4. 
However, these spins are not perfectly antiparallel and exhibit weak canting moments due to the local magneto-
electric coupling to the polarization. The existence of canting creates a long-range arrangement of a spin-cycloid 
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of the antiferromagnetically ordered sublattices with a period of ca. 62–64 nm and the propagation vector along 
the [110]  direction1. Due to the presence of spin cycloid structure, a larger part of the net magnetic moment is 
cancelled and the magnetoelectric coupling is inhibited. Nevertheless, canting of the spin structure in  BiFeO3 
leads to antisymmetric spin exchange (Dzyaloshinskii–Moriya interaction), resulting in a presence of relatively 
small ferromagnetic  moment5–7. A slightly higher magnetic moment can be observed for  BiFeO3 nanoparticles, 
for which there is a considerable contribution of uncompensated ferromagnetic spin alignment at the  surface8,9.

As a result of their unique properties, for the past 20 years  BiFeO3 and  BiFeO3-based materials have been 
widely explored to be used in a broad range of applications in advanced electronics, such as spintronics and 
information storage (ferroelectric random access memory (FeRAM)10, and in magnetic random access mem-
ory (MRAM)11),  photovoltaic12, and sensor  devices13, hyperthermia  treatment14,  photocatalysis2,15–17, and as 
 supercapacitors18,19. Unluckily, a number of disadvantages hinder the widespread use of  BiFeO3-based nano-
materials. Among them are low resistivity, resulting from high leakage current inducing large dielectric loss, 
small remnant polarization, and weak ferroelectric loop at room temperature. For the above-mentioned effects, 
the oxygen vacancies and secondary phases that nucleate at grain boundaries are responsible. They are difficult 
to avoid during synthesis and they require careful attention to processing  parameters20. Moreover, the volatile 
nature of  Bi3+ during synthesis causes reduction of  Fe3+ to  Fe2+ and formation of anion and cation vacancies. 
Applicability of this material is also limited due to the presence of complex incommensurate cycloid magnetic 
structure, which is responsible for weak magnetoelectric  coupling21. One of the most efficient ways to improve 
magnetic and ferroelectric properties is ion substitution that induces lattice distortions and decreases particle 
size, as well as suppresses cycloid spin structure. A broad range of elements was tested as dopants in the A-site or 
B-site positions in order to influence the internal structure of  BiFeO3 and suppress the formation of the second-
ary phase during synthesis. The rare-earth metals have repeatedly confirmed their positive contribution to the 
properties of doped  BiFeO3. Reddy et al.2 observed the improvement in photocatalytic efficiency, higher specific 
capacitance values with increasing La doping  (LaxBi1-xFeO3, x = 0.01–0.10) and reaching the highest values of 
coercivity (315 Oe), and saturation magnetisation (0.83301 emu/g) at 10% of La doping. Hong et al.22 reported 
that 5% doping of trivalent ions  Sm3+,  Gd3+, and  Y3+ in  BiFeO3 improved ferromagnetism due to modulation of 
spiral spatial structure. Golda et al.23 observed enhancement of dielectric, ferromagnetic and electrochemical 
properties of Sm-doped  BiFeO3  (Bi1-xSmxFeO3; x = 0.05 and x = 0.1).

Up to now different synthesis methods were reported for successful obtaining of  BiFeO3-based materials: RF 
magnetron  sputtering24, polymer solution  method25, solution combustion synthesis (SCS)26. The SCS method 
is based on exploiting a highly exothermic combustion redox reaction between metal nitrates (oxidizer) and 
organic fuel (reducer), mixed in the solution. The SCS deserves special attention as it is considered to be time 
and energy-saving and easy to scale  up27–29. Besides, this method has been successfully used for the synthesis of 
a broad variety of materials, including  metals30,31,  graphene32, simple and complex oxides including  BiFeO3

33–35, 
so far only a few works have described the application of the SCS for rare-earth-doped  BiFeO3  preparation36.

The present study evaluates the effect of a high-load (10%) La, Er, and Eu doping on the crystallographic 
structure, magnetic and electrical properties of co-doped  BiFeO3 nanoparticles obtained by the SCS method.

Materials and methods
Synthesis procedure. The detailed procedure for the synthesis of examined materials is described in our 
previous  article36. Herein we report only the general description of the main steps.

All materials were prepared using the microwave-assisted solution combustion synthesis (SCS) as follows. 
Bismuth(III)-nitrate pentahydrate (Bi(NO3)3∙5H2O), iron(III)-nitrate nonahydrate (Fe(NO3)3∙9H2O) and one of 
the rare-earth metal nitrates (La(NO3)3∙6H2O, Eu(NO3)3∙6H2O or Er(NO3)3∙6H2O) were dissolved in an acidic 
aqueous solution in such ratios to form the final material with stoichiometric formula  Bi0.9RE0.1FeO3. In the text 
of the paper, they are further abbreviated as BFO  (BiFeO3), BLaFO  (Bi0.9La0.1FeO3), BEuFO  (Bi0.9Eu0.1FeO3), and 
BErFO  (Bi0.9Er0.1FeO3). The citric acid (CA) was used as a fuel (reducer). The parameter φ, which is the fuel-to-
oxidizer molar ratio, for all experiments was kept constant and equal to 1.25. The obtained solution containing 
all precursors was rapidly dried in a microwave oven (800 W, 2.450 GHz) until a gel and then highly porous 
foam had formed. The foam was ignited and burned in a preheated muffle furnace at 573 K in air, leading to the 
formation of a fluffy brown powder. The obtained powder was hand-milled in an agate mortar and annealed in 
air at 923 K for 30 min with rapid heating and cooling by means of quenching, after which the resulting powder 
was hand-milled again. It is assumed that in the systems under study  Bi3+ is substituted by close in size  La3+ and 
smaller  Eu3+ and  Er3+ ions ( rBi3+

ion
 = 1.03 Å, rLa3+

ion
 = 1.03 Å, rEu3+

ion
 = 0.95 Å, and rEr3+

ion
 = 0.89 Å, respectively)37.

Characterization. The X-Ray Photoelectron Spectroscopy (XPS) measurements were carried out in a 
high-resolution mode, with a pass energy of 20  eV. The studies were performed on an Escalab 250Xi from 
ThermoFisher Scientific. The spectroscope utilizes monochromatic Al Kα X-ray source with a spot diameter of 
650 µm. The charge compensation was provided using low-energy electrons and low-energy  Ar+ ions emission 
from the flood gun with a final calibration on adventitious carbon C1s peak (284.6 eV) as a reference. Spectral 
deconvolution was performed with the Avantage software provided by the manufacturer.

Mössbauer spectroscopy studies were done using the 57Fe gamma resonance transition. A Mössbauer system 
that consists of the Janis top-loaded liquid helium cryostat (Janis Research Company, Wilmington, MA 01887 
USA) integrated with a conventional constant-acceleration spectrometer (Science Engineering & Education Co. 
USA) of the Kankeleit type in transmission geometry was used. During measurements, a 100 mCi Mössbauer 
57Co(Rh) γ-ray source and the absorbers were kept at room temperature. The absorbers were made of fine pow-
dered materials placed in thin-walled (~ 0.1 mm) cylindrical plastic containers. The used absorber thicknesses 
of about 10–12 mg/cm2 were calculated from the optimisation  procedure38. The resonance 14.4 keV gamma 
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rays (for a given measurement and the energy scale calibration) were detected simultaneously by means of two 
independent LND Kr/CO2 proportional gas counters attached at opposite sides of the driving system. The drive 
velocity calibration was performed with a second 57Co(Rh) source against a standard metallic iron foil at room 
temperature. The Mössbauer spectra were analysed numerically by fitting a hyperfine parameter distribution 
(HPD) using the Voigt-line-based method of Rancourt and  Ping39. In this method, the HPD for a given crystal 
site corresponding to similar structural, chemical, and magnetic properties is constructed by a sum of Gauss-
ian components for the quadrupole splitting (QS) distributions and, if necessary, the magnetic hyperfine field 
 Bhf distributions. The isomer shift (IS) can be linearly coupled to the primary hyperfine parameters (QS,  Bhf).

For electrical measurement, all powders were hydraulically pressed into a pellet shape by applying the force 
of 4000 kg for 5 min. Calculated filling ratio of the measured palletized samples is: BFO = 50%, BLaFO = 55%, 
BEuFO = 49%, and for BErFO = 58%, thus these pellets are composed from ceramic and the air. Additionally, all 
pelletized samples were dried at 363 K in vacuum to eliminate the influence of humidity. An EDWARDS Auto 
306 vacuum evaporator was used for deposition of 150 nm-thick gold electrodes onto both sides of the pellets 
to provide good contact between the sample and external electrodes during electrical measurements.

The electrical polarization loops of pelletized samples were recorded at room temperature with modified 
Sawyer–Tower circuit using a sinusoidal signal at 1 kHz frequency.

The dielectric response measurements were carried out using a Novocontrol GmbH Concept 80 broadband 
dielectric spectrometer equipped with a Quatro Cryosystem in the  10–1 ÷  106 Hz frequency range and the tem-
perature interval from 133 to 473 K with 10 K step.

The magnetic properties were measured using a Quantum Design MPMS-7 SQUID magnetometer. Full 
hysteresis loops were recorded up to a maximum field of 70 kOe at two temperatures: 300.0 K and 2.0 K. Solid 
samples were encapsulated in a  Parafilm® M envelope, the mass of the sample was determined using a Sartorius 
SE2 ultramicroweight. The diamagnetic contribution from the envelope to the overall magnetisation was sub-
tracted from databasing on the appropriately scaled magnetisation of the reference sample. Data analysis was 
carried out using the method of Corbellini et al.40, consisting of fitting the Voigt curve to the differentiated halves 
of the hysteresis curve. However, due to sparse number of experimental points at the low magnetic fields, the 
fit did not resemble the true nature of the samples. Thus, paramagnetic contributions were subtracted from the 
hysteresis loop using fitting of sum of Langevin-type curves. The procedure is elaborated in the Supplementary 
Information. Temperature-dependent magnetisation curves were registered in zero-field cooling/field cooling 
(ZFC/FC) experiments at 100.00 Oe. The temperature was swept between 310.0 and 2.0 K.

Results and discussion
Structural properties and composition. A detailed description of the synthesis procedure, analysis of 
crystalline phases, and morphology of bismuth ferrite doped with lanthanum, europium, or erbium are pre-
sented in our previous  work36. Herein, we have only provided a short description of the obtained data for a 
better understanding of our further results. The XRD patterns of the experimental samples are shown in Sup-
plementary Information (Fig. S1). All powders have a fine microstructure with aggregated grains of different 
 morphology36, characteristic for SCS-obtained  materials28. The EDX analysis showed the elemental composition 
of nanopowders close to the stoichiometric one. According to an analysis of XRD data, synthesized materials are 
nanocrystalline powders of  Bi0.9RE0.1FeO3 crystal phase with traces of  Bi2Fe4O9 and  Bi2O3 by-phases. Neverthe-
less it should be underlined that all invastigated compounds exhibit content of the main phase, equal or higher 
than 90%36. The calculated average crystallite sizes of the main phases are 17 nm, 28 nm, 18 nm, and 18 nm for 
the neat BFO, BLaFO, BEuFO, and BErFO, respectively. Previously we  found36, that the high-load doping of 
BFO with rare-earth ions leads to the distortion of its R3c crystal structure to an extent, which depends on the 
difference of ionic radii between the bismuth ion and corresponding rare-earth ion. In our case, the degree of 
distortion increases in a row BFO > BLaFO > BEuFO. Doping by  Er3+ leads to a distortion of the crystal structure 
in a degree, which is high enough to promote the formation of two separate  BiFeO3 phases: low-temperature 
rhombohedral R3c and orthorhombic Pbnm, metastable at room temperature.

XPS analysis. To study the near-to surface compositions of the experimental samples, high-resolution XPS 
spectra were recorded for each investigated sample in the Bi 4f, Fe 2p, O 1s, La 3d, Eu 3d, and Er 4p binding 
energy (BE) range (Fig. 1). The results of the peaks deconvolution are summarized in Table 1. Figure 1a shows 
the comparison of the XPS spectra recorded in the Bi 4f BE range for each investigated sample with superim-
posed Bi  4f7/2 peaks used for spectral deconvolution. Each spectrum is composed of two peak doublets, with Bi 
 4f7/2 peaks located at 158.7 and 159.8 eV, respectively. The first and dominant of the two components is ascribed 
to bismuth in the  BiFeO3 phase, while the latter one, may correspond to  Bi2O3  oxide41–43.

The quantitative assessment of  BiFeO3:Bi2O3 ratio, based on Bi  4f7/2 peak analysis, reveals that bismuth oxide 
share does not exceed 23% for undoped BFO, 30% for BLaFO and BEuFO, and 11% for BErFO. As XPS shows 
near to surface (5–10 nm deep) composition, while XRD could collect data up to 1 µm from surface, the differ-
ence between bismuth oxide phase content measured by these two techniques suggests that the concentration of 
 Bi2O3 is higher near to the surface regions. The observed phenomenon could be related to the higher influence 
of external factors, like atmosphere, moisture, and temperature gradient during synthesis and quenching, onto 
the layers of nanoparticles close to their surface. The Fe 2p signal from iron (Fig. 1b) also comes in two peak 
doublets, where Fe  2p3/2 peak corresponding to  Fe2+ is located at 709.9 eV and  Fe3+ at 711.9  eV43,44, with nearly 
equal stoichiometry for undoped BFO material. A slightly higher  Fe3+ share was then recorded for both BEuFO 
and BLaFO samples, while the BErFO sample is characterized by a higher amount of lower valence  Fe2+. The 
peaks for each additive are presented in Fig. 1d–f. Based on the XPS analysis and presence of La  3d5/2 peak at 
837.1 eV, lanthanum is present within BLaFO as  La3+, presumably in the form of  La2O3

45 with a share of approx. 
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0.9 at.%. A similar observation is drawn for BEuFO, where europium is revealed as  Eu3+ (Eu  3d5/2 at 1134.6 eV)46. 
The analysis of erbium was carried out within Er  4p3/2 BE range revealed a slightly smaller share of the element 
(0.5%), identified as  Er3+47,48.

The spectra recorded in the O 1s BE range and shown in Fig. 1c reveal three XPS peaks. The first component, 
located at 529.5 eV, is characteristic of Fe–O interaction in Fe–O  octahedron49 and corresponds to the O 1s core 
spectrum of bismuth ferrite lattice  (OL)50,51. The peak at 530.7 eV is generally attributed to the chemisorbed 
oxygen caused by oxygen vacancies  (Ov)50,51 or to Bi–O bonds in the BFO  phase42,49. The low-intensity peak at 
532.5 eV reveals C–O interaction. This signal could originate both from small traces of functionalized carbon, 
left in the samples as a result of incomplete fuel burning  out52, and  CO2 molecules, directly absorbed from the 
air. As the amount of carbon-containing phase is insignificant (not exceeding 7 at.% for each sample), its possible 
influence was excluded from consideration during further analyses. It is noticeable, that doping with rare-earth 
elements leads to the development of the peak located at 530.7 eV, implying either a higher share of Bi–O inter-
action or the appearance of additional oxygen vacancies.

Based on the analysis of the presented XPS results we can conclude that each doped BFO sample reveals the 
altered chemistry of both Bi and Fe elements, where dopant addition tends to result in the appearance of more 
oxidized species with Eu and La doping, but more reduced species in the case of erbium. The combination of the 
influence of rare-earth doping elements with high-intense synthesis and post-synthesis temperature treatment 
conditions lead to a BFO phase degradation and split into near-to-surface regions of nanomaterials. However, 
we suppose, such a structure is not replicated in the bulk material. This leads to a formation of the inhomogene-
ous structure, with BFO-rich inner core, and inhomogeneous outer layers, which consist of a mixture of oxides 
and non-stoichiometric BFO phases. The interaction of different layers, boundaries, and phases in the described 
complex structure could influence the properties of the BREFO nanopowders changing their electrical and 
magnetic surface- and bulk-related characteristics, as described in the text below.

Figure 1.  Deconvoluted high-resolution XPS spectra of the experimental samples in binding energy ranges of 
(a) Bi 4f, (b) Fe 2p, (c) O 1s, (d) La  3d5/2, (e) Eu 3d, (f) Er  4p3/2.

Table 1.  The share of various chemical states of Bi, Fe, O, and rare-earth additives, based on high-resolution 
XPS analysis and spectral deconvolution. Results in at.%.

Bi4f7/2 Fe2p3/2 O1s Additive

BFO Bi2O3 Fe2+ Fe3+ Fe–O Bi-O [Er/Eu/La]3+

BE/eV 158.7 159.8 709.9 711.9 529.5 530.7

BFO 18.6 5.7 4.3 4.4 41.2 25.8 –

BLaFO 16.6 7.0 2.8 4.3 34.0 34.4 0.9

BEuFO 17.4 7.5 3.5 5.2 35.0 30.5 0.9

BErFO 22.9 2.9 3.7 2.1 41.0 26.9 0.5
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57Fe Mössbauer spectroscopy. 57Fe Mössbauer spectra of the samples, obtained at room temperature, are pre-
sented in Fig. 2. The hyperfine parameters of each component and their relative intensities received from the 
detailed numerical analysis of all spectra are listed in Table 2.

All recorded spectra have poor signal-to-noise ratio because of the very high absorption coefficient of bismuth 
for 14.4 keV gamma  rays53, and interpretation of the results due to poor statistics should be taken with some 
caution. The room temperature spectra are close to symmetrical, however, the resonant lines are broadened 
(Table 2) relative to the instrumental linewidths of the calibration spectra.

Such broadening is caused by a distribution of QS, which indicates that not all crystallographic Fe-positions 
in the rhombohedral crystalline structure of  BiFeO3 are completely equivalent. Moreover, the spectral asymmetry 
in  BiFeO3 could also be caused by an incommensurate spin cycloid  structure54–57.

All measured spectra are superposition of two components: (i) magnetic sextet related to perovskite-type 
structure of  BiFeO3  (BiREFeO3) main phase (marked in red) and (ii) quadrupole doublet assigned to paramag-
netic  Bi2Fe4O9 impurity phase (marked in blue)56. The isomer shift of the main component is close to 0.3 mm/s, 
which is characteristic for high spin  Fe3+. The magnetic hyperfine field of  BiFeO3 is very close to the value 
reported by Palewicz et al.58. There is no significant change in the average magnetic hyperfine field  (Bhf) values 
between Mössbauer spectra of  BiFeO3 and rare-earth-doped BFO. This could indicate that the doping with the 
rare-earth elements leads to the replacement of bismuth in the A site of  BiFeO3 crystal cell, and the number of 
magnetic nearest neighbors of  Fe3+ remains the  same56. It is worth noting that the most stable polymorph of iron 
oxides α-Fe2O3, which is a weak ferromagnet at room temperature, if present in our samples, should also result 
in a magnetic sextet. Thus, the relatively low value of  Bhf ~ 49 T of the main magnetic phase indicates the absence 
of ferromagnetic α-Fe2O3 or any other unreacted iron oxide phases, which would have a much higher hyperfine 

Figure 2.  Room temperature 57Fe Mössbauer spectra of  BiFeO3 and  BiREFeO3.

Table 2.  The hyperfine parameters obtained from the Mössbauer spectroscopy measurements at room 
temperature (IS—isomer shift, QS—quadrupole splitting,  Bhf—magnetic hyperfine field). PM paramagnetic, 
HWHM Lorentzian linewidth.

Sample IS (mm  s−1) QS (mm  s-1) Bhf (T) Area (%) HWHM (mm/s) Components

BFO
0.09 1.00 – 11

0.19
Fe3+ PM impurity

0.27 − 0.04 48.6(9) 89 Fe3+ magn. phase

BEuFO
0.20 0.87 – 24

0.20
Fe3+ PM impurity

0.30 − 0.04 49.0(7) 76 Fe3+ magn. phase

BErFO
0.24 0.84 – 11

0.20
Fe3+ PM impurity

0.29 − 0.05 48.8(6) 89 Fe3+ magn. phase

BLaFO
0.10 0.75 – 10

0.19
Fe3+ PM impurity

0.29 0.01 49.5(1.4) 90 Fe3+ magn. phase
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field up to 51.4  T59. On the other hand, a slight admixture of highly dispersed and oxidized magnetite cannot be 
completely excluded due to its much lower magnetic hyperfine field. The quadrupole splitting of the main com-
ponent is close to zero, which is characteristic of the localization of  Fe3+ ions near the center of  FeO6 octahedra.

The hyperfine interaction parameters of a doublet line are slightly different for all samples. However, they fall 
into the range of 0.09–0.24 mm/s for IS and 0.75–1.00 mm/s for QS. These values are similar to those reported for 
 Bi2Fe4O9

55,57,60 and their dispersion, supposedly, originates from the low signal-to-noise ratio. Another possible 
origin for the quadrupole doublet is the nanoscale structure of  BiFeO3 grains, which are small enough to become 
superparamagnetic. For instance, Park et al.9 showed similar Mössbauer parameters of the quadrupole doublet 
for 51 nm crystals of  BiFeO3. In this case, it is almost impossible to distinguish the oxygen-deficient surrounding 
of  Fe2+ (or  Fe3+) in low spin configuration from superparamagnetic  BiFeO3  nanoparticles59.

Electrical properties. P‑E analysis. The correlation between polarization and the applied electric field at 
room temperature was studied using a modified Sawyer–Tower circuit. Ferroelectric hysteresis (P-E) loops of the 
neat and doped  BiFeO3 are shown in Fig. 3.

Crucial parameters of ferroelectrics, such as remnant polarization  (Pr), coercivity  (Ec), and saturation polari-
zation  (Ps) were determined from the obtained hysteresis loops as shown in Table 3.

The ferroelectric properties of BFO materials are directly related to the orbital hybridization of  Bi3+–O2– bonds. 
The narrow ferroelectric hysteresis loops of ferroelectric materials are characterized by a small amount of dis-
sipated energy (low Ec) in repeatedly reversing polarization cycles.

Generally, it is difficult to obtain a saturated P-E loop for BFO ceramics due to leakage current caused by 
secondary phases and other defects, which can result in a partial reversal of the polarization. Taking into account 
samples’ porosity and the fact that investigated pallets are composed from ceramic nanoparticles the measured 
P-E loops exhibit unsaturated character. The increasing purity of the main BFO crystal phase could also contrib-
ute to a decrease in leakage  current61,62. The experimental samples have relatively low values of remnant polariza-
tion and coercive  field63,64, which indicates the existence of nano-sized ferroelectric domains and confirms the 
nano-specific character of the properties of studied materials.

However, despite the dominant influence of ferroelectric domains’ size, ferroelectric properties may also be 
affected by composition, homogeneity, and the presence and distribution of defects in  nanomaterials65. We sup-
pose the low value of ferroelectric parameters can be associated with the parasitic conductivity on grain bounda-
ries and partially caused by impurity phases. Such conductivity is an intrinsic feature of magnetic compounds 
and often overlaps with the ferroelectric response of the multiferroic  phase66. In BFO and BREFO compounds 
conductivity can be affected and contributed by electron transfer between localized ferric and ferrous ions, i.e. 
electron hopping between  Fe3+ and  Fe2+, morphology/microstructure and hopping of the oxygen vacancies that 
resembles the dipolar reorientation and results in a dielectric relaxation peak at high  temperature67. Furthermore, 
the presence of Pbnm phase in erbium-doped BFO also leads to a decrease in the ferroelectric response of the 
samples due to symmetry  constraints68.

Dielectric analysis. Temperature variation of the dielectric response of nanosized bismuth ferrites are described 
as rather complex and the results of the dielectric tests are presented in Fig. 4.

Figure 3.  Room temperature ferroelectric (P-E) hysteresis loop of BFO, BLaFO, BEuFO, and BErFO samples.

Table 3.  The values of coercivity, remnant polarization, and saturation polarization for neat and doped BFO 
materials.

Parameter BFO BLaFO BEuFO BErFO

Coercivity (kV/cm) 0.17 0.61 0.75 0.59

Remnant polarization (nC/cm2) 11.43 8.20 30.39 7.77

Maximum polarization (saturation polarization) (nC/cm2) 76.32 17.27 48.53 16.69
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Following Hunpratub et al. three temperature ranges could be distinguished on the εʹ vs. T spectra in BFO, 
which are characterized by different relaxation  processes69: low-temperature dielectric relaxation (LTDR) in the 
range of ~ 133–293 K, middle-temperature dielectric relaxation (MTDR) at ~ 293–443 K, and high-temperature 
relaxation (HTDR) in the temperature range above ~ 443 K. In the case of studied compounds the border of 
mentioned processes is not well defined and difficult to distinguish. Also assignment of these relaxation pro-
cesses is not easy and disputable. Nevertheless, according to Chybczyńska et al.70 the LTDR is related to the 
effect of mixed valence of the Fe ions, the MTDR attributed to grain boundary effect and the HTDR connecting 
to the ordering of oxygen vacancies. The analysis of measured dielectric response values and the nature of their 
change indicates that the dielectric response is associated with the intrinsic heterogeneity of the polycrystalline 
 materials36,70 and agrees with XRD and XPS results (Figs. S1 and 1). As mentioned before, experimental powders 
consist of aggregated inhomogeneous nanograins of different sizes, forms, and features of the interconnection 
of grains and grain boundaries. It is known, that the grain boundaries and grain interiors show different electric 
conductivity. For instance, the conductivity of grain/crystallite boundaries in ferrites is connected to electron 
hopping  Fe2+ –  e– →  Fe3+ among localized ferrous and ferric ions and significantly lower than that of the interior 
of the grains/crystallites70.

Magnetic properties. Figure 5 shows magnetisation hysteresis loops of the samples at 300.0 K and 2.0 K 
after subtraction of the paramagnetic contribution. Despite an elaborate model for hysteresis subtraction, the 
calculated and subtracted linear paramagnetic component at 300.0 K seems slightly overestimated, as the cor-
rected magnetisation decreases in high magnetic fields. The results of the data analysis show that the magnetic 
properties of synthesized materials were significantly influenced by rare-earth doping. In the low magnetic 
field regime at 300.0 K, all samples exhibited similar behavior with ferromagnetic-like hysteresis and coercivity 
varying from 83.24 Oe for the BEuFO sample up to 127.04 Oe for the BLaFO sample. However, coercive fields 
decrease with the substitution of  Bi3+ by smaller-sized  Eu3+ and  Er3+ ions. Such behavior could be related to dis-
tortion and shrinkage of the BFO crystal  cells36.

Subtraction of the paramagnetic component of M-H curves measured at 2.0 K resulted in a more reliable 
analysis of hysteresis, as the saturation observed in Fig. 5c is much more pronounced in the high magnetic field 
regime.

We found that the saturation magnetisation increases for all samples at 2.0 K in comparison with the satura-
tion magnetisation values for the same samples at 300.0 K. The most significant increase was registered for neat 
BFO and  Er3+-doped samples. The hysteresis loops obtained at 2.0 K exhibit a wasp-like shape. This can indicate 
that samples contain particles of a broad distribution of sizes with different values of  coercivity71. The hysteresis 
loops at 2.0 K were successfully fitted using two superparamagnetic and one ferromagnetic Langevin-type curves 
as well as a term linear to the external magnetic field (the details described in the Supplementary Material). All 
calculated parameters of M-H curves are summarised in Table 4.

The observed saturation magnetisation of the neat BFO sample is notably higher than often reported in the 
literature. Huang et al.8 reported the saturation magnetisation of ferromagnetic part of the hysteresis loop of the 
sample containing 18 nm BFO particles to be around 0.13 emu/g at 300 K. At the same time, the authors showed 
that the highest saturation magnetisation of 0.15 emu/g was observed for BFO with nanoparticles of 62  nm8, 
which was ascribed to the structural anomaly emerging when the nanoparticle size approached the period of 
spiral-modulated spin structure. In a study by Park et al.9, the highest observed saturation magnetisation was 
estimated at 1.55 emu/g for 14 nm nanoparticles. Jayakumar et al.72 reported values smaller than 0.1 emu/g at 
7.0 T without subtraction of significant paramagnetic components. However, there are several publications 
reporting saturation magnetisation in the same order of magnitude as our results. Verma and  Kotnala73 found 
the saturation magnetisation at 300 K of their BFO at 4.73 emu/g, increasing up to 8.99 emu/g upon 10% doping 
with Pb. Tahir et al.74 showed the increase of room temperature saturation magnetisation from 9.202 emu/g for 
neat BFO to as high as 21.097 emu/g upon 30% doping with Ca.

Figure 4.  Temperature and frequency dependence of the real part of dielectric permittivity of BFO, BLaFO, 
BEuFO, and BErFO samples.
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The ZFC and FC (see Fig. S2) curves exhibit splitting that can be attributed to the coexistence of ferromagnetic 
and antiferromagnetic phases in the sample, a phenomenon known to happen for  BiFeO3

8. The shape of the 
registered thermomagnetic curve is similar to that reported by Huang et al.8 for  BiFeO3 nanoparticles of 83 nm 
in diameter, but with magnetisation values higher by a factor of about 100. Notably, the local maximum in the 
curves, interpreted as the spin-glass freezing  temperature9, is not present in our data.

There are a few possible reasons for such discrepancy between most of the literature data and the experi-
mental values obtained in this work. For instance, the concentration of oxygen vacancies in the structure of 
the obtained BFO was reported to influence the magnetisation of Dy-doped  BFO75. The increasing number of 
oxygen vacancies could lead to the overall enhancement in the magnetisation of BFO-based nanomaterials, as it 
promotes an increase in the amount of  Fe2+ to  Fe3+ ions transitions for compensation of excess positive charge. 
The oxygen vacancies could also lead to an increased surface spin disorder by uncompensated spins from  Fe3+ 
ions. Another possible reason is that saturation magnetisation could increase due to the distortion of the crystal 
structure of nanograins. A decrease in crystallite size increases the influence of uncompensated surface spins 
with increased contribution of the uncompensated ferromagnetic surface layers to ferromagnetic components of 
 magnetisation9,76. Simultaneously, smaller crystalline sizes of BFO nanomaterials are related to a suppression of 
spiral spin order and higher shape anisotropy. Both factors were reported to have a significant influence on the 
ferromagnetism of BFO-based  nanomaterials9,77. At the same time, rare-earth doping could induce an increase in 
the canting angle of layers due to the tilt of  FeO6  octahedra78, which even further increases the overall magnetisa-
tion. And last but not the least, magnetisation is highly sensitive to impurities and phase inhomogeneity. As it 
was shown previously by XRD and XPS analysis, the experimental samples contain  Bi2Fe4O9 and  Bi2O3 by-phases 
with a different magnetization  behavior79–81, which form inhomogeneous structures in combination with BFO 
and BReFO phases. However, despite significant paramagnetic-like components, the saturation magnetisation of 
the ferromagnetic part of the reported hysteresis loop for  Bi2Fe4O9 was not higher than 0.3 emu/g. Based on this 
fact we could conclude the presence of the  Bi2Fe4O9 phase at the estimated concentration cannot be responsible 
for the observed magnetisation values. Diamagnetic bismuth(III)  oxide82 could only add to the linear term of 
the hysteresis loop but would not affect saturation values. As the saturation magnetisation of  Fe3O4 is estimated 
at 98 emu/g83, some impurities as low as 5% would be sufficient to explain the value of the observed saturation 
magnetisation. This hypothesis can be supported by the considerable share of Fe(II) species in comparison to 

Table 4.  Coercive field and the saturation magnetisation based on the fits.

Sample Temperature (K) Coercivity of the sample (Oe) Coercivity of the ferromagnetic component (Oe)
Saturation magnetisation of the ferromagnetic 
component (emu/g)

BFO
300.0 108.19 124.3 ± 1.3 4.593 ± 0.060

2.0 336.41 555.8 ± 7.9 10.45 ± 0.43

BLaFO
300.0 127.04 133.4 ± 2.0 5.161 ± 0.082

2.0 381.95 487.3 ± 5.2 5.834 ± 0.092

BEuFO
300.0 83.24 107.7 ± 5.0 4.886 ± 0.085

2.0 268.34 536.0 ± 21 6.13 ± 0.24

BErFO
300.0 98.06 115.5 ± 3.4 4.026 ± 0.084

2.0 86.6 490.0 ± 17 12.07 ± 0.16

Figure 5.  (a) M-H curves of neat and doped BFO, measured at 300 K (coloured—filled symbols) and 2 K 
(black—open symbols), (b) enlarged M-H curves of neat and doped BFO measured at 300.0 K and (c) 2.0 K.
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Fe(III) species, evidenced by XPS measurements. At the same time, however, the results of XRD analysis and 
Mössbauer spectroscopy do not expose the presence of any significant amount of iron oxide magnetic species, 
regardless of whether ferromagnetic or superparamagnetic. This fact leads us to the conclusion that even if there 
are some other than BFO magnetic phases in the samples contributing to the overall magnetisation, they would 
not be a significant part of the sample mass.

Conclusions
In this study, a series of  Bi0.9RE0.1FeO3 (RE = La, Eu, and Er) powders was prepared by the SCS method and their 
structural features, and factors that influence nanomaterials electric, and magnetic properties were carefully 
studied and analysed.

1. The results of XRD, XPS, and Mössbauer spectroscopy analyses revealed that all obtained materials are 
nanocrystalline powders with predominantly BFO or modified BREFO nanograins and thin outer layers 
enriched with  Bi2Fe4O9,  Bi2O3, and rare-earth metal oxides. The formation of an inhomogeneous structure 
was associated with the unequal influence of the external atmosphere and temperature gradient during 
synthesis and post-synthesis quenching.

2. The electrical measurements confirmed the ferroelectric behaviour of neat and RE-doped BFO with the 
presence of spontaneous polarization.

3. It was found, the synthesized materials are characterized with significantly improved magnetic properties, 
which are related to the structural transformation, promoted by the RE doping. At the same time, the analyses 
showed a decrease in coercive fields with the substitution of  Bi3+ by smaller-sized  Eu3+ and  Er3+ ions due to 
the distortion of the crystal cells and volume shrinkage.

4. All the studied materials are characterized by relatively high values of magnetisation and coercivity. The 
highest measured values of saturation magnetisation of the ferromagnetic component (5.161 emu/g) and 
coercivity (133.4 Oe) among all the studied materials at 300.0 K are found for the  Bi0.9La0.1FeO3 nanopowder. 
The main contribution to the magnetic behaviour of the nanopowders was associated with the BFO-based 
phase, as the presence of a significant amount of iron oxides or any other ferromagnetic phases were excluded 
by XRD and Mössbauer spectroscopy.

5. Based on the data analysis we concluded, the possible explanations for so high magnetic properties are 
(i) the influence of oxygen vacancies in the structure of the obtained BFO, supported by the presence of 
high-temperature dielectric relaxations in the broadband dielectric spectroscopy spectra; and (ii) nanosized 
structural parameters of crystallites, supported by narrow ferroelectric hysteresis loops.

6. The results of the study showed that SCS is a promising method for the preparation of a broad variety of 
neat and doped BFO-based nanomaterials with enhanced magnetic properties. Overall the SCS-obtained 
BFO-based materials are promising candidates for application as components of various electronic devices. 
The same SCS approach could also be used for the synthesis of other types of ferromagnetic nanomaterials 
with enhanced properties.
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