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Abstract Paper presents the application of the Cosserat rod theory and newly developed associated finite
elements code as the tools that support in the expert-designing engineering practice. Mechanical principles of
the 3D spatially curved rods, dynamics (statics) laws, principle of virtual work are discussed. Corresponding
FEM approach with interpolation and accumulation techniques of state variables are shown that enable the
formulation of the C0 Lagrangian rod elements with 6-degrees of freedom per node. Two test examples are
shown proving the correctness and suitability of the proposed formulation. Next, the developed FEM code is
applied to assess the structural response of the spatial truss roof of the “Olivia” Sports Arena Gdansk, Poland.
The numerical results are compared with load test results. It is shown that the proposed FEM approach yields
correct results.

Keywords Cosserat rods · Structural response · SO(3) · SHM

1 Introduction

The paper presents the use of nonlinear theory of Cosserat rods and the resulting finite element computer code
as tools for analysis of statics and dynamics of engineering structures, as the main example the spatial truss
being the roof of “Olivia” Sports Arena in Gdansk, Poland, is analyzed. The formulation presented here has
been used as a part of an advanced structural health monitoring system (SHM) [1,2], yet this paper focuses
only on the theoretical formulation and the comparison of the numerical results with test load measurements.

Structural health monitoring systems are nowadays commonly used to confirm theoretical assumptions
made in design phase [3–7]. The main purpose of the SHM system here was to ensure the safety of visitors by
initiation of emergency procedures in case of dangerous near-failure states that might lead to the total collapse.
Because of this it was necessary to implement solution that would be able to detect of type of near-failure
modes of the roof. The idea of the SHM system is shown in Fig. 1. Briefly, the designed SHM system relied on
own Fortran FEM code that was constantly performing nonlinear calculations evaluating the state variables of
the roof under the current snow weight. The use of the own code (called B6 [2]), in comparison with existing
commercial FEM packages, was motivated by its open structure and full integration with the expert monitoring
system. Unquestionably, such solution was cheaper in comparison with the use of commercial FEM system
and did not require costly renewal of the license. Other relevant approaches can be found in [8,9].
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Fig. 1 SHM system and the role of FEM code

As indicated previously, for brevity the details of SHM system are omitted in this paper. These details will
be presented in the forthcoming papers. Here the theoretical aspect of formulation, numerical implementation
and validation of the FEM results is presented.

As the basic structural element of the truss systems, the Cosserat curve model is used. This model is of the
general model of rods and beams presented in the literature, see [2,10–21]. Developed from the Cosserat rod
theory, B6 code naturally accommodates nonlinear analysis where translations and rotations are unlimited from
the theoretical viewpoint. The underlyingCosserat theoretical foundation of the code presentsmodern approach
to the rod theory. Apart from necessary mathematical limitations (smoothness, differentiability, continuity),
the theory is free from redundant kinematical assumptions that are typical for classical theories. The approach
is exact as far as kinematical and dynamical resultants for the rod-like body are concerned. The only stage
of formulation which has approximate character is the constitutive relation. The truss structure under study
could be treated also as a continuous body after a proper homogenization procedure as, for example, presented
in [22–29]. These kinds of procedures may produce higher gradient or non-local models with uncommon
mechanical responses which should be taken into account because some localization effects could not be
negligible at macroscale for the size of the length scale at micro-level (see, e.g., [30–35]).

The structure of the paper is as follows:

• In Sect. 2, relevant mechanical principles of the 3D spatially curved rods, dynamics (statics) laws and the
principle of virtual work (PVW) are presented. The latter one reveals the kinematics of the rod which is
equivalent to that of the Cosserat curve.

• In Sects. 3–5 are discussed details of linearization of the principle of virtual displacements, interpolation
and accumulation techniques of state variables, and formulation of beam and truss (cable) Lagrange finite
elements, in the context pertaining to the FEM approximation.

• Test examples presented inSects. 6 and7 confirm the correctness and suitability of the proposed formulation.
The developed B6 code is applied to the analysis of the Olivia Sports Arena roof. The obtained numerical
results presented in this section are compared with in situ measurements of static deflection and natural
frequencies of the analyzed structure. The comparison of the results shows the excellent performance of
the B6 code in the engineering practice.

2 Kinematics of rod, weak form

The idea of rod as the Cosserat directed curve receives major attention in the literature, see [2,10–21]. In
comparison with work [14], which was developed within research team of Gdansk University of Technology
and creates the background of the present work, the study is extended to accommodate the mass matrix.
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Fig. 2 Three-dimensional rod-like body, initial configuration

However, the dynamic analysis is limited to natural frequency extraction and time integration algorithms on
SO(3) group are not discussed. Some interesting references in this area are to be found, for instance, in [36,37].

To fix the ideas of the paper, let us define a rod-like body B (Fig. 2) as a (directed) curve l imbedded in the
3D Euclidean space E3, (o, {ei }), i = 1, 2, 3. Each point s ∈ l is endowed with non-coplanar triad of directors
{ti (s, t)}, assumed here as orthonormal, or equivalently, with a proper orthogonal structure tensor

T(s, t) ≡ [t1(s, t)|t2(s, t)|t3(s, t)] ∈ SO(3), ||t i (s, t)|| = 1 (1)

Since T (s, t) ∈ SO(3), it can be obtained as a proper orthogonal transformation of the fixed frame ei , i.e.,
t i (s, t) = T (s, t)ei . Each point s ∈ l is associated with the cross-sectional area A > 0. The motion of l is
understood as a sequence of configurations l(t), t ∈ T , where t denotes the time.As the reference configuration,
the position of l at t = t0 is taken.

Let s be an arc length along l0. Then

x(ξ i ) ≡ x(ξ , ξ) = x(ξ , s) = x(s) + ζ 0(s) = x(s) + ξα t0α(s) (2)

denotes the position vector of an arbitrary point of B. Here x(s) denotes the initial placement of the axis and
ζ 0(s) = ξα t0α(s), ξ ≡ {ξα}, α = 1, 2 denotes the position of arbitrary point of the cross section A(s) ≡ A0(s).
For the purposes of this paper, it is assumed that the tangent vector to the initial axis of the rod l ≡ l0 is defined
by

t03 ≡ t0 = ∂x
∂s

≡ x′, ||t0|| = 1 (3)

To establish dynamic equilibrium conditions, the idea from [38,39] was followed, which was later used
in [40] to derive a complete set of field equations for the 6-parameter nonlinear shell theory, or in [14] for the
6-parameter rod theory. For the clarity of the exposition, the reader should refer to the cited references for the
details pertaining to the equations of motion.

To formulate the weak form necessary for FEM implementation, it was proceed in the manner discussed in
[14] (compare also [40,41] for shells). This not only yields the weak statement but also reveals the formulae
for virtual strain measures. Some details about the general structure of the strong formulation may be found,
for example, in [42–45]. Ultimately, the following functional of the principle of virtual work is used

G(l, t; v, w) = Gi (l, t; v, w) + Gd(l, t; v, w) − Ge(l, t; v, w) = 0 (4)

where v and w are kinematically admissible virtual displacements and virtual rotations, respectively.
The termGi (l, t; v, w) = ∫ ∫

l (n · (v − w × y) + m · w)ds being the internal virtualwork defines vectors
of virtual strain measures (stretching strains and change of curvatures) in the spatial representation

δε ≡ v′ − w × y′, δκ ≡ w′ (5)

which are energetically conjugated with internal stress n and couple vectorsm, respectively. Here y denotes the
current placement of l(t). It can be shown (cf. for instance [14] for rods and [41,42] for shells) that corresponding
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82 M. Miśkiewicz

Fig. 3 Cosserat rod in motion

to the virtual measures (5) the following definitions of stretching strains and change of curvatures in the spatial
representation are used

ε(s, t) = y′(s, t) − Q(s, t)t0 = y′(s, t) − t(s, t), κ = ad−1(Q′ QT ) (6)

Q ∈ SO(3) T = QT0, t i = Qt0i . Here ad
−1 denotes the axial vector of skew-symmetric tensor (. . .).

Theoretical studies [38–41,43] reveal that the kinematical model described by (5) is identical with the 1-D
Cosserat continuum, where the motion is described by two sets of equations (see Fig. 3):

y(x, t) = x + u(x, t), t i (s, t) = Q(s, t)t0i (s) = Q(s, t)T0(s)ei = T (s, t)ei (7)

Differentiating the first equation of (7)2 with respect to time and assuming the spatial representation yields
the formula for skew-symmetric tensor of angular velocity Ω (cf. for instance [46])

ṫ i = Q̇t0i = Ω Qt0i = Ω t i = ω × t i , Ω = Q̇ QT , Q̇ = ṫ i ⊗ t0i (8)

and its axial vector ω

ω = ad−1Ω = 1

2
ad−1( ṫ i ∧ t i ) = −1

2
ṫ i × t i , Ω = Q̇ QT = adω (9)

The skew-symmetric tensor of angular acceleration in spatial representation A and its axial vector have
the following formula (cf. for instance [46])

A = Ω̇, a = ad−1A (10)

Let us recapitulate the present developments by setting energy-conjugated objects in matrix notation:
generalized displacements and their virtual counterparts, velocity and accelerations, respectively

u =
{
u
Q

}

, w =
{

v
w

}

, v =
{

υ
ω

}

, a =
{
ü
a

}

(11)

External point loads, external distributed loads, boundary terms and inertia forces are set in the following
vectors

pk =
{
nk
mk

}

, p =
{

f
c

}

, σ∗ =
{
n∗
m∗

}

, b =
{
ṗ
ṡ + ẏ × p

}

=
{
J1ü
J2a + ω × J2ω

}

(12)

The strain vector, the virtual strain vector and the internal (generalized) stress vector are defined

ε(u) =
{

ε̂(u, Q)
κ̂(u, Q)

}

=
{
u′ + (1 − Q)t03
ad−1(Q′ QT )

}

, δε =
{

δε
δκ

}

=
{

v′ + (t3 + ε) × w
w′

}

, σ =
{
n
m

}

(13)
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Furthermore, the following operators are introduced:

B̄(u, Q) =
[

1(.)′ (t3 + ε) × (.)

0 1(.)′
]

, D̄ =
⎡

⎣
1(.)′ 0
0 1(.)′
0 1

⎤

⎦ (14)

that enable the following definitions of virtual relations:

δε(u, Q) = B̄(u, Q)w, δd = D̄w (15)

With this notation, the principle of virtual displacements (4) can be rewritten as

G[u, t;w] ≡ Gd [u, t;w] + Gi [u, t;w] − Ge[u, t;w] = 0 (16)

where

Gd [u, t;w] =
∫

l
wTbdl +

∑

k

wT
k bk (17)

Gi [u, t;w] =
∫

l
(B̄(u)w)T σ̂(ε)dl =

∫

l
δεT (w)σ(ε)dl (18)

Ge[u, t;w] =
∫

l
wTpdl +

∑
wTσ∗ +

∑

k

wT
k pk (19)

3 Linearization

Linearization of the internal virtual workGi [u, t;w] and the external virtual workGe[u, t;w] in (16) has been
extensively described in [14], and it also holds in the present formulation. Without losing generality, attention
is confined to the dead load for which δGz = 0. Thus, the attention should be focused to the virtual work of
inertia forces. It is necessary to calculate the variation of

Gb[u(η), t;w] =
∫

l
wTb(η)dl

=
∫

l
(v · J1(η)ü(η) + w · [J2(η)a(η) + ω(η) × J2(η)ω(η)])dl (20)

This is a complex calculation. Therefore, here are only the main steps required to arrive at the linearized
form presented. In the first step, �ω and �a are treated as independent variables and

�(J2a + ω × J2ω) = (�J2a + ω × �J2ω) + [J2�a + �ω × J2ω + ω × J2�ω] (21)

The linearized tensor of inertia in view of implication

Q(η) = exp(ad(η�w))Q ⇒ �Q = ad(�w)Q (22)

is written as
�J2 = (ad�w)J2 − J2(ad�w) (23)

Hence, the term in bracket in (21) after some manipulation reads

(�J2a + ω × �J2ω) = [−ad(J2a) + J2A − Ωad(J2ω) + Ω J2Ω]�w (24)

The term in [.] bracket from (21) follows from linearization of angular velocity and angular acceleration and
may be written as

[J2�a + �ω × J2ω + ω × J2�ω] = J2�a + [−ad(J2ω) + Ω J2]�ω (25)
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As a consequence of the first step, the following expression is obtained:

δGb[u, t;w, �w, �a, �v] =
∫

l
(v · J1�ü + w · J2�a + w · [J2Ω − ad(J2ω)]�ω

+w · [J2A − ad(J2a) + Ω J2Ω − Ωad(J2ω)]�w)dl

=
∫

l
(wT {mρ�a + cρ�v + kρ�w})dl (26)

where the following matrices are introduced

mρ =
[
J1 0
0 J2

]

, cρ =
[

0 0
0 J2Ω − ad(J2ω)

]

(27)

kρ =
[

0 0
0 J2A − ad(J2a) + Ω J2Ω − Ωad(J2ω)

]

(28)

In the second step, �ω and �a are expressed as the functions of velocity �ẇ and acceleration �ẅ,

�ω = δω[u, t;�w] = �ẇ − ω × �w, �a = δa[u, t;�w] = �ẅ − ω × �ẇ − a × �w (29)

After some manipulations, and by making use of Lie bracket [V,W ] = WV − VW = ad(v × w) equation
(26) is obtained as

δGb[u, t;w, �w] =
∫

l
(v · J1�ü + w · J2�ẅ + w · [Ω J2 − J2Ω − ad(J2ω)]�ẇ

+w · [ad(J2ω)Ω − Ωad(J2ω) − ad(J2a)]�w)dl

=
∫

l
(wT {mρ�ẅ + c̄ρ�ẇ + k̄ρ�w})dl (30)

with

c̄ρ =
[

0 0
0 Ω J2 − J2Ω − ad(J2ω)

]

, k̄ρ =
[

0 0
0 −ad(J2a + ω × J2ω)

]

(31)

4 Constitutive relations

In this paper, the linearly isotropic elastic rods are discussed. In such a case, the constitutive relations are given
by the formulae in material representation (n, m, ε, κ; {t0i }, i = 1, 2, 3)

n = C1ε, m = C2κ, ε = QT ε, κ = QT κ (32)

In (32), the constitutive matrices C1 and C2 do not depend on curvature of the rod axis. The component form
of (32) follows from decomposition of the stress and couple resultants

n = ni t0i = n1 t01 + n2 t02 + n t0, n = Qn (33)

m = mi t0i = m1 t01 + m2 t02 + m t0, m = Qm (34)

Here n3 ≡ n is the axial force and n1, n2 are the shear forces. Similarly, m3 ≡ m is the torsional moment,
while m1 and m2 are bending moments. The explicit form of (32) is

11
1

22
1

33
0

11
2

22
1

33
1 2

0 0 0 0 0
0 0 0 0 0
0 0 (2 ) 0 0 0
0 0 0 (2 ) 0 0
0 0 0 0 (2 ) 0
0 0 0 0 0 ( )

μAn ε
μ An ε

μ λ An ε
μ λ Im κ

μ λ Im κ
μ I Im κ

⎧ ⎫ ⎧ ⎫⎤⎡
⎪ ⎪ ⎪ ⎪⎥⎢
⎪ ⎪ ⎪ ⎪⎥⎢
⎪ ⎪ ⎪ ⎪⎥⎢ +⎪ ⎪ ⎪ ⎪= ⎥⎢⎨ ⎬ ⎨ ⎬+ ⎥⎢⎪ ⎪ ⎪ ⎪

⎥⎢⎪ ⎪ ⎪ ⎪+
⎥⎢⎪ ⎪ ⎪ ⎪

+ ⎥⎢⎪ ⎪ ⎪ ⎪⎦⎣⎩ ⎭ ⎩ ⎭ (35)

Here μ, λ are the classical Lame constants and Ai = ki A0, where ki is the shear correction factor and Ii are
the moments of inertia about axes i = 1, 2, respectively. Kinetic constitutive relations are assumed as

p = J1υ, s = J2ω, υ(s, t) = ẏ(s, t) = u̇(s, t) (36)

where J1(x) is averaged time-independent mass tensor, while J2 is the inertia tensor in spatial representation.
In writing (36), it is assumed that the center of mass coincides with the axis of the rod.
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5 FEM approximation

5.1 Shape functions

Assuming that approximation functions are regular and smooth enough to satisfy necessary C0 interelement
continuity conditions, the spatial approximation of (16) may be carried out over typical finite elements

G[u, t;w] =
Ne∑

e=1

G(e)[u, t;w], δG[u, t;�w,w] =
Ne∑

e=1

δG(e)[u, t;�w,w] (37)

In the reminder therefore the attention is confined to the single finite element.
The FEM approximation of vector variables undergoes standard rules. The axis of the rod (possibly curved)

is approximated as the sum l = ∪Ne
e=1Π(e) of non-overlapping regions Π(e) - finite elements in the physical

space. In the isoparametric formulation, each Π(e) is obtained as the smooth image of the parent element
π(e) ≡ [− 1,+ 1] ⊂ R. The nw nodes of Π(e) are defined by the position vector xa and are equipped
with directors {t0i }a ≡ {t0i (xa)}, i = 1, 2, 3, a = 1, 2, . . . , nw obtained as a result of proper orthogonal
transformation of the fixed base ei , (T0)a ≡ T0(xa), (t0i )a = (T0)aei . In C0 interpolation of vector variables,
the following relations are employed:

x(ξ) =
nw∑

a=1

La(ξ)xa (38)

where La(ξ) are the Lagrange polynomials satisfying usual conditions
∑nw

a=1 La(ξ) = 1, La(ξb) = δab,
ξ ∈ π(e), a = 1, 2, . . . , nw. In the standard FEM approach, nodal and element shape function matrices are
defined by

L̄a(ξ) =
[
La(ξ) 1 0
0 La(ξ) 1

]

, L̄(ξ) = [L̄1(ξ) L̄2(ξ) . . . L̄n(ξ) ] (39)

with 1 as the second-order identity matrix. Since typical element Π(e) ⊂ E3 is parameterized by ξ ∈ π(e) ≡
[− 1, + 1] ⊂ R, to calculate the strain field, it is necessary to find a transformation rule between derivatives
∂(.)/∂s ≡ (.)′ and ∂(.)/∂ξ . Through the chain rule, it is to find

∂x
∂s

= ∂x
∂ξ

∂ξ

∂s
= t0 ≡ t03 ⇒ α(ξ) = ∂s

∂ξ
= ∂x(ξ)

∂ξ
· t0(ξ) = a(ξ) · T0(ξ)e3 (40)

The notations a = ∂x/∂ξ , t03 ≡ t0 = T0(ξ)e3 are used. The transformation of the elementary length is given
by dl ≡ ds = α(ξ)dξ .

5.2 Interpolation in SO(3) group, virtual rotations

From the theoretical viewpoint, the main difficulty of analyzed theory stems from the fact that definition of the
configuration space that emerges in the nonlinear theory of rods contains Cartesian product of the Euclidean
space and the rotation group SO(3), so it does not possess the character of linear space. This necessitates the
use of nonstandard techniques of approximation and interpolation of variables.

The crucial aspect of C0 interpolation is associated with objects from the rotation group, e.g.,
T (ξ), T0(ξ), Q(ξ) ∈ SO(3). Typical interpolation (38) is an outer operation in SO(3) group. Hence, two-
stage interpolation originally proposed in [47] (compare with [48]) is employ indirect. The scheme is described
in detail in [49] and references given there.

The vector of virtual rotations w ∈ TQSO(3) ⊂ E3 can be calculated in the fixed base e j by making use
of the transformation rule t i (ξ, t) = T (ξ, t)ei . Formally therefore the following relation holds

w(ξ) = wi (ξ ) t i (ξ ) = w̄ j (ξ ) e j = w̄ j (ξ ) T T (ξ ) t j (ξ ) = Tji (ξ ) w̄ j (ξ ) t i (ξ ) (41)

or equivalently in the matrix notation typical for FEM

w̃(ξ ) = T̃(ξ )
nw∑

a=1

La(ξ )w̄a (42)
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Fig. 4 Nodal degrees of freedom

where tilde denotes the interpolated quantity. The discrete values are given in ei base and have clear mechanical
interpretation of small rotation vector components.

5.3 Nodal degrees of freedom

Nodal degrees of freedom are composed of vector variables such as u, �u, δu ≡ v and of rotational variables.
The treatment of the latter ones is more demanding as it depends on the employed parameterization SO(3) →
R3 of the rotation group. In this paper, the canonical interpolation is employed

�Q = exp �W = exp (ad�w) = exp (�wad(e)) (43)

where �W = ad�w = �wad(e), ||e|| = 1. As a consequence, at each node a = 1, 2, . . . , nw the resulting
finite element has six engineering degrees of freedom (see Fig. 4), which variations form a nodal vector

δq̄a =
{

δua
δwa

}

≡
{

va
wa

}

=
{

v(ξa)
w(ξa)

}

(44)

Considering the n-node element, one can write

δq̄(e) =

⎧
⎪⎪⎨

⎪⎪⎩

δq̄1
δq̄2
...
δq̄n

⎫
⎪⎪⎬

⎪⎪⎭
, �q̄(e) =

⎧
⎪⎪⎨

⎪⎪⎩

�q̄1
�q̄2
...
�q̄n

⎫
⎪⎪⎬

⎪⎪⎭
(45)

Similarly, vectors of velocity and acceleration are introduced

v̄a =
{
u̇(ξa)
ω(ξa)

}

, v̄(e) =

⎧
⎪⎪⎨

⎪⎪⎩

v̄1
v̄2
...
v̄n

⎫
⎪⎪⎬

⎪⎪⎭
, āa =

{
ü(ξa)
a(ξa)

}

, ā(e) =

⎧
⎪⎪⎨

⎪⎪⎩

ā1
ā2
...
ān

⎫
⎪⎪⎬

⎪⎪⎭
(46)

Vectors of increments � ˙̄q and � ¨̄q are formulated by analogy to (44) and (45) that is � ˙̄qa ⇒ � ˙̄q(e) and

� ¨̄qa ⇒ � ¨̄q(e).
In writing interpolation rules, it should be remembered that the object such as �w(ξ, t), ω(ξ, t), a(ξ, t)

belongs to different tangent spaces, i.e., different placements along the element length, and is being parame-
terized by time t ∈ [0,+∞): u(t) = (u(t), Q(t)). Therefore, the general formulae relating the vectors from
different tangent spaces are given by

w(ξ) = 	(ξ)w(ξ), ω(ξ) = 	(ξ)�ẇ(ξ) (47)
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Here 	(ξ) depends on parametrization of rotations and can be defined in various ways, see, for instance,
[50,51]. In this paper, 	(ξ) = T(ξ) is chosen and thus

w(ξ) =
{

v(ξ)
w(ξ)

}

=
[

1 0
0 T(ξ)

] {
v(ξ)
w(ξ)

}

, v(ξ) =
{
u̇(ξ)
ω(ξ)

}

=
[

1 0
0 T(ξ)

] {
υ(ξ)
�ẇ(ξ)

}

(48)

Therefore, the interpolation formulae read

w(ξ) = L(ξ)δq(e), v(ξ) = L(ξ)�q̇(e), L(ξ) = Ȳ(ξ)L̄(ξ), Ȳ(ξ) =
[

1 0
0 T(ξ)

]

(49)

In the case of generalized accelerations a, it is necessary to take into account that 	(ξ) = T(ξ) also depends
on time t through Q(ξ, t). Therefore, since a = ω̇ = 	�ẅ + 	̇�ẇ is obtained

a(ξ) =
{
ü(ξ)
a(ξ)

}

=
[

1 0
0 T(ξ)

] {
υ(ξ)
�ẅ(ξ)

}

+
[

1 0
0 Ṫ(ξ)

]{
υ(ξ)
�ẇ(ξ)

}

(50)

and the interpolation formula takes the form

a(ξ) = L(ξ)�q̈(e) + L̇(ξ)�q̇(e), L̇(ξ) =
[

0 0
0 Ṫ(ξ)

]

L̄(ξ), L̇a(ξ) = ˙̄Y(ξ)L̄a(ξ) (51)

5.4 Element matrices, numerical integration

Standard FEM argumentation leads to the following relations between expression for variation of the internal
virtual work and its discrete counterpart on the element level

∫

Π(e)

(wT B̄
T
CB̄�w + wT D̄

T
GD̄�w)dl → δqT

(e)(K
(e)
M + K(e)

G )�q(e) (52)

where material and geometric stiffness matrices are given, respectively, by

K(e)
M =

∫

Π(e)

BTCBdl, K(e)
G =

∫

Π(e)

DTGDdl, B(ξ) = B̄L(ξ), D(ξ) = D̄L(ξ) (53)

Similarly, for inertia forces (30) there is
∫

Π(e)

(wT {mρ�ẅ + c̄ρ�ẇ + k̄ρ�w})dl → δqT
(e)(M

(e)�q̈(e) + C(e)�q̇(e) + K(e)
d �q(e)) (54)

where the element mass matrix, the extended gyroscopic matrix and the centrifugal matrix are defined by

M(e) =
∫

Π(e)

LTmρLdl, C(e) =
∫

Π(e)

(LTcρL + LTmρ L̇)dl, K(e)
d =

∫

Π(e)

LTkρLdl (55)

The internal virtual work is calculated as
∫

Π(e)

wT B̄
T
wT σ̂(u)dl = δqT

(e)r
(e), r(e) =

∫

Π(e)

BT σ̂(u)dl (56)

In the same fashion, the element inertia force vector is obtained

G(e)
d =

∫

Π(e)

wTb(a,v)dl = δqT
(e)b

(e), b(e) =
∫

Π(e)

LTbdl (57)

Eventually, on the element level the following equation is formulated

M(e)�q̈(e) + C(e)�q̇(e) + K(e)
d �q(e) = �p(e) + j(e), (58)
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Fig. 5 Right-angle cantilever, geometry and load

Fig. 6 Right-angle cantilever, geometry and load

whereK(e)
T = K(e)

M +K(e)
G +K(e)

d and j(e) = p(e) − r(e) −b(e). All the matrices, including the mass matrix, and
vectors are computed numerically using Gauss quadrature. In order to minimize the locking effect in low-order
elements and to avoid spurious zero-energy modes that accompany reduced integration (RI) 4-node elements
with full integration (FI) are used. Standard aggregation procedure is then applied to obtain global equations
for the whole structure.

To conclude the description of the formulation, it is mentioned in passing that the ultimate structure of
the developed Fortran code of B6 program includes also the cable (truss) elements. These are formulated as
2-node Lagrange C0 elements based on the classical Green–Lagrange strain tensor, cf. for instance [53].

6 Validation of the program

In [2], a number of tests were carried out to verify the correctness of the proposed approach and its FEM
implementation. For the sake of brevity, only two of them in this paper are reported.

6.1 Right-angle cantilever

Following [52], stability analysis of the right-angle cantilever shown inFig. 5 is performed.The followingvalues
are used: L = 240mm, b = 30mm, h = 0.6mm, E = 71,240N/mm2, ν = 0.31, Pref = ± 0.01 N . This
is the very popular benchmark problem for both rod and shell formulations, see, for instance [12,52,54–56].
To evaluate the critical load, the nonlinear stability analysis with imperfection introduced as the perturbation
load Pimpf = P/1000 is used. The load deflection curves are presented in Fig. 6, whereas Table 1 shows the
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Table 1 Right-angle cantilever Pkr, cases A and B

References Theory Mesh Case Pcr

Argyris et al. [52] Rod 20e2 A 1.088
Simo and Vu-Quoc [10] Rod 20e2 A 1.090
Wagner and Gruttman [55] Shell 32 × 4e4 A 1.190
Witkowski [56] Shell EANS 32 × 4e4 A 1.191
CAM Shell 44e16, FI A 1.190

Shell 44e16, FI B 0.7035
B6 Rod 20e4, FI/URI A 1.086

Rod 20e4, FI/URI B 0.6798

The number following label e (element) denotes the number of nodes per element

Fig. 7 45-Degree bend cantilever

comparison of the solutions. The label CAM denotes C0 shell elements of Lagrange type with full integration
(FI), for details see for instance [40,47,49]. Presented results, labeled as B6, are in good agreement with the
reference solutions.

6.2 45-Degree bend cantilever

This example has been studied by various researches, e.g., [12,14,57–60]. The radius of cantilever is R = 100,
α = 45◦, see Fig. 7. The unit square cross section is assumed A = b × h = 1 × 1 = 1 made of material with
properties E = 107, ν = 0. In the FEM simulation, full integration (FI) or uniform reduced integration (URI)
is used. Four 4-node B6 elements are employed. The analysis revealed that there is no significant difference
between FI and URI results within own formulation B6, see Fig. 8. Again, good agreement between own and
the reference solution is obtained, see Table 2.

7 Validation of B6 code, the roof of “Olivia” Sports Arena

The analyzed structure is created on the basis of reinforced concrete stands and a rod-cable roof structure with
slender truss girders of lenticular shape. The main load bearing components of the roof are formed in a bold,
lightweight and attractive spatial structure, built of eleven flat, inclined to each other, compressed lenticular
truss girders, see Figs. 9, 10 and 11.

The span of the girders in plane is 78.54 m, and the structural height at the chord centerlines changes
according to the parabola, in theory, from 0 m at the girders to 4 m in the middle of the span. With the
compression of the lower chords, low structural height of 1/20 of the span was achieved, thus reducing the
building space so important for air-conditioning of ice rinks. The upper chords are formed of a system of
I-beams, and the lower chords are made of variably spaced channel bars in a parabolic arrangement, from
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Fig. 8 45-Degree bend cantilever, results

Table 2 45-Degree bend cantilever

Load P 300 450 600

Displacements∗: − u∗ − v∗ w − u∗ − v∗ w − u∗ − v∗ w
Bathe and Bolourchi [57] 6.8 11.5 39.5 – – – 13.4 23.5 53.4
Simo and Vu-Quoc [10] 6.96 11.87 40.08 10.68 18.39 48.39 13.50 23.48 53.37
Cardona and Geradin [58] 7.15 12.07 40.35 10.91 18.60 48.59 13.74 23.67 53.50
Crisfield [59] 7.13 12.18 40.53 10.86 18.79 48.79 13.68 23.87 53.71
Crivelli and Felippa [60] 6.99 11.85 40.08 10.71 17.36 48.39 13.55 23.45 53.37
Own B6 7.18 12.18 40.48 10.92 18.74 48.71 13.74 23.83 53.61
Displacements: − u − v w − u − v w − u − v w
Own B6 13.69 3.536 40.48 20.98 5.532 48.71 26.56 7.135 53.61

The results (u*, v*, w) are given in coordinate system 45◦ rotated in plane about z-axis in the coordinate system shown in Fig. 10

Fig. 9 Overall view on Olivia” Sports Arena in Gdansk, Poland

0.2 m in the middle of the span to 5.8 m at the pillars. The lower chords with the upper ones are joined with
posts and cross-bracings. The lower chord is compressed with 16 18 × 5 cables made of high-strength steel.
According to the design, another purpose of the proper selection of the lenticular girder compression range
was to eliminate the internal compression of the grid structure, i.e., the posts and cross-bracings.

Built in 1973 the Arena operated until 2004 when it was observed then that the outmost roof beam posts
of the arena girder underwent substantial deformation.
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Fig. 10 Structure of the roof of “Olivia” Sports Arena in Gdansk, Poland

Fig. 11 Deformed element and its placement in the roof structure

Consequently in 2008, technical survey of the structural health of the entire building was commenced, with
particular focus on the roof structure [1]. The findings of the survey as well as detailed numerical analysis
indicated the risk of “domino-type” collapse.

Since it was not possible to repair the construction immediately and the authorities could not close the
Arena due to public pressure, it was decided to keep the Arena operational provided that a SHM system
“safeguarding” the structure is enforced.

As mentioned in Introduction, the SHM system was enforced [1] where B6 was the core ingredient. For
that purpose, prior to SHM enforcement, technical validation of the FEM formulation was carried out.

7.1 Single lenticular girder and FEM model

Firstly, a single lenticular girder was analyzed since there existed the results of the in situ tests of a single
girder performed in 1969 on the building site. To account for complex spatial geometry, for the pre- and
postprocessing phase SOFiSTiK [61,62] a general-purpose FEM code was used. This eased the development
of the complicated spatial structure of the girder, see Fig. 12. In the calculations with B6 code, the following
finite elements were employed:

• 4—node spatial rod elements with full integration accounting for offset,
• 2—node pre-stressed spatial truss-cable elements with no-tension feature,
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Fig. 12 “Olivia” Sports Arena, single lenticular girder discretization: a geometry and the boundary conditions, b visualization
of the girder, c visualization of the cross section, d visualization of pre-tensioning cables (postprocessing in SOFiSTiK)

• non-dimensional contact element (between rod and cable).

The main analysis of the truss girder was preceded by convergence analysis which revealed that the
mesh consisting of 2684 nodes, 800 rod elements and 632 cable elements yields appropriate convergence.
For comparison purposes, SOFiSTiK [61] was also employed with the mesh built from 2 684 nodes and the
following finite elements:

• 2400 2—node spatial beam elements. Since [61] manual does not provide information, a detailed study of
element properties was undertaken revealing that these are Timoshenko-type beam elements accounting
for shear effect and axis eccentricity,

• 632 2—node C0 spatial truss-cable elements with no-tension feature.

In all calculations, the value of Young’s modulus was assumed as 205 GPa and Poisson’s ratio 0.3.
The following load cases were studied:

• gravity load,
• pre-tension force 1030 kN in cables of a single-channel bar in the lower cord,
• pre-tension force 1.96 kN of X bracing,
• concentrated forces 5 kN on the upper cord at every node connecting the chord and vertical post along the
total chord length (Fig. 13, case A),

• as above, however along half of the total chord length (Fig. 13, case B).

All calculations were carried out in geometrically nonlinear range. The obtained results are presented in
Fig. 14, where comparison is given to the original in situ measurements taken in 1969. The curves show a good
qualitative agreement. The quantitative assessment revealed the 9% discrepancy between in situ and numerical
results which is also fine. Table 3 presents some representative values to support this observation.

In the next step, the natural frequency extraction was performed. Here different numerical integration rules
to obtain element mass matrix (55)1 were tested. The obtained values are depicted in Fig. 15.
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Fig. 13 “Olivia” Sports Arena, single lenticular girder, load cases—load tests in 1969

Fig. 14 “Olivia” Sports Arena, single lenticular girder, deflection of the lower cord of the analyzed girder

Table 3 “Olivia” Sports Arena, single lenticular girder, deflection of the lower cord, representative numerical results

Load case wmeasurement(mm) wSOFiSTiK(mm) wB6(mm) wmeas/wSOFiSTiK(mm) wmeas/wB6(%)

Dead load 244.0 235.56 235.56 104 104
Compression 2 × 1030 kN − 386.3 − 389.40 − 389.38 99 99
Load test—38 beams of weight of
10 kN each, located symmetrically

131.2 144.39 144.31 91 91

Load test—19 beams of weight
of 10 kN each, located non-
symmetrically

65.5 72.21 72.15 91 91

7.2 Year 2008 load test, in situ results, FEM simulations

In August 2008, dynamic and static load tests of the whole roof structure were performed. The positions of
measuring points are shown in Fig. 16.

In load test, the static load was created by pairs of hanging bags filled with stones, and the weight of each
bag was 9 kN. Their placement is shown in Fig. 17 along with the actual photograph in Fig. 18. The following
load protocol was applied

• 2 readings of displacements at every 15 min prior to load,
• 1 reading directly after the placement of the next row of the hanging bags,
• 1 reading directly after the placement of the whole load,
• series of successive readings at each 15min under the whole load, the loadwas kept as long as the increment
of displacement in two consecutive readings did not differ more than 2% from the total load,

• 1 reading after removal of the row of load,
• 1 reading directly once the last portion of load was removed,
• series of successive readings at each 15 min until the stabilization of the structure.
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Fig. 15 Single lenticular girder, natural frequency extraction, numerical results (postprocessing in SOFiSTiK)

Fig. 16 Position of measurement points
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Fig. 17 Placement of the hanging bags

Fig. 18 Actual photograph of the static load due to hanging bags

After convergence analysis, the overall B6 model consisted of 17156 nodes, 5250 4-nodes beam elements
and 3708 2-nodes string elements. Some representative time histories of the displacements are compared in
Fig. 19. Table 4 presents detailed numerical values.

Finally, natural frequencies of the whole roof were assessed. To this end, impulse load was generated by
cutting off a single bag (9 kN). The representative acceleration time history is shown in Fig. 20 where FFT
transformations is also given. The extracted frequencies along with associated modes are shown in Fig. 21
where comparison with numerical results is presented.
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Fig. 19 Comparison of numerical and experimental results

Table 4 Comparison of displacements at selected points due to total load

Point u1/1
(mm)

u2/1
(mm)

u3/1
(mm)

u1/2
(mm)

u2/2
(mm)

u3/2
(mm)

u1/3
(mm)

u2/3
(mm)

u3/3
(mm)

u4/2
(mm)

u5/2
(mm)

wmeasured 10.90 22.86 21.22 12.26 25.03 23.30 10.25 21.49 20.39 10.32 2.20
wB6 18.24 27.56 24.11 20.04 30.30 26.56 14.24 22.26 19.54 10.86 2.28
wmeasured/wB6
(%)

60 83 88 61 83 88 72 97 104 85 97

Fig. 20 Representative time histories (measured) of acceleration and displacement and corresponding FFT transforms

The above results confirmed the correctness of proposed formulation, the resulting FEM code and assumed
discretization of the structure of the roof. Thus, B6 code was placed into SHM system as shown in Fig. 4.

The purpose of the installed SHM system [1,2] was to control the basic parameters of the roof structure
and signaling its state in automatic way to appropriate authorities. It was novel technological solution as,
in comparison with existing commercial offers, it included sophisticated computational module of structural
analysis. The module was based on detailed theoretical model of the roof along with integrated expert system.
Even though the number of sampling points was small, due to the performed real-time computations by B6, it
was possible to supervise online the current state of the whole roof at arbitrary point. The advantage of own
FEM code within SHM system was its low price (no renewal of license), robustness (unlimited translations
and rotations) and small size of the executable file (below 1MB). The similar applications of the presented
idea of structural health monitoring system may be found in [63–65].
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Fig. 21 Natural frequencies and modes of the roof (postprocessing in SOFiSTiK)

8 Conclusions

Here is discussed the direct approach to the modeling of rod behavior which are free of any simplifying
kinematical assumptions. Except of necessary mathematical requirements—continuity, differentiability and
appropriate smoothness of fields entering the formulation—no other assumptions typical for classical formu-
lations (such as Bernoulli hypothesis) are incorporated. The presented formulation is kinematically unique in
the sense that the strain measures follow uniquely from the principle of virtual work and are not postulated. The
only approximation on the theoretical level appears when material law is presented. The derived inertia terms
are suitable for analysis of small oscillations superposed on finite deformations with unlimited translations
and rotations. One of the crucial aspects of the formulation is the lack of linear structure of the configuration
space C(E3 × SO(3)) that is not a vector space. This necessitates the use of special interpolation techniques.
Theory and the spatial approximation are consistent in regard to all simple states, i.e., tension/compression,
bending, shear and torsion. Thus, connecting of non-planar elements is natural in the aspect of kinematics and
dynamics and does not require artificial techniques.

Based on the Cosserat rods theory, the new nonlinear B6 FEM program presented in this article after
calibration was finally used in SHM system that kept Sports Arena “Olivia” operational from 2008 till the
construction works in 2010. The most important element of the system was the analysis and expert modules
based on the updated nonlinear FEM models. The obtained detailed FEM model of the roof structure was
obtained due to methodical derivation of the general geometrically nonlinear FEM model. The model was
updated based on in situ tests as well as on numerous studies on the work done by temperature changes and
snow load distribution. The programwas also validated with few benchmark problems. Application of the code
to the large engineering structure such as Sports Arena “Olivia”, which is one of the largest rod-like structures,
together experimental studies demonstrates the efficiency of the code.
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1. Wilde, K., Miśkiewicz, M., Chróścielewski, J.: SHM system of the roof structure of sports Arena “Olivia”. In: Structural
Health Monitoring, Tom II. Pennsylvania 17602, pp. 1745–1752. DEStech Publications Inc., USA (2013)
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5. Kaminski, W., Makowska, K., Miśkiewicz, M., Szulwic, J., Wilde, K.: System of monitoring of the Forest Opera in Sopot
structure and roofing. In: 15th International Multidisciplinary Scientific GeoConference SGEM, Book 2, vol. 2, pp. 471–482
(2015). https://doi.org/10.5593/SGEM2015/B22/S9.059
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