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The sound speed and parameters of nonlinearity B/A, C/A in a fluid are ex-
pressed in terms of coefficients in the Taylor series expansion of an excess internal
energy, in powers of excess pressure and density. That allows to conclude about
features of the sound propagation in fluids, the internal energy of which is known as
a function of pressure and density. The sound speed and parameters of nonlinearity
in the mixture consisting of boiling water and its vapor under different tempera-
tures, are evaluated as functions of mass concentration of the vapor. The relations
analogous to that in the Riemann wave in an ideal gas are obtained in a fluid obey-
ing an arbitrary equation of state. An example concerns the van der Waals gases.
An excess pressure in the reflected wave, which appears when standard or nonlinear
absorption in a fluid takes place, is evaluated in an arbitrary fluid.
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Riemann wave.
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1. Introduction

The nonlinearity parameters B/A and C/A play a significant role in nonlinear
acoustics, in a number of areas ranging from underwater acoustics to medicine
(Novikov et al., 1988; Carstensen, Bacon, 1998). The ratios B/A and C/A
have their origins in the Taylor series of the expansion of the variations of the
pressure in a fluid, in terms of variations of the density. The changes are carried
out reversibly, adiabatically and at constant chemical composition:
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where p, p0 denote pressure and its ambient value, ρ, ρ0 denote density and its
ambient value, p′ = p−p0 is the sound pressure, and ρ′ = ρ−ρ0 is an excess fluid
density. In nonlinear acoustics, the current notation was perhaps first employed
by these authors (Fox, Wallace, 1954). The isentropic small-signal sound speed
is defined by the following equality:

c2
0 =

(
∂p′

∂ρ

)

s,0

=
A

ρ0
. (2)

The partial derivatives in Eqs. (1), (2) are all evaluated at the unperturbed
state (ρ0, s0), what is indicated by the subscript 0. Parameters of nonlinearity
in fluids may be obtained from the variation of sound velocity with temperature
and pressure (Beyer, 1998):
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where αT = ρ0(∂ρ−1/∂T )p0 is the volumetric coefficient of thermal expansion,
CP is specific heat at constant pressure, T0 is the ambient temperature.

Evaluation of the ratios B/A, C/A obviously requires precise knowledge about
function c(p, T ) on extensive area of equilibrium states. Usually these data are
established experimentally. Alternative, but a more convenient way, is to express
sound speed and parameters of nonlinearity in terms of series of an excess in-
ternal energy e(ρ, T ), since the recent advances in physical chemistry allow to
approximate internal energy for most models of forces between molecules (based
on atomic model of hard spheres, soft spheres and other) with reasonably high
accuracy. That is of great importance for liquids, even for such anomalous like
water (Lee et al., 1963; Jeffrey, Austin, 1999). Knowledge about internal
forces between molecules in a fluid provides a fairly high accuracy in calculating
of thermodynamic potentials like free energy and therefore, an internal energy of
a fluid. Vice versa, acoustic measurements of a waveform nonlinear distortion may
correct conclusions of chemical physics (Sehgal, 1995). As the zero-order test,
analytically derived thermodynamic potentials must provide a correct value of the
sound speed. Comparison of theoretical predictions of B/A and C/A with their
experimental values would allow to correct a curvature of the surface representing
internal energy as a function of ρ, T . Sections 1, 2 are devoted to estimation of
the small-signal sound speed and parameters of nonlinearity in the media, where
internal energy as a function of density and temperature is known analytically,
like mixture consisting of boiling water and its vapor, or van der Waals gases.
The final formulae include coefficients in the Taylor series expansion of an excess
internal energy e(ρ, T ).
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Analytical method is much more convenient in many applications for one more
reason. The conservative equations of mass, momentum and energy are similar
in gases and liquids. The sound speed and parameter of nonlinearity B/A are
larger in liquids (Beyer, 1960; 1998; Coppens et al., 1965). The reason for that
is a difference in thermodynamic properties of gases and liquids. Thermodynamic
properties follow in fact from two equations of state, the caloric and thermal ones,
the first one connecting internal energy of a medium with two thermodynamic
forces, pressure and temperature, and the second one connecting density with
pressure and temperature. Dynamics of any fluid may be considered by means of
the Taylor series expansion of both equations of state. That permits to draw gen-
eral conclusions about nonlinear features of any fluid motion and, in particular,
about nonlinear features of propagation of sound itself.

The determination of nonlinear waveforms like the one-dimensional Riemann
wave in ideal gases (but in fluids different from an ideal gas) is also an important
problem. The Riemann wave is known as an exclusive example of exact solution of
conservative nonlinear equations in the differential form, describing a non-viscous
ideal gas (Riemann, 1953; Rudenko, Soluyan, 1977).

It is established by relations linking acoustic pressure, excess density and
velocity of a fluid. These nonlinear relationships are known within any accuracy
only for an ideal gas motion. In Sec. 1, the links specific for the Riemann wave
in any fluid are evaluated within the accuracy up to the third-order nonlinear
terms. The way to determine these relations within any accuracy is also pointed
out there. The reflected wave excess pressure in any absorbing fluid is derived
by use of the relations specific for the Riemann wave in Subsec. 2.2. An example
concerns reflected pressure in an ideal gas within the accuracy up to the nonlinear
term proportional to the third power of velocity, and the reflected wave in van
der Waals gases.

1.1. Basic system and nonlinear links for sound

In order to determine the parameters of nonlinearity, it is sufficient to consider
one-dimensional flow along axis OX without account of thermoviscous dissipa-
tion. Nor dissipation neither a non-planarity of a flow input in parameters of
nonlinearity. The parameters B/A, C/A are exclusively functions of the caloric
state. The theoretical description of finite-amplitude sound has its origins in the
continuity, the momentum, and the energy equations:

∂ρ

∂t
+

∂(ρv)
∂x

= 0,

ρ

(
∂v

∂t
+ v

∂ρ

∂x

)
+

∂p

∂x
= 0,

∂e

∂t
+ v

∂e

∂x
+

p

ρ

∂v

∂x
= 0,

(4)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


622 A. Perelomova, P. Wojda

where v denotes particle velocity of a fluid, x, t are spacial co-ordinate and time,
respectively. The system (4) should be completed by the caloric equation of state.
This last one specifies thermodynamic and, consequently, acoustic properties of
an individual fluid. An excess internal energy e′ may be represented as a series
in powers of excess density and pressure ρ′, p′ in the most general form:

ρ0e
′ = E1p

′ +
E2p0

ρ0
ρ′ +
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p0
p′2 +

E4p0

ρ2
0

ρ′2 +
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ρ0
p′ρ′
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p′2ρ′ +
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0
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ρ3
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ρ′3 + . . . , (5)

where E1, ...E9 are correspondent partial derivatives, all evaluated at the unper-
turbed state (p0, ρ0). In the frames of the present study, we maintain terms of
power no higher than the third one in the series (5).

In order to establish links analogous to those in the Riemann wave, the wave-
form has to be simple a priori. This means that any wave perturbation may
be expressed in terms of only one referring quantity; for example, velocity and
acoustic pressure are functions of an excess density (Riemann, 1953; Rudenko,
Soluyan, 1977). Within the accepted accuracy, the relationships take the form
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where c0 =
√

(1−E1)p0

E2ρ0
. The constants M1, . . . M6 are to be determined from

the condition that substituting of p′, v′ in terms of ρ′ in Eqs. (4) produces three
equivalent dynamic equations governing an excess density. Equating of linear,
quadratic and cubic terms of all three equations yields six algebraic equations
determining the unknown quantities M1, . . . M6. After some algebraic manipula-
tions, one gets relations analogous to those in the Riemann wave progressive in
the positive direction of axis OX (M1 > 0):
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Constants D1, . . . D5 are as follows:
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(8)

The method basing on the use of general coefficients in series in perturbation of in-
ternal energy, was firstly used by Perelomova, Leble,Kusmirek–Ochrymiuk
(2001) in regard to nonlinear propagation of sound in semi-ideal gases. The dy-
namic equation describing the progressive in the positive direction of axis OX
sound, follows from Eqs. (4), (7). More precisely, Eqs. (4) transform into three
equivalent equations in view of relations (7), namely
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32
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ρ2
0

ρ′2
∂ρ′
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= 0. (9)

Equations (7), (9) (within accuracy up to the cubic terms) correspond to the
famous Riemann wave existing in an ideal gas, the internal energy of which is
well-known,

e =
p

(γ − 1)ρ
, (10)

where γ = CP /CV is the ratio of specific heats. The exact relations of perturba-
tions in the Riemann wave are also well-known:
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where c0,i =
√

γp0/ρ0 is an infinitely small signal sound speed in an ideal gas,
and index R marks quantities referring to the Riemann wave. Discarding terms
of the order higher than three, one may rearrange Eqs. (11) into the following
equalities:
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It is easy to establish an accordance of Eqs. (7) and (12) in the case of an ideal
gas, evaluating the constants in an ideal gas in appliance with Eqs. (5), (8), (10):

E1 = −E2 = E4 = −E5 = −E7 = E9 =
1

γ − 1
,

E3 = E6 = E8 = D2 = . . . = D5 = 0,

D1 = −γ.

(13)

In view of (13), one can establish also the correspondence of Eq. (9) to the
dynamic equation describing an excess density in the Riemann wave (written
with accuracy of cubic terms)

∂ρ′R
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+ c0,i
∂ρ′R
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+
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2
c0,i

ρ0
ρ′R

∂ρ′R
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8
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ρ2
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ρ
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R

∂ρ′R
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The quantities M1, . . . M6 establish not only the parameters of nonlinearity B/A =
2M5/M4, C/A = 6M6/M4, specified by p′(ρ′)|s,0, but also three coefficients in
series v′(ρ′)|s,0, forming the relations analogous to those in the Riemann wave.
As for the ratios B/A and C/A, they may be expressed in terms of coefficients
in the series of internal energy in the following manner:

B

A
= −(1 + D1 + D2),

C

A
= (2 + 3D1 + 2D2 − 2D3 − 2D4 − 2D5 + D2

1 −D1D2),

(15)
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that yield for an ideal gas the well-known expressions:
B

A
= (γ − 1),

C

A
= (γ − 1)(γ − 2).

(16)

2. Examples of theory application

2.1. The sound speed and parameters of nonlinearity B/A and C/A in the
mixture consisting of water and its vapor in the phase equilibrium

Equations (15) are useful when internal energy of a fluid as a function of
equilibrium pressure and density is established, regardless of the method of its
determination, experimental or analytical. The useful analytical formula which
describes internal energy in the mixture consisting of the boiling water and its
vapor, is based on a variety of experimental data (Kuznetsov, 1981):

e(p, ρ) = 4.1868· 103
(
71326.1p0.245 + 6.82997p7/8/ρ

)
, (17)

where pressure p is measured in Pa, density ρ in kg/m3, and internal energy e in
J/kg. It is emphasized by Kuznetsov (1981), that accuracy of partial derivatives
of internal energy (17) is about 2–5% in the interval 3 Pa ≤ p ≤ 2 · 107 Pa.
The caloric equation of state depends on the mass concentration of vapor in the
mixture α by means of equality:

ρ =
1

1− α

ρ1
+

α

ρ2

, (18)

connecting individual densities of liquid water ρ1 and its vapor, ρ2. The cal-
culations undertaken by the authors uses the series (5), where e(p, ρ) is deter-
mined by Eq. (17). The parameters of nonlinearity are evaluated in accordance to
Eqs. (15). Variations in pressure and temperature of the mixture are connected
by the Clapeyron equation (Landau, Lifshitz, 1987):

dp

dT
=

4H

µT (1/ρ2 − 1/ρ1)
, (19)

where 4H = 40657 J/mol is the enthalpy of vaporization of water. The vapor
density was calculated according to the equation of state for an ideal gas:

ρ2 =
pµ

RT
, (20)

where µ = 18.015 ·10−3 kg/mol is the molar mass of water, R = 8.314 J/(mol·K)
is the universal gas constant. That somewhat reduces the accuracy of evaluations,
because the water vapor is a real gas, but has a small effect on thermodynamic
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a)

b)

c)

Fig. 1. The small-signal sound speed (a) and parameters of nonlinearity B/A (b) and
−C/A (c) in the boiling mixture, consisting of liquid water and its vapor as functions of
mass concentration of the vapor α at different temperatures of the mixture: T0 = 70◦C

(solid line), T0 = 200◦C (dashed line).
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properties of the binary mixture as a whole. The authors have used the van
der Waals equation of state for the water vapor in order to evaluate the sound
velocity in the mixture and its parameters of nonlinearity. The results were very
close to these of an ideal gas. It was proved by Arutunian (1994), that water
vapor in the binary mixture may be considered as an ideal gas if pressure of the
binary mixture is smaller than 1.3 ·107 Pa. Data for the liquid water density were
taken from the tables (Tables for water and its vapor – www pages [Ref. 27]).
Figures 1a,b,c below show c0, B/A and C/A as functions of mass concentration
α at two different temperatures of the mixture in equilibrium state: T0 = 70◦C
(solid line) and T0 = 200◦C (dashed line).

Sound velocity and parameter of nonlinearity B/A of three-component sys-
tems with separate volumes of liquid, its vapor and a neutral gas were considered
by one of the authors in the study (Perelomova, 2005).

2.2. Relations analogous to the Riemann wave in the van der Waals gases.
Reflected wave in the van der Waals gases

Consideration of gases obeying the van der Waals equation of state in the
analytical form:

e =
1

γ − 1
RT

µ
− aρ

µ2
,

p

ρ
=

RT

µ

(
1 +

ρ

µ

(
b− a

RT

))
,

(21)

allows to determine not only the sound speed and ratios B/A and C/A (Denisov,
2002), but also the relations analogous to that in the Riemann wave (a, b are con-
stants accounting for interaction between molecules and their volume, µ denotes
a molar mass of a gas). The van der Waals gases internal energy as a function of
pressure and density and the corresponding coefficients in the series of an excess
internal energy, take the corrected form as follows:

e =
p

ρ(γ − 1)
− aρ(γ − 2)

µ2(γ − 1)
− bp

µ(γ − 1)
,

E1 =
1

γ − 1
− b

µρ0(γ − 1)
,

E2 = − 1
γ − 1

− aρ2
0(γ − 2)

µ2p0(γ − 1)
.

(22)

Equations (22) result not only in the corrected sound velocity and parameters of
nonlinearity, that is the well-known point (Denisov, 2002), but also in the rede-
termined relations specific for the Riemann wave, according to Eqs. (5), (7), (8).
The table below shows additional factors in the series for velocity and excess
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pressure as compared with that of an ideal gas, and the corresponding estimations
for the carbon dioxide CO2 at the room temperature and atmospheric pressure.

The coefficients in the van der Waals equation for CO2 are

a = 0.364 m6 Pa/mol2, b = 0.0000427 m3/mol

(Grigoryev, Meilikhov, 1991). The molar mass and adiabatic factor equal,
respectively, µ = 0.044 kg/mol, γ = 1.3.

Correct determination of the factors in both Eqs. (7) is of importance in con-
text of the reflected wave. This phenomena were observed during periodic in time,
planar wave propagation, due to absorption of a primary wave independently of
the absorption type (due to standard attenuation or nonlinear attenuation at the
front of a shock wave) (Makarov, Ochmann, 1996). Averaging the continuity
equation with respect to time, and taking into account the sound periodicity and
absence of the mean mass flow on the transducer, one obtains a quantity of the
mass flux averaged over acoustic period equal zero (bracketed quantities denote
temporal averaging over the sound period):

〈(ρ0 + ρ′)v′〉 = 0, (23)

so that 〈v′〉 = −〈v′2〉/c0,i, and, therefore, from Eqs. (12) and (23) it follows, that

〈ρ′〉 = −(γ + 1)ρ0〈v′2〉/(4c2
0,i)

and
〈p′〉 = (γ − 3)ρ0〈v′2〉/4

in an ideal gas. On the other hand, the total time-averaged momentum flux should
be a constant through over the whole spatial domain, but is not actually,

Π = 〈p′ + ρ0v
′2〉 =

ρ0(γ + 1)
4

〈v′2〉 6= const. (24)

Hence, relations in the Riemann rightwards progressive wave do not guarantee
zero time-averaged momentum flux, as was proved by Makarov, Ochmann
(1996). This last value is not constant in an absorbing flow, independently of
the mechanism of absorption. It follows from the above reasoning a well-known
conclusion that the attenuated sound field under closed vessel conditions cannot
be simulated by the sound progressive in one direction, because it does not hold
constant time-averaged momentum flow. Since a convective flow (streaming) does
not exist in the one-dimensional geometry, the only possibility to avoid this con-
tradiction is to consider a self-reflected wave traveling to the left and having the
pressure

p′refl = −ρ0(γ + 1)
8

〈v′2〉. (25)

This pressure wave being the second-order quantity, provides a proper con-
stant value of a summary momentum flow (zero if a primary wave propagates
in infinitely long tube and its amplitude tends to zero at x →∞). Actually, the
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self-reflection as an original object of study was first introduced by Rudenko
et al. (1970) and then discussed in some details in the book (Rudenko, Solu-
yan 1977). Later,Makarov (1994) has developed the theory of reflected wave in
the absorbing flow, not necessarily one-dimensional. Makarov (1994) explains
the appearance of the self-reflected wave by changes in the Riemann invariant
caused by absorption. These small perturbations propagate along negative cha-
racteristics.

The reflected wave in the van der Waals gas differs from that in an ideal gas.
Application of the corrected relations compared with that in the Riemann wave
from Table 1, and evaluation of the excess pressure in the reflected wave yield:

p′refl = −
(

ρ0(γ + 1)
8

− ρ2
0(γ − 2)
4p0µ2γ

a− ρ0(γ + 1)
8µ

b

)
〈v′2〉. (26)

Large values of the self-reflected wave pressure are hardly expected to be produced
by a single pulse, but total pressure may be significant as a sum of waves reflected
from many periods of sound (Makarov, Ochmann, 1996; Makarov, 1994).
The experimental studies of the reflected wave were already started (Nakamura,
Nakashima, 1987). The higher-order nonlinear corrections to an excess pressure
of the reflected wave may be derived by involving of the higher-order terms in the
both relations, analogous to that of the Riemann wave (Eq. (7)). The reflected
wave excess pressure corrected by cubic terms takes the form

p′refl =
ρ0(D1 + D2 − 1)

8
〈v′2〉

+
ρ0

48c0
(1−4D1−2D2+4D3+D4+4D5+3D2

1+5D2
2+8D1D2)〈v′3〉. (27)

Equation (27) may be easily rearranged into the reflected wave excess pressure
in a flow over an ideal gas:

p′refl = −ρ0(γ + 1)
8

〈v′2〉+
ρ0(γ + 1)(3γ + 1)

48c0,i
〈v′3〉. (28)

The conclusion about negative excess pressure of the reflected wave remains valid
in the case of a weak nonlinearity, when acoustic Mach number is small:

M =
v′

c0
¿ 1.

3. Conclusions

The sound features, its speed and nonlinear distortion during propagation
in fluids, may be measured experimentally. While the small-signal sound speed
is easy to measure, it is difficult to measure the parameters of nonlinearity. As
a rule, a fairly detailed information about dependence of the sound speed on
pressure and temperature, c(p, T ), is required (see Eq. (3)) for determination
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of the ratios B/A and C/A. The determination of C/A requires especially pre-
cise knowledge of curvature of the surface c(p, T ), what is difficult to obtain
within reasonable accuracy. Along with experimental studies, the conclusions of
chemical physics are very useful. Producing analytical formulae for thermody-
namic functions with a high accuracy, they in fact allow to evaluate the sound
speed and both parameters of nonlinearity in a wide domain of thermodynamic
equilibrium parameters, without complex experiments. On the other hand, the
conclusions of chemical physics are based on experimental thermodynamic data
and the general concept of interactions of molecules. Thermodynamic functions
for some important substances (even empirically determined), in spite of the fact
they have been obtained in non-acoustic purposes, are very useful for evaluation
of sound features.

The analytical formulae for the sound speed and parameters of nonlinearity
derived in this study, are applied in studies of two examples of fluids different
from an ideal gas, namely water being in the phase equilibrium with its vapor,
and the van der Waals gases. Some theoretical predictions concerning parameters
of nonlinearity in the binary mixture may be drawn out: B/A increases, and C/A
decreases with increase of vapor mass concentration α. Both ratios, along with
the sound speed, depend on temperature of the mixture in accordance to Fig. 1.
The analysis of the van der Waals gases results, among other, in the relations
analogous to that in the Riemann wave and to an excess pressure in the reflected
wave.

During the 1990s and 2000s, a wealth of applications of nonlinearity have been
developed, among other nonlinear absorption of the high-intensity wave, non-
linear sound wave interactions, parametric transmitting and receiving, acoustic
heating and streaming (nonlinear generation of the entropy and vorticity modes,
correspondingly) (Rudenko, Soluyan, 1977; Makarov, Ochmann, 1996;
Tjøtta, Tjøtta, 1993; Leighton, 2007; Naugolnykh, 2008). Biomedical
applications are very important, such as medical imaging, high-intensity focused
ultrasound and pulse propagation, also over an inhomogeneous fluid and tis-
sue (Carstensen, Bacon, 1998; Leighton, 2007; Naugolnykh, 2008; Duck
et al., 1998; Kennedy, Cranston, 2003). The most quickly developing and
promising area of scientific interest is medical application of ultrasound (including
therapeutic) (Carstensen, Bacon, 1998; Leighton, 2007; Duck et al., 1998;
Kennedy, Cranston, 2003). Thermodynamics of biological tissues, first of all,
caloric equation of state, differs essentially from an ideal gas. Fortunately, the en-
couraging achievements of physical chemistry allow determination of analytical
thermodynamic equations of state in many fluids within reasonable accuracy. The
correct description of nonlinear effects both in sound itself and in the secondary
non-acoustic phenomena caused by it, heating, streaming and cavitation, are of
great importance in medicine and technique (Leighton, 2007; Naugolnykh,
2008). Both non-acoustic modes and the reflected wave caused by absorption in
a highly viscous fluid (like human blood) may distort the readings of the instru-
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ments and must be correctly recognized. The conclusions of this study may be
useful in evaluation of nonlinear effects of sound in biological tissues and other
fluids with caloric equation of state different from that in ideal gases.
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