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Abstract: The enormous use of cutting fluid in machining leads to an increase in machining costs, 
along with different health hazards. Cutting fluid can be used efficiently using the MQL (minimum 
quantity lubrication) method, which aids in improving the machining performance. This paper con-
tains multiple responses, namely, force, surface roughness, and temperature, so there arises a need 
for a multicriteria optimization technique. Therefore, in this paper, multiobjective optimization 
based on ratio analysis (MOORA), VIseKriterijumska Optimizacija I Kompromisno Resenje (VI-
KOR), and technique for order of preference by similarity to ideal solution (TOPSIS) are used to 
solve different multiobjective problems, and response surface methodology is also used for optimi-
zation and to validate the results obtained by multicriterion decision-making technique (MCDM) 
techniques. The design of the experiment is based on the Box–Behnken technique, which used four 
input parameters: feed rate, depth of cut, cutting speed, and nanofluid concentration, respectively. 
The experiments were performed on AISI 304 steel in turning with minimum quantity lubrication 
(MQL) and found that the use of hybrid nanofluid (Alumina–Graphene) reduces response param-
eters by approximately 13% in forces, 31% in surface roughness, and 14% in temperature, as com-
pared to Alumina nanofluid. The response parameters are analyzed using analysis of variance 
(ANOVA), where the depth of cut and feed rate showed a major impact on response parameters. 
After using all three MCDM techniques, it was found that, at fixed weight factor with each MCDM 
technique, a similar process parameter was achieved (velocity of 90 m/min, feed of 0.08 mm/min, 
depth of cut of 0.6 mm, and nanoparticle concentration of 1.5%, respectively) for optimum response. 
The above stated multicriterion techniques employed in this work aid decision makers in selecting 
optimum parameters depending upon the desired targets. Thus, this work is a novel approach to 
studying the effectiveness of hybrid nanofluids in the machining of AISI 304 steel using MCDM 
techniques. 
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1. Introduction 
Machining is a material removal process, in which undesired material is removed 

from the workpiece to give it a final shape. Different machining operations, such as turn-
ing, milling, grinding, and drilling, etc., are used in the manufacturing industry for metal 
cutting processes. The machining process aims to provide dimensional accuracy to the 
workpiece. Turning is one of the most widely used metal removal processes, used gener-
ally for cylindrical parts. To attain enhanced productivity, the wear of the tool and the 
obtained surface roughness of the workpiece must be minimal. At the interface of the cut-
ting tool and workpiece, a large amount of heat is generated because of friction. This heat 
results in temperature generation, affecting tool life and the surface quality of the work-
piece. Among the different varieties of steel alloys, the turning of AISI 304 steel is widely 
used in industries because of its diverse applications. There are a few challenges in the 
machining of AISI 304 steel alloy, as it possesses lower thermal conductivity along with 
the tendency of work hardening [1]. Thus, while machining AISI 304 steel, issues of rapid 
tool wear and increased cutting force are encountered, along with an increased cutting 
temperature [2]. For overcoming this temperature, cutting fluid is applied at the machin-
ing zone. The traditional approach to the application of cutting fluid is effective, but when 
used to an excess degree, it can cause a detrimental effect on human health as well as the 
environment.  

To limit the use of traditional cutting fluid, the novel hybrid technique of minimum 
quantity lubrication (MQL) can be employed in the vicinity of the machining zone [3]. In 
this technique, the cutting fluid is engaged in the form of a spray, by applying pressurized 
air [4]. Hegab and Kishawy [5] used alumina and multiwalled carbon nanotube to inves-
tigate their effect on the energy consumption and the surface finish generated in the MQL 
assisted turning of Inconel 718. The carbon nanotube gave a better result than alumina 
and it was revealed that the weight % of the nanoparticle had a significant effect on the 
response parameters. The enhanced tribological and heat transfer properties of the nano-
particles added in the cutting fluid led to the improvement in surface characteristics by 
improving the interface bond between the Inconel surface and the cutting tool used. Sen 
et al. [6] performed a milling operation using a hybrid mixture of palm and castor oil with 
a mist lubrication technique. The reduction in surface roughness, by 16.14%, and 7.97% 
reduction in specific cutting energy, is reported. Duc et al. [7] performed hard turning on 
90CrSi steel with minimum quantity lubrication. Alumina and molybdenum disulphide 
nanofluids are utilized for cutting fluid. A reduction in cutting force with an increase in 
thrust force is reported using MoS2 nanofluid. The use of both the nanoparticles in the 
MQL technique led to the improved performance of the carbide insert, due to the rise in 
the property of the base fluid in terms of thermal conductivity and lubrication. Bai et al. 
[8] studied the effect of different fluids using the minimum quantity lubrication technique 
on the response parameters. As per the authors, MQL or near dry machining is a suitable 
alternative for flood cooling in reducing environmental hazards, as well as production 
costs. The use of nanofluids as a coolant is seen as an emerging concept for machining 
purposes, as they possess enhanced heat transfer capabilities [9]. Do and Hsu [10] per-
formed machining on AISI H13 and analysed the surface roughness using MQL. Higher 
cutting speed and low depth of cut resulted in improved surface finish using MQL. Dubey 
et al. [11] reviewed different methods of temperature measurement while machining. Pre-
diction of temperature using thermocouples was found to be suitable. In another work, 
Dubey et al. [12] studied the effect of different cooling mechanisms on turning. Among 
various techniques, MQL was reported to be the most efficient lubrication method. Gupta 
et al. [13] optimized machining parameters in the turning of titanium alloy under the mist 
lubrication technique. The result revealed lower cutting force, using graphite nanofluids 
as it formed lower droplets because of a lower viscosity than the other two nanofluids, 
and resulted in deeper penetration at the machining zone. In the case of tool wear, graph-
ite nanofluids also outperformed, as they possess better thermal conductivity than the 
other two and aided in dissipating heat and retaining the cutting tool hardness. Saini et 
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al. [14] experimented on AISI-4340 steel under MQL conditions using different carbide 
inserts. The application of MQL resulted in a decrease in temperature of the chip–tool 
interface, thus maintaining the sharpness of the cutting edges of the tool. Singh et al. [15] 
investigated surface finish, cutting force, and tool wear on the turning of titanium alloy. 
The results revealed an enhancement in surface finish, by 15%, and a reduction in cutting 
force by using the near dry machining technique. Qu et al. [16] studied the machining of 
a ceramic matrix composite, with dry, flood, and minimum quantity lubrication. The im-
proved surface finish obtained using nanofluids assisted MQL, along with less consump-
tion of the cutting fluid in comparison to other lubrication techniques. 

With the advancement in studies of nanofluids as lubricants in machining operation, 
researchers are now focussing on using hybrid nanofluids for enhanced heat transfer char-
acteristics [17]. Babar and Ali [18] reviewed the synthesis and thermophysical properties 
of hybrid nanofluids. It was suggested that hybrid nanofluids possess superior thermal 
characteristics over mono nanofluids because mono nanofluid forms clusters, thus in-
creasing the diameter of the particles and, thus, leading to an increase in pumping power 
and viscosity. The thermophysical characteristic of nanofluids (viscosity, specific heat, vis-
cosity, and density) is improved by enhancing the nanoparticle concentration. Kumar et 
al. [19] studied the tribological behaviour of nanofluid on different categories of steel. It 
was revealed that the introduction of nanofluid aided in minimizing wear. Jamil et al. [20] 
used combinations of alumina and carbon nanotube particles for the hybrid nanofluids 
machining of titanium alloy with MQL. The obtained result was compared with cryogenic 
cooling and an improvement in tool life by 23% was observed. A reduction of 11.8% was 
suggested by the authors in cutting temperature using cryogenic cooling, in comparison 
to MQL. Zhang et al. [21] compared the effect of hybrid nanofluid with single nanofluid 
on response parameters while machining on nickel alloy. The application of alumina and 
silicon carbide hybrid nanofluids resulted in a reduction of cutting forces and surface 
roughness, respectively, as both the nanofluids gave a synergistic effect and improved the 
grinding performance. Gugulothu and Pasam [22] investigated the performance of carbon 
nanotube and molybdenum disulphide nanoparticle enriched cutting fluid for turning 
1040 steel. An increase in thermal conductivity is noticed by increasing the particle size, 
while a decrease in viscosity is encountered when rising in temperature. A reduction in 
surface roughness, by 28.53% and 18.3%, is reported when compared with dry machining 
and traditional cutting fluid. Kumar et al. [23] performed machining on silicon nitride and 
compared the result with mono and hybrid nanofluids. The cutting force and surface 
roughness were reduced by 27% and 41%. Abbas et al. [24] optimized the turning param-
eters using Edgeworth–Pareto method for achieving minimum turning time. The obtained 
surface finish reported is 0.8µm. In another study, Abbas et al. [25] performed a sustaina-
bility assessment related to power consumption and surface characteristics in the machin-
ing of AISI 1045 steel. The use of alumina nanoparticles in mist lubrication significantly 
improved the surface characteristic and minimized the power consumption. The effect on 
response parameters can be attributed to the alumina nanofluid’s spraying ability, en-
hanced sliding behaviour, less friction, and seizure characteristic at the tool–workpiece 
contact. Alajmi and Almeshal [26] used artificial intelligence to optimize surface rough-
ness in the turning of AISI 304 steel. It was revealed that ANFIS-QPSO resulted in a more 
accurate prediction of surface roughness. Su et al. [27] a used multiobjective criterion for 
optimising machining parameters of AISI 304 steel. The reduction in surface roughness 
and specific energy consumption was reported to be 66.90% and 81.46%. Khan et al. [28] 
performed a grinding operation on D2 steel using an alumina wheel, and compared dry 
machining with MQL grinding. The effectiveness of heat dissipation and the penetration 
property of the cutting fluid using MQL gave better results. Li et al. [29] investigated tool 
wear and surface topography in the turning of austenitic steel. Response surface method-
ology was used as the optimization technique. The effective cutting parameters obtained 
were 120 mm/min cutting speed and 0.18 feed rate along with 0.42 mm depth of cut.  
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From the literature, it is evident that the machining of AISI 304 steel has been at-
tempted by different researchers using nanofluids in improving the machining perfor-
mances in terms of reduced cutting force, tooltip temperature, and surface roughness. The 
optimization of the process parameters is performed using Taguchi, grey relational anal-
ysis, genetic algorithm, and response surface methodology, but very little work is re-
ported on an analysis of optimal parameters using multicriterion decision making 
(MCDM) techniques using minimum quantity lubrication. In the present work, alumina 
and graphene nanoparticles are hybridized in different volumetric concentrations. The 
performance of the hybrid nanofluids is analyzed in terms of cutting forces, surface rough-
ness, and nodal temperature for the MQL turning of AISI 304 steel. The study aims to 
analyze the synergistic effect of the hybrid nanofluids on the response parameters for the 
MQL turning of steel, and suggest the optimum parameter and cutting fluid that can be 
used by researchers and industries while machining steel. The results obtained are further 
compared with that of alumina particle nanofluid. Furthermore, the selection of the opti-
mized machining level parameter and their respective ranking is ascertained using three 
MCDM techniques, namely, MOORA (Multiobjective Optimization Method by Ratio 
Analysis), VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje), and TOPSIS 
(technique for order performance by similarity to ideal solution). 

2. Materials and Methods 
The experiment was performed using a conventional lathe Duo machine (Duo Ma-

chine Corps, Rajkot, India). Turning was carried on an AISI 304 steel workpiece of 60 mm 
diameter, whose chemical composition is mentioned in Table 1. WIDIA’s tungsten carbide 
inserts (CNMG 120408) of grade TN 2000 and corner radius of 0.8 were used as a cutting 
tool material which is clamped mechanically on WIDIA’s tool holder. The experimental 
response, such as cutting force, was measured by using a piezoelectric Kistler dynamom-
eter (9257B). It consists of a charge amplifier of Type 5697A1, comprising hardware for the 
data acquisition and the DynoWare software (3.1.2.0) for operating and storing the value 
of average cutting force. Turning operation was performed for 250 mm length of cylindri-
cal workpiece and the average value of cutting force was recorded. Mitutoyo surface 
roughness tester (SJ210) was used for average surface roughness measurement (Ra). It con-
sists of a probe comprising of the diamond tip of a 2 µm radius that traverses on the work-
piece. The cut off length is 0.08 mm and measuring speed is 0.25 mm/sec, and the retrac-
tion speed of the probe is 1mm/sec. The temperature measurement was performed using 
a K-type thermocouple, whose one end is clamped in a carbide insert, while the other end 
is attached to National Instrument’s data acquisition system, which recorded the cutting 
temperature. The cutting fluid used for machining is biodegradable oil based, which is 
enriched with water based alumina nanofluid and alumina–graphene hybrid nanofluid. 
The selection of nanofluids is carried out to analyze the synergistic effect of alumina (high 
conductivity) and graphene (high thermal conductivity along with lubricity) on turning 
in MQL environment. The combined properties of both nanoparticles are essential for any 
cutting fluid used in machining. The samples of mono and hybrid nanofluids were pre-
pared in a volumetric ratio of 90:10 in three varying volumetric concentrations of 0.5%, 
1%, and 1.5%, respectively. For the discharge of the cutting fluid, a minimum quantity 
lubrication setup was used. The experiments were repeated thrice and the average value 
was taken of the responses for better accuracy. The experimental setup is shown in Figure 
1. 

Table 1. Chemical constituents of AISI 304 steel. 

Elements S P C Mo Cu Si Mn Ni Cr Fe 
Weight % 0.02 0.027 0.065 0.13 0.14 0.3 1.78 8.1 18.2 71.2 
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Figure 1. Experimental setup for MQL turning of AISI304 steel. 

Design of experiment is made by using MINITAB-19 and for statistical analysis re-
sponse surface methodology’s Box–Behnken design was used, with four factors at three 
different levels where the factors are, namely, depth of cut, feed rate, cutting velocity, and 
nanofluid concentration, which is shown in Table 2. Due to 4 factors with 3 levels, the 
design contains 27 possible combinations to perform experiments. Table 3 contains all 27 
combinations which give the most effective results of response parameters. 

Table 2. Input parameters used in the current study. 

Levels/Factors −1 0 1 
Depth of cut (mm) 0.6 0.9 1.2 
Feed rate (mm/rev) 0.08 0.12 0.16 

Cutting speed (m/min) 60 90 120 
Nanofluid concentration (wt.%) 0.5 1.0 1.5 

Table 3. Design of Experiment. 

S.No. 
Cutting Speed 

(m/min) 
Feed Rate 
(mm/rev) 

Depth of Cut 
(mm) 

Nanoparticle Concentration 
(%) 

1 90 0.16 1.2 1.0 
2 60 0.12 1.2 1.0 
3 120 0.12 0.9 1.5 
4 60 0.12 0.6 1.0 
5 90 0.12 0.9 1.0 
6 60 0.12 0.9 0.5 
7 120 0.12 1.2 1.0 
8 120 0.08 0.9 1.0 
9 90 0.08 1.2 1.0 

10 60 0.08 0.9 1.0 
11 90 0.12 0.9 1.0 
12 120 0.12 0.9 0.5 
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13 90 0.12 1.2 1.5 
14 90 0.12 0.9 1.0 
15 60 0.16 0.9 1.0 
16 120 0.12 0.6 1.0 
17 90 0.12 0.6 0.5 
18 90 0.08 0.6 1.0 
19 90 0.08 0.9 0.5 
20 90 0.08 0.9 1.5 
21 60 0.12 0.9 1.5 
22 90 0.12 1.2 0.5 
23 90 0.12 0.6 1.5 
24 90 0.16 0.6 1.0 
25 90 0.16 0.9 1.5 
26 90 0.16 0.9 0.5 
27 120 0.16 0.9 1.0 

Optimization is very important in a production system because it helps to achieve 
good product quality at minimum cost. In this paper, there are three response parameters, 
and optimizing them individually may take a significant amount of time, effort and in-
crease process complexity. Therefore, this paper deals with four optimization techniques 
to obtain a better result. 

2.1. Response Surface Methodology 
Response surface methodology is a collection of statistical and mathematical tech-

niques which are useful for the modeling and analysis of a problem in which the response 
of interest is influenced by multiple variables and the objective is to optimize the response. 
Response surface methodology is used for surface analysis of response parameters; along 
with that, problems formulation and process optimization can also be performed using 
RSM [30].  

2.2. Multicriterion Decision Making 
Multicriteria decision making is mainly aimed at the optimization of conflicting re-

sponses, but in this paper, it is utilized for optimizing multiple criteria of nonconflicting 
nature. It is very useful when the number of response parameters is large in the count, 
because it calculates the optimized results for two responses and more than two responses 
in the same number of steps. The methodology used in these techniques is shown in Fig-
ure 2. Here, the goal is to mainly check the reliability of three MCDM techniques 
(MOORA, VIKOR, TOSIS) for nonconflicting responses [31,32]. 
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Figure 2. Methodology of different MCDM techniques. 

2.2.1. Multiobjective Optimization Based on Ratio Analysis (MOORA) 
MOORA is a simpler and popular MCDM technique; it is used to simultaneously 

optimize two or more than two conflicting/nonconflicting response parameters [33,34]. It 
is mainly used for the quantitative attribute. 

2.2.2. VIKOR 
The VIKOR method is a multicriteria decision making (MCDM) or multicriteria de-

cision analysis method. It was originally developed by Serafim Opricovic (1979-80) to 
solve decision problems with conflicting and noncommensurable (different units) criteria. 
It is used to simultaneously optimize two or more two responses. The decision maker 
desires to have a solution that is nearest to the ideal, whereas the alternatives are evalu-
ated as per the established criteria. VIKOR ranks alternatives and determines the solution, 
named compromise, that is the closest to the ideal [35]. 

2.2.3. TOPSIS 
TOPSIS is an MCDM technique. It is also used to calculate the optimized value when 

responses are large in number. It is a technique for order of preference by similarity to the 
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ideal solution. It was developed by Ching-Lai Hwang and Yoon in 1981 and, further, it 
was developed by Yoon in 1981 and Harang in 1993 [36]. 

3. Results 
In this paper, there are three major responses, namely, force, surface roughness, and 

temperature. All the three selected response parameters come under the nonbeneficial 
category; therefore, all of them should be at their minimum. To minimize them, proper 
lubrication and cooling are required at the machining interface. Therefore, in the present 
paper, mono and hybrid nanofluids with an MQL setup is used for cooling and lubrication 
purpose. As per the experimental results, it is found that the response parameters give 
more promising results, as they aided in reducing cutting forces, tool temperature, and 
surface roughness with hybrid nanofluids, as compared to single nanofluids alone, as 
shown in Table 4.  

Table 4. Response parameter in turning of AISI 304 steel. 

 Alumina  Alumina-Graphene 

S. No. Cutting Force 
(N) 

Surface Roughness 
(µm) 

Temperature 
(°C) 

Cutting Force 
(N) 

Surface Roughness 
(µm) 

Temperature 
(°C) 

1 511.45 2.630 238.71 466.98 1.833 206.29 
2 461.07 2.295 195.55 416.00 1.600 185.73 
3 304.05 1.426 198.82 275.56 0.880 184.54 
4 247.84 2.155 149.86 218.88 1.505 129.47 
5 374.39 2.051 197.34 341.84 1.431 170.50 
6 427.32 2.360 216.51 428.18 1.643 187.08 
7 464.47 1.767 242.05 420.21 1.230 209.14 
8 250.76 1.627 190.16 245.69 1.131 173.67 
9 363.34 1.717 193.60 322.86 1.192 167.29 

10 270.59 1.893 155.18 251.78 1.318 134.08 
11 360.64 2.016 192.67 329.28 1.410 166.50 
12 409.76 1.924 196.38 381.82 1.337 169.74 
13 447.63 1.830 211.64 408.71 1.280 182.91 
14 396.09 1.983 204.69 327.19 1.380 176.86 
15 437.96 2.946 215.54 352.90 2.061 168.37 
16 174.44 1.914 128.10 159.85 1.330 110.73 
17 220.72 2.050 143.72 185.99 1.431 124.19 
18 142.74 1.655 83.77 117.91 1.151 72.427 
19 299.39 2.214 170.13 247.32 1.542 147.00 
20 260.64 1.569 158.50 215.31 1.089 98.395 
21 325.64 2.052 137.56 302.96 1.435 128.11 
22 469.72 2.047 224.67 388.04 1.426 194.18 
23 207.00 1.973 141.20 171.01 1.371 122.04 
24 246.15 2.762 154.44 203.34 1.924 133.45 
25 425.76 2.531 214.13 351.72 1.763 185.07 
26 436.18 2.665 213.52 360.34 1.864 184.50 
27 444.45 2.548 227.53 310.18 1.682 229.77 

3.1. Response Surface Methodology  
RSM is used as a multipurpose technique: it can help to create mathematical model 

to predict the response and it can also help to analyze the surface response through the 
response surface curve for better understanding the effect of a process parameter on a 
response parameter; it also helps in the analysis of variance of process parameters and it 
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can also calculate the optimized parameter. In this paper, a second degree model is used 
for performing data analysis and to determine the significance of the model’s parameters, 
calculation of mean response, and to arrive at optimum operating conditions on the con-
trol variables that helps to achieve a maximum or a minimum response over a certain 
region of interest. Therefore, after getting response parameters (Table 4), the quadratic 
model has been developed for the analysis of variance to check the stability and signifi-
cance of the response, as well as process parameters [37]. The mathematical model for 
response parameters is discussed in the equations given below: 

For alumina 

Cutting Force = −370 − 1.86vc + 3378 fo + 874 ap − 49 np% − 0.0055 vc * vc – 
13159 fo * fo − 418 ap * ap − 12.0 np%*np% + 5.5 vc * fo + 2.13 vc * ap − 0.067 vc 
*np%+ 931 fo * ap + 354 fo *np% − 13.9ap*np%. 

(1)

Surface Roughness = 2.34 + 0.0069 vc − 23.52 fo + 1.68 ap − 0.306 np% − 
0.000001 vc * vc + 143.7 fo * fo − 0.169 ap * ap − 0.138 np%*np% − 0.0275 vc * fo − 
0.00796 vc * ap − 0.00317 vc *np%− 4.02 fo * ap + 6.38 fo *np% − 0.234 ap *np% 

(2)

Temperature = −95 − 2.01 vc + 2248 fo + 433 ap − 108.6 np%− 0.00094 vc * vc − 
3501 fo * fo − 212.1 ap * ap − 16.6 np%*np% − 4.79 vc * fo + 1.896 vc * ap + 1.357 
vc *np% − 532 fo * ap + 153 fo *np% − 17.5 ap *np% 

(3)

For alumina–graphene 

Cutting Force = −350 − 2.27 vc + 5998 fo + 646 ap − 146 np%+ 0.0044 vc * vc − 
22338 fo * fo − 351 ap * ap − 7.6 np%*np% − 7.6 vc * fo + 1.76 vc * ap + 0.32 vc 
*np% + 1223 fo * ap + 292 fo *np%+ 59 ap *np% 

(4)

Surface Roughness = 1.20 + 0.01201 vc − 14.02 fo + 0.988 ap − 0.023 np%− 
0.000020 vc * vc + 97.6 fo * fo − 0.038 ap * ap − 0.120 np%*np% − 0.0399 vc * fo − 
0.00541 vc * ap − 0.00415 vc *np% − 2.75 fo * ap + 4.39 fo *np%− 0.143 ap *np% 

(5)

Temperature = 47 − 3.66 vc + 1187 Feed + 399 ap − 134.9 np%+ 0.00684 vc * vc 
− 4758 Feed*Feed − 171.3 ap * ap − 26.7 np%*np% + 4.54 vc *Feed + 1.171 vc * 
ap + 1.230 vc *np%− 459 Feed* ap + 615 Feed*np% − 15.2 ap *np% 

(6)

The above mentioned regression model helps to predict the response parameters, i.e., 
cutting force, temperature, roughness. Now, the analysis of variance is required to analyze 
the significance and influence of the process parameters and their factors on response pa-
rameters. ANOVA was carried out at a 95% confidence level, which means the p-value of 
the factors must be less than 0.05 to satisfy the condition of a significant factor criteria. The 
coefficient of determinant, i.e., R2 and adjusted R2, is also one of the parameters to show 
the significance of experimental results. A regression model helps to calculate the coeffi-
cient of the determinant, and it should be more the 80% because, for the experimental 
results, 80% is an acceptable limit [38]. The ANOVA analysis, describing the p-value and 
percentage contribution of the response parameters in alumina and alumina–graphene 
enriched cutting fluid, is given in Tables 5 and 6. 

Table 5. ANOVA analysis of MQL machining with alumina nanofluid. 

 Cutting Force (N) Surface Roughness (µm) Temperature (°C) 

Source p-Value % 
Contribution 

p-Value % 
Contribution 

p-Value % 
Contribution 

Model 0.000  0.000  0.000  
Linear 0.000  0.000  0.000  

Vc 0.175 0.44779 0.000 13.28918 0.016 2.772098 
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fo 0.000 24.96624 0.000 62.3849 0.000 21.2578 
ap 0.000 65.28413 0.574 0.104758 0.000 55.53153 

np% 0.005 2.551326 0.000 7.532599 0.025 2.312737 
Square 0.031  0.002  0.029  
Vc * Vc  0.651 0.04657 0.981 0.000256 0.869 0.009924 
fo * fo  0.071 0.84686 0.000 7.223191 0.288 0.436902 
ap * ap  0.004 2.709664 0.755 0.03176 0.003 5.074911 

np% * np% 0.782 0.017195 0.484 0.163413 0.426 0.240518 
2-Way Interaction 0.687  0.245  0.021  

Vc* fo 0.602 0.061974 0.562 0.111161 0.343 0.344978 
Vc * ap 0.144 0.528392 0.219 0.526352 0.013 3.042387 

Vc * np% 0.936 0.001433 0.406 0.231544 0.004 4.32489 
fo * ap 0.381 0.179116 0.400 0.238459 0.294 0.426456 

fo * np% 0.575 0.072005 0.039 1.668447 0.608 0.097931 
ap * np% 0.868 0.006448 0.537 0.126273 0.660 0.072077 

Error   2.592522   3.752084   4.243412 
Lack-of-Fit 0.370 2.363612 0.076 3.693686 0.206 4.051467 
Pure Error   0.22891   0.058398   0.191683 

Total   100   100   100 

In Table A1, the analysis of the variance for force has been carried out to analyze the 
significance of the process parameters and their impact on the response parameter i.e., 
force. Table A1 signifies that depth of cut has a major impression on cutting force, approx-
imately 65.2841%, which is the highest among all of the process parameters and their fac-
tors. As discussed above, parameters having a p-value <0.05 are significant; therefore, ve-
locity, feed, depth of cut, np% and velocity*velocity, velocity* depth of cut, feed*np% are 
the significant parameters for cutting force. The coefficient of determinant is also used to 
show the significance and accuracy of experimental results: if R2 and adjusted R2 is greater 
than 90% the output is acceptable. In the case of cutting force, R2 is 96.25% and adjusted 
R2 is 91.87%. In Table A2, the analysis of the variance for roughness has been carried out, 
to analyze the significance of the process parameters and their impact on response param-
eter i.e., surface roughness. Table 5 signifies that the feed rate makes a major impression 
on surface roughness, approximately 62.38%, which is the highest among all of the process 
parameters and their factors. The coefficient of determinant is also used to show the sig-
nificance and accuracy of experimental results: if R2 and adjusted R2 is greater than 90% 
the output is acceptable. In the case of surface roughness, R2 is 95.76% and adjusted R2 is 
90.81%. In Table A3, ANOVA signifies that depth of cut makes a major impression on tool 
temperature, approximately 55.53%, which is the highest among all of the process param-
eters and their factors. The coefficient of determinant also use to show the significance and 
accuracy of experimental results, so, in the case of tool temperature, R2 is 95.52% and ad-
justed R2 is 90.29%. 

Table 6. ANOVA analysis of MQL machining with alumina–graphene hybrid nanofluid. 

 Cutting Force (N) Surface Roughness (µm) Temperature (°C) 

Source p-Value % 
Contribution p-Value % 

Contribution p-Value % 
Contribution 

Model 0.000  0.000  0.000  
Linear 0.000  0.000  0.000  

Vc 0.122 1.163 0.000 16.293 0.016 2.772098 
fo 0.000 15.362 0.000 57.547 0.000 21.2578 
ap 0.000 68.977 0.621 0.094 0.000 55.53153 

np% 0.028 2.624 0.000 8.498 0.025 2.312737 
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Square 0.046  0.005  0.029  
Vc * Vc  0.771 0.037 0.628 0.0906 0.869 0.009924 
fo * fo  0.020 3.0230 0.001 6.5418 0.288 0.436902 
ap * ap  0.035 2.357 0.927 0.0030 0.003 5.074911 

np%*np% 0.888 0.0084 0.434 0.240 0.426 0.240518 
2-Way Interaction 0.809  0.222 3.585 0.021  

Vc* fo 0.562 0.149 0.283 0.462 0.343 0.344978 
Vc * ap 0.324 0.443 0.276 0.478 0.013 3.042387 

Vc *np% 0.763 0.039 0.170 0.781 0.004 4.32489 
fo * ap 0.359 0.382 0.454 0.219 0.294 0.426456 

fo *np% 0.710 0.060 0.062 1.552 0.608 0.097931 
ap *np% 0.573 0.141 0.625 0.092 0.660 0.072077 

Error   5.035   4.397   4.243412 
Lack-of-Fit 0.054 4.979 0.072 4.332 0.206 4.051467 
Pure Error   0.055   0.064   0.191683 

Total   100   100   100 

In Table A4, an analysis of the variance for cutting force has been carried out to ana-
lyze the significance of the process parameter and their impact on cutting force. Table A4 
signifies that depth of cut makes a major impression on cutting force, it contributes ap-
proximately 68.977% which is the highest among all the process parameters and their fac-
tors. The coefficient of determinant is also used to show the significance and accuracy of 
experimental results: if R2 and adjusted R2 is greater than 90% the output is acceptable. In 
the case of surface roughness, R2 is 94.96% and adjusted R2 is 89.09%. In the case of Table 
A5, the feed rate shows the major impact on surface roughness. It contributes approxi-
mately 57.547%, which is the highest among all the process parameters and their factors; 
while the coefficient of the determinant of experimental calculated R2 as 95.60% and ad-
justed R2 as 90.47%. In Table A6, ANOVA signifies that the depth of cut makes a major 
impression on tool temperature, approximately 48.52%, which is the highest among all of 
the process parameters and their factors. The coefficient of determinant is also used to 
show the significance and accuracy of experimental results, so, in the case of tool temper-
ature, R2 is 93.53%and adjusted R2 is 85.99%%. 

As ANOVA signifies the impact of process parameters on response parameters, sim-
ilarly, the response surface curve shows the variation in response parameters by varying 
input. Figure 3 represents the response surface curve at variable feed, depth of cut, and 
nanofluid concentration for Al2O3 nanoparticles. Figure 3a,b shows variation in forces, 
with 0.08 feed rate, 1.5% nanofluid concentration and 0.6 depth of cut force as minimum. 
The reduction in cutting force can be attributed to the rolling effect produced by the spher-
ical size of alumina, which possesses high strength, hardness and delivers enough abra-
sive resistance in the process of friction and aids in minimizing the frictional coefficient in 
the zone of contact [39]. Figure 3c,d explains variation in surface roughness, at maximum 
nanofluid concentration and minimum feed rate, depth of cut surface roughness is mini-
mum as alumina resulted in minimizing the adhesion between the tool insert and work-
piece and forming a tribo film, thus resulting in improved surface quality [40]. Similarly, 
Figure 3e,f, shows the responses plot for temperature, and, in both cases, at maximum 
nanofluid concentration and minimum feed rate responses are minimum. 
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Figure 3. Response surface plot for alumina nanofluid for cutting force. (a) np% Vs fo; (b) np% Vs ap; for surface roughness 
(c) np% Vs fo; (d) np% Vs ap and for cutting temperature (e) np% Vs fo; (f) np% Vs ap. 

As discussed in the case of alumina nanofluid, similar results are shown in the case 
of hybrid nanofluid (alumina–graphene). Figure 4 shows the variation in responses (force, 
surface roughness, and temperature) by varying input parameters. Figure 4a,b shows the 
response surface curve for cutting force, at the minimum value of feed rate, depth of cut, 
and maximum nanofluid concentration. The reduction in cutting force is more in the case 
of alumina–graphene hybrid nanofluids machining as compared to alumina nanofluids 
due to the exfoliation of the sheet like structure of graphene because of the shearing action 
produced by the chip on the tool rake face. In Figure 4c–f, surface roughness and temper-
ature, at a 0.08 feed rate, 1.5% nanofluid concentration, and 0.6 depth of cut force is mini-
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mum. After analyzing both the figures, force, surface roughness, and temperature in-
crease, while the increase in depth of cut and feed at minimum nanofluid concentration 
and decreases with a decrease in depth of cut and feed at maximum concentration [37]. 

 

 

 

 

 

 

Figure 4. Response surface plot for alumina-graphene nanofluids for cutting force. (a) np% Vs fo; (b) np% Vs ap; for surface 
roughness (c) np% Vs fo; (d) np% Vs ap and for cutting temperature (e) np% Vs fo; (f) np% Vs ap. 

3.2. MOORA Analysis for Mono and Hybrid Nanofluid 
MOORA is used for selecting the best optimum parameters. Tables A7 and A8 con-

tain the decision matrix, normalized decision matrix, and assessed value for alumina and 
alumina–graphene based nanofluid results. The decision matrix contains all the response 
parameters, such as force, surface roughness, and temperature. Normalization of the ma-
trix is performed to convert them into dimensionless quantities. After normalization of 
the decision matrix, it will be further multiplied with the weight factor and convert the 
matrix into the weighted normalized matrix; after that, assessment values (Bi) for the con-
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sidered alternatives were determined and ranking them in descending order, the maxi-
mum value is ranked as the best (rank 1) and the minimum is ranked as the worst (rank27) 
[41,42]. The combined analysis of different MCDM techniques and the respective ranks 
obtained from the decision-making criteria used in mono and hybrid nanofluid cutting 
fluid based machining is mentioned in Tables 7 and 8. 

Table 7. Analysis of MCDM techniques in alumina enriched nanofluid. 

Response Parameters Ranks by Different MCDM Techniques 
Cutting Force 

(N) 
Surface Roughness 

(µm) 
Temperature 

(°C) 
MOORA VIKOR TOPSIS 

511.45 2.630 238.71 27 27 27 
461.07 2.295 195.55 19 21 21 
304.05 1.426 198.82 9 10 10 
247.84 2.155 149.86 8 9 7 
374.39 2.051 197.34 15 14 15 
427.32 2.360 216.51 21 19 22 
464.47 1.767 242.05 20 22 19 
250.76 1.627 190.16 7 8 8 
363.34 1.717 193.60 13 12 13 
270.59 1.893 155.18 6 5 6 
360.64 2.016 192.67 14 13 14 
409.76 1.924 196.38 16 16 16 
447.63 1.830 211.64 18 18 18 
396.09 1.983 204.69 17 15 17 
437.96 2.946 215.54 26 26 26 
174.44 1.914 128.10 2 2 2 
220.72 2.050 143.72 5 6 4 
142.74 1.655 83.77 1 1 1 
299.39 2.214 170.13 11 11 12 
260.64 1.569 158.50 4 3 5 
325.64 2.052 137.56 10 7 9 
469.72 2.047 224.67 22 25 20 
207.00 1.973 141.20 3 4 3 
246.15 2.762 154.44 12 17 11 
425.76 2.531 214.13 23 20 23 
436.18 2.665 213.52 24 24 24 
444.45 2.548 227.53 25 23 25 

Table 8. Analysis of MCDM techniques in alumina–graphene nanofluid. 

Response Parameters with (Alumina-Graphene) Rank by Different MCDM Techniques 
Cutting Force 

(N) 
Surface Roughness 

(µm) 
Temperature 

(°C) MOORA VIKOR TOPSIS 

466.98 1.833 206.29 27 27 27 
416.01 1.601 185.73 24 23 25 
275.56 0.881 184.54 8 12 9 
218.88 1.505 129.47 6 7 6 
341.84 1.431 170.50 16 15 16 
428.18 1.643 187.08 26 24 26 
420.21 1.231 209.14 21 22 19 
245.70 1.131 173.67 9 9 8 
322.86 1.193 167.29 13 11 13 
251.78 1.318 134.08 7 5 7 
329.28 1.410 166.50 14 13 14 
381.82 1.338 169.74 17 17 17 
408.71 1.281 182.91 18 20 18 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2021, 14, 7207 15 of 26 
 

 

327.19 1.381 176.86 15 14 15 
352.90 2.061 168.37 25 26 23 
159.85 1.330 110.73 3 3 3 
185.99 1.431 124.19 5 6 5 
117.91 1.151 72.42 1 1 1 
247.32 1.542 147.00 11 10 10 
215.31 1.090 98.39 2 2 2 
302.96 1.436 128.11 10 8 12 
388.04 1.426 194.19 19 19 20 
171.01 1.371 122.04 4 4 4 
203.34 1.924 133.45 12 16 11 
351.72 1.763 185.07 20 18 22 
360.34 1.864 184.50 23 21 24 
310.18 1.683 229.77 22 25 21 

3.3. VIKOR Analysis for Mono and Hybrid Nanofluid 
VIKOR is a multicriteria optimization technique used for selecting the best optimum 

parameters in a conflicting and nonconflicting response. Tables A9 and A10 contain the 
decision matrix, normalized decision matrix, and VIKOR index for alumina and alumina–
graphene based nanofluid results. The decision matrix contains all the response parame-
ters, such as force, surface roughness, and temperature. Normalization of the matrix is 
performed to convert them into dimensionless quantities. After normalization of the de-
cision matrix, it will be further multiplied with the weight factor and convert the matrix 
into the weighted normalized matrix, at the end, the VIKOR index was determined and 
they were ranked in ascending order: the minimum VIKOR index value is ranked as the 
best (rank 1) and the maximum VIKOR index is ranked as the worst (rank27) [43–45]. 

3.4. TOPSIS Analysis for Mono and Hybrid Nanofluid 
TOPSIS analysis is used to predict ideal solutions in multiresponse parameters. Ta-

bles A11 and A12 contain the decision matrix, normalized decision matrix, and relative 
ideal solution for alumina and alumina–graphene based nanofluid results. Decision ma-
trices contain response parameters such as force, roughness, and temperature. After form-
ing a decision matrix, normalization of the matrix is required to convert them into dimen-
sionless quantities. Afterward, the weighted normalized matrix has been formed by mul-
tiplying the weight factor with the normalized matrix. Next, the positive ideal solution 
(S+) and negative ideal solutions (s-) were calculated. Ranking of the ideal solution has 
been assigned by arranging them in descending order [46–49]. 

The optimum results obtained from all four techniques are summarized in Table 9. 
In all four techniques, RSM gives the minimum optimized results, whereas the rest of the 
three techniques give similar optimum results. RSM gives the optimum output value for 
the new input parameters, which are different from the input parameters mentioned in 
the design of the experiment; whereas the MCDM techniques give ideal results from the 
27 experimentals used in this paper[50,51].  

Table 9. The optimum results through RSM, MOORA, VIKOR, and TOPSIS. 

Parameters/Technique Cutting Speed 
(mm/min) 

Feed Rate 
(mm/rev) 

Depth of Cut 
(mm) Np% CuttingForce 

(N) 
Surface Roughness 

(µm) 
Temperature 

(°C) 

RSM 
Alumina 86.667 0.08 0.6 1.5 101.756 

1.48475 
0.91186 

83.77 
78.766 

Alumina-Graphene 110.909 0.08 0.6484 1.5 92.657   

MOORA 
Alumina 90 0.08 0.6 1.0 142.7404 1.655947 83.77385 

Alumina-Graphene 90 0.08 0.6 1.0 117.917 1.151 72.428 

VIKOR Alumina 90 0.08 0.6 1.0 142.7404 1.655947 83.77385 
Alumina-Graphene 90 0.08 0.6 1.0 117.917 1.151 72.428 
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TOPSIS 
Alumina 90 0.08 0.6 1.0 142.7404 1.655947 83.77385 

Alumina-Graphene 90 0.08 0.6 1.0 117.917 1.151 72.428 

4. Conclusions 
The methodology used in this paper, of using multicriterion decision-making tech-

niques in selecting the optimum parameters while performing turning operations with 
mono and hybrid nanofluids enriched with cutting fluid, is novel in this field. As nanoflu-
ids are very costly, their use in an efficient manner needs to be studied. The present study 
can help researchers and industries in choosing the optimum parameters while machining 
AISI 304 steel, which has wide applications. As per the experimental results, hybrid 
nanofluids seem to be more effective than a single nanofluid. This paper deals with three 
response parameters—force, surface roughness, and temperature—all of which are non-
beneficial; therefore, they should have the minimum value. After comparing the results, 
the following conclusions are made and summarized below: 
• The use of hybrid nanofluid (alumina–graphene) resulted in an average reduction of 

response parameters by approximately 13% in cutting forces, 31% in surface rough-
ness, and 14% in temperature, when compared to alumina nanofluid. 

• It can be seen that the use of nanoparticle concentration in a lesser amount resulted 
in better surface characteristics and resulted in the lowering of cutting forces. 

• Analysis of variance revealed the influence of input parameters on the response pa-
rameters. In both the cases, i.e., single and hybrid nanofluid, depth of cut showed a 
major impact while calculating force and temperature. The contribution of the depth 
of cut is approximately 65.81% and 57.63% in the case of single nanofluid while in 
the case of hybrid the % contributions are 68.38% and 51.14%, respectively. However, 
in the case of surface roughness, the most influenced parameter is the feed rate: its 
contributions in the cases of single and hybrid nanofluid are 63.18% and 58.47%, re-
spectively. 

• Response surface methodology is used for optimizing the response. As per RSM, the 
best process parameters for optimum response in the case of Al2O3 are 86.667 m/min 
velocity, 0.08 mm/min feed rate, 0.6 mm depth of cut, and at 1.5% of nanoparticle 
concentration. In the case of alumina–graphene, the suitable parameters for optimum 
results are 110.909 m/min velocity, 0.08 mm/min feed rate, 0.6484 mm depth of cut, 
and a nanoparticle concentration of 1.5%, respectively. 

• The multicriteria decision-making techniques are used, such as MOORA, VIKOR, 
and TOPSIS for nonconflicting, nonbeneficial responses at 0.5 weight factor. Accord-
ing to the MCDM techniques, the best input parameter for optimum response is at 90 
m/min velocity, 0.6 mm depth of cut, 0.08 mm/min feed rate, and 1% nanoparticle 
concentration. 

• All three MCDM techniques showed similar responses, at a constant or fixed weight 
factor of 0.5.  
The present paper discusses machining performance using hybrid nanofluids. Here, 

graphene was used for developing hybrid nanofluids. Though it gave desirable results 
when compared to alumina, it is costly, so there is a need to find a cheaper alternative for 
graphene for hybridization, so that machining cost can be minimized. Moreover, in this 
research, both the nanoparticles (alumina–graphene) were mixed in a fixed mixing ratio 
of 90:10. There is a need to use different mixing ratios and further optimize the mixing 
ratio so that the optimum value can be obtained. In the future, further research can be 
performed on the optimization of MQL parameters. Furthermore, work on the hybridiza-
tion of MCDM techniques can also be done. The thermal modeling of the cutting tool in 
multiphase using hybrid nanofluids is yet to be explored. 
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Nomenclature 
Fc Cutting force 
Vc Cutting speed 
ap Depth of cut 
np% Nanofluid concentration  
fo Feed rate 
Bi Assignment value 
Ri Relation closeness 
Qi VIKOR index 
u Utility 
r Regret 
s+ Separation from best solution 
s- Separation from worst solution 
MQL Minimum quality lubrication 
MOORA Multiobjective optimization on the basis of ratio analysis 
VIKOR VIšekriterijumsko KOmpromisno Rangiranje 
TOPSIS Technique for order of preferences by similarity to the ideal solution 
MCDM Multicriteria decision making 
RSM Response surface methodology 

Appendix A 

Table A1. Analysis of variance for cutting force using alumina. 

Source DF Adj SS Adj MS F-Value p-Value % 
Contribution 

 
Remark 

Model 14 271912 19422 32.21 0.000   
Linear 4 260306 65076 107.91 0.000   

Vc 1 1250 1250 2.07 0.175 0.44779  

fo 1 69693 69693 115.56 0.000 24.96624 significant 
ap 1 182240 182240 302.19 0.000 65.28413 significant 

np% 1 7122 7122 11.81 0.005 2.551326 significant 
Square 4 9236 2309 3.83 0.031   
Vc * Vc  1 130 130 0.22 0.651 0.04657  
fo * fo  1 2364 2364 3.92 0.071 0.84686 significant 
ap * ap  1 7564 7564 12.54 0.004 2.709664 significant 

np%*np% 1 48 48 0.08 0.782 0.017195  
2-Way Interaction 6 2370 395 0.65 0.687   

Vc* fo 1 173 173 0.29 0.602 0.061974  
Vc * ap 1 1475 1475 2.45 0.144 0.528392  

Vc *np% 1 4 4 0.01 0.936 0.001433  
fo * ap 1 500 500 0.83 0.381 0.179116  
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fo *np% 1 201 201 0.33 0.575 0.072005  
ap *np% 1 18 18 0.03 0.868 0.006448  

Error 12 7237 603     2.592522  
Lack-of-Fit 10 6598 660 2.07 0.370 2.363612  
Pure Error 2 639 319     0.22891  

Total 26 279149       100  

Table A2. Analysis of variance of surface roughness using alumina. 

Source DF Adj SS Adj MS F-Value p-Value 
% 

Contribution 
 

Remark 
Model 14 3.75774 0.26841 21.99 0.000   
Linear 4 3.25267 0.81317 66.61 0.000   

Vc 1 0.51884 0.51884 42.50 0.000 13.28918 significant 
fo 1 2.43565 2.43565 199.52 0.000 62.3849 significant 
ap 1 0.00409 0.00409 0.33 0.574 0.104758  

np% 1 0.29409 0.29409 24.09 0.000 7.532599 significant 
Square 4 0.39176 0.09794 8.02 0.002   
Vc * Vc  1 0.00001 0.00001 0.00 0.981 0.000256  
fo * fo  1 0.28201 0.28201 23.10 0.000 7.223191 significant 
ap * ap  1 0.00124 0.00124 0.10 0.755 0.03176  

np%*np% 1 0.00638 0.00638 0.52 0.484 0.163413  
2-Way Interaction 6 0.11331 0.01889 1.55 0.245   

Vc* fo 1 0.00434 0.00434 0.36 0.562 0.111161  
Vc * ap 1 0.02055 0.02055 1.68 0.219 0.526352  

Vc *np% 1 0.00904 0.00904 0.74 0.406 0.231544  
fo * ap 1 0.00931 0.00931 0.76 0.400 0.238459  

fo *np% 1 0.06514 0.06514 5.34 0.039 1.668447  
ap *np% 1 0.00493 0.00493 0.40 0.537 0.126273  

Error 12 0.14649 0.01221     3.752084  
Lack-of-Fit 10 0.14421 0.01442 12.63 0.076 3.693686  
Pure Error 2 0.00228 0.00114     0.058398  

Total 26 3.90423       100  

Table A3. Analysis of variance of temperature using alumina. 

Source DF Adj SS Adj MS F-Value p-Value % 
Contribution 

 
Remark 

Model 14 36667.4 2619.1 19.34 0.000   
Linear 4 31351.5 7837.9 57.88 0.000   

Vc 1 1061.5 1061.5 7.84 0.016 2.772098 significant 
fo 1 8140.1 8140.1 60.12 0.000 21.2578 significant 
ap 1 21264.3 21264.3 157.04 0.000 55.53153 significant 

np% 1 885.6 885.6 6.54 0.025 2.312737 significant 
Square 4 2134.3 533.6 3.94 0.029   
Vc * Vc  1 3.8 3.8 0.03 0.869 0.009924  
fo * fo  1 167.3 167.3 1.24 0.288 0.436902  
ap * ap  1 1943.3 1943.3 14.35 0.003 5.074911 significant 

np%*np% 1 92.1 92.1 0.68 0.426 0.240518  
2-Way Interaction 6 3181.6 530.3 3.92 0.021   
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Vc* fo 1 132.1 132.1 0.98 0.343 0.344978  
Vc * ap 1 1165.0 1165.0 8.60 0.013 3.042387 significant 

Vc *np% 1 1656.1 1656.1 12.23 0.004 4.32489 significant 
fo * ap 1 163.3 163.3 1.21 0.294 0.426456  

fo *np% 1 37.5 37.5 0.28 0.608 0.097931  
ap *np% 1 27.6 27.6 0.20 0.660 0.072077  

Error 12 1624.9 135.4     4.243412  
Lack-of-Fit 10 1551.4 155.1 4.23 0.206 4.051467  
Pure Error 2 73.4 36.7     0.191683  

Total 26 38292.3       100  

Table A4. Analysis of variance for force using alumina–graphene. 

Source DF Adj SS Adj MS F-Value p-Value % 
Contribution 

 
Remark 

Model 14 214022 15287 16.17 0.000   
Linear 4 198614 49654 52.51 0.000   

Vc 1 2623 2623 2.77 0.122 1.163  
fo 1 34622 34622 36.61 0.000 15.362 significant 
ap 1 155455 155455 164.39 0.000 68.977 significant 

np% 1 5915 5915 6.25 0.028 2.624 significant 
Square 4 12667 3167 3.35 0.046   
Vc * Vc  1 84 84 0.09 0.771 0.037  
fo * fo  1 6813 6813 7.20 0.020 3.0230 significant 
ap * ap  1 5312 5312 5.62 0.035 2.357 significant 

np%*np% 1 19 19 0.02 0.888 0.0084  
2-Way Interaction 6 2741 457 0.48 0.809   

Vc* fo 1 336 336 0.35 0.562 0.149  
Vc * ap 1 999 999 1.06 0.324 0.443  

Vc *np% 1 90 90 0.10 0.763 0.039  
fo * ap 1 861 861 0.91 0.359 0.382  

fo *np% 1 137 137 0.14 0.710 0.060  
ap *np% 1 318 318 0.34 0.573 0.141  

Error 12 11348 946     5.035  
Lack-of-Fit 10 11222 1122 17.88 0.054 4.979  
Pure Error 2 126 63     0.055  

Total 26 225370       100  

Table A5. Analysis of variance of surface roughness using alumina–graphene. 

Source DF Adj SS Adj MS F-Value p-Value 
% 

Contribution 
 

Remark 
Model 14 1.89893 0.13564 18.63 0.000   
Linear 4 1.63737 0.40934 56.24 0.000   

Vc 1 0.32364 0.32364 44.46 0.000 16.293 significant 
fo 1 1.14306 1.14306 157.04 0.000 57.547 significant 
ap 1 0.00188 0.00188 0.26 0.621 0.094  

np% 1 0.16880 0.16880 23.19 0.000 8.498 significant 
Square 4 0.19034 0.04758 6.54 0.005   
Vc * Vc  1 0.00180 0.00180 0.25 0.628 0.0906  
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fo * fo  1 0.12994 0.12994 17.85 0.001 6.5418 significant 
ap * ap  1 0.00006 0.00006 0.01 0.927 0.0030  

np%*np% 1 0.00477 0.00477 0.66 0.434 0.240  
2-Way Interaction 6 0.07122 0.01187 1.63 0.222 3.585  

Vc* fo 1 0.00918 0.00918 1.26 0.283 0.462  
Vc * ap 1 0.00950 0.00950 1.30 0.276 0.478  

Vc *np% 1 0.01552 0.01552 2.13 0.170 0.781  
fo * ap 1 0.00436 0.00436 0.60 0.454 0.219  

fo *np% 1 0.03084 0.03084 4.24 0.062 1.552  
ap *np% 1 0.00183 0.00183 0.25 0.625 0.092  

Error 12 0.08734 0.00728     4.397  
Lack-of-Fit 10 0.08606 0.00861 13.34 0.072 4.332  
Pure Error 2 0.00129 0.00064     0.064  

Total 26 1.98628       100  

Table A6. Analysis of variance of temperature using alumina–graphene. 

Source DF Adj SS Adj MS F-Value p-Value 
% 

Contribution 
 

Remark 
Model 14 32997.8 2357.0 12.40 0.000   
Linear 4 28041.7 7010.4 36.88 0.000   

Vc 1 1746.0 1746.0 9.18 0.010 4.949 significant 
fo 1 8247.7 8247.7 43.39 0.000 23.378 significant 
ap 1 17118.4 17118.4 90.05 0.000 48.522 significant 

np% 1 929.6 929.6 4.89 0.047 2.6349 significant 
Square 4 2285.2 571.3 3.01 0.062   
Vc * Vc  1 201.8 201.8 1.06 0.323 0.572  
fo * fo  1 309.2 309.2 1.63 0.226 0.876  
ap * ap  1 1267.8 1267.8 6.67 0.024 3.593 significant 

np%*np% 1 238.0 238.0 1.25 0.285 0.674  
2-Way Interaction 6 2671.0 445.2 2.34 0.099   

Vc* fo 1 118.9 118.9 0.63 0.444 0.337  
Vc * ap 1 444.5 444.5 2.34 0.152 1.259  

Vc *np% 1 1360.8 1360.8 7.16 0.020 3.857 significant 
fo * ap 1 121.3 121.3 0.64 0.440 0.343  

fo *np% 1 604.7 604.7 3.18 0.100 1.7140  
ap *np% 1 20.8 20.8 0.11 0.747 0.0589  

Error 12 2281.2 190.1     6.4661  
Lack-of-Fit 10 2226.7 222.7 8.16 0.114 6.3116  
Pure Error 2 54.6 27.3     0.1547  

Total 26 35279.0       100  

Table A7. MOORA analysis for alumina. 

Decision Matrix Normalizing matrix   

CuttingForce 
(N) 

Surface Rough 
Ness 
(µm) 

Temperature 
(°C)    B Rank 

511.4568 2.63064 238.717 0.2719 0.2376 0.2433 −0.3764 27 
461.075 2.29599 195.552 0.2451 0.2074 0.1993 −0.3259 19 
304.0594 1.426832 198.8272 0.1617 0.1289 0.2026 −0.2466 9 
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247.841 2.15581 149.8645 0.1318 0.1947 0.1527 −0.2396 8 
374.3974 2.051186 197.3411 0.1990 0.1852 0.2011 −0.2927 15 
427.3259 2.360216 216.5133 0.2272 0.2132 0.2207 −0.3305 21 
464.4795 1.767456 242.0562 0.2469 0.1596 0.2467 −0.3266 20 
250.7642 1.627584 190.1616 0.1333 0.1470 0.1938 −0.2371 7 
363.342 1.717272 193.6079 0.1932 0.1551 0.1973 −0.2728 13 
270.5931 1.893312 155.181 0.1439 0.1710 0.1582 −0.2365 6 
360.6416 2.016965 192.6746 0.1917 0.1822 0.1964 −0.2851 14 
409.7601 1.924486 196.3889 0.2178 0.1738 0.2002 −0.2959 16 
447.6368 1.830473 211.6454 0.2380 0.1653 0.2157 −0.3095 18 
396.0915 1.983618 204.6936 0.2106 0.1791 0.2086 −0.2992 17 
437.9675 2.946243 215.5425 0.2328 0.2661 0.2197 −0.3593 26 
174.4423 1.914002 128.1041 0.0927 0.1729 0.1306 −0.1981 2 
220.7251 2.050069 143.7265 0.1173 0.1851 0.1465 −0.2245 5 
142.7404 1.655947 83.77385 0.0759 0.1495 0.0854 −0.1554 1 
299.3917 2.214356 170.1335 0.1592 0.2000 0.1734 −0.2663 11 
260.6497 1.569603 158.5022 0.1386 0.1418 0.1615 −0.2209 4 
325.648 2.052732 137.5602 0.1731 0.1854 0.1402 −0.2494 10 
469.7263 2.047881 224.6752 0.2497 0.1849 0.2290 −0.3318 22 
207.0041 1.973061 141.2001 0.1101 0.1782 0.1439 −0.2161 3 
246.1514 2.76224 154.44 0.1309 0.2495 0.1574 −0.2689 12 
425.7669 2.531105 214.1387 0.2264 0.2286 0.2182 −0.3366 23 
436.1839 2.665395 213.5229 0.2319 0.2407 0.2176 −0.3451 24 
444.4571 2.54873 227.5397 0.2363 0.2302 0.2319 −0.3492 25 

Table A8. MOORA analysis for alumina–graphene. 

Decision Matrix Normalizing matrix   

CuttingForce 
(N) 

Surface Rough 
Ness 
(µm) 

Temperature 
(°C)    B Rank 

466.982 1.833 206.295 0.2833 0.2386 0.2409 −0.3814 27 
416.010 1.601 185.731 0.2524 0.2083 0.2168 −0.3388 24 
275.566 0.881 184.549 0.1672 0.1146 0.2155 −0.2486 8 
218.882 1.505 129.479 0.1328 0.1959 0.1512 −0.2399 6 
341.841 1.431 170.509 0.2074 0.1862 0.1991 −0.2964 16 
428.187 1.643 187.083 0.2598 0.2139 0.2184 −0.3460 26 
420.214 1.231 209.147 0.2549 0.1602 0.2442 −0.3296 21 
245.700 1.131 173.671 0.1491 0.1472 0.2028 −0.2495 9 
322.866 1.193 167.294 0.1959 0.1552 0.1953 −0.2732 13 
251.789 1.318 134.084 0.1528 0.1716 0.1565 −0.2404 7 
329.283 1.410 166.504 0.1998 0.1835 0.1944 −0.2889 14 
381.823 1.338 169.741 0.2316 0.1741 0.1982 −0.3020 17 
408.718 1.281 182.915 0.2480 0.1667 0.2136 −0.3141 18 
327.195 1.381 176.862 0.1985 0.1797 0.2065 −0.2923 15 
352.906 2.061 168.371 0.2141 0.2683 0.1966 −0.3395 25 
159.859 1.330 110.731 0.0970 0.1731 0.1293 −0.1997 3 
185.999 1.431 124.199 0.1128 0.1863 0.1450 −0.2221 5 
117.917 1.151 72.428 0.0715 0.1498 0.0846 −0.1530 1 
247.324 1.542 147.002 0.1500 0.2007 0.1716 −0.2612 11 
215.319 1.090 98.396 0.1306 0.1418 0.1149 −0.1937 2 
302.967 1.436 128.114 0.1838 0.1868 0.1496 −0.2601 10 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2021, 14, 7207 22 of 26 
 

 

388.041 1.426 194.190 0.2354 0.1856 0.2267 −0.3239 19 
171.010 1.371 122.044 0.1037 0.1785 0.1425 −0.2124 4 
203.345 1.924 133.458 0.1234 0.2504 0.1558 −0.2648 12 
351.721 1.763 185.077 0.2134 0.2294 0.2161 −0.3295 20 
360.343 1.864 184.502 0.2186 0.2426 0.2154 −0.3383 23 
310.181 1.683 229.770 0.1882 0.2190 0.2683 −0.3377 22 

Table A9. VIKOR analysis for alumina. 

Decision Matrix Normalizing matrix   

CuttingForce 
(N) 

Surface Rough 
Ness 
(µm) 

Temperature 
(°C) 

   u r Q Rank 

511.4568 2.63064 238.717 0.2719 0.2376 0.2433 −0.5797 −0.1932 1.0000 27 
461.075 2.29599 195.552 0.2451 0.2074 0.1993 −0.5798 −0.1932 0.7763 21 
304.0594 1.426832 198.8272 0.1617 0.1289 0.2026 −0.5800 −0.1933 0.4232 10 
247.841 2.15581 149.8645 0.1318 0.1947 0.1527 −0.5800 −0.1933 0.3750 9 
374.3974 2.051186 197.3411 0.1990 0.1852 0.2011 −0.5799 −0.1933 0.5214 14 
427.3259 2.360216 216.5133 0.2272 0.2132 0.2207 −0.5798 −0.1933 0.7134 19 
464.4795 1.767456 242.0562 0.2469 0.1596 0.2467 −0.5798 −0.1932 0.7853 22 
250.7642 1.627584 190.1616 0.1333 0.1470 0.1938 −0.5800 −0.1933 0.3656 8 
363.342 1.717272 193.6079 0.1932 0.1551 0.1973 −0.5800 −0.1933 0.4608 12 
270.5931 1.893312 155.181 0.1439 0.1710 0.1582 −0.5801 −0.1933 0.2711 5 
360.6416 2.016965 192.6746 0.1917 0.1822 0.1964 −0.5799 −0.1933 0.4848 13 
409.7601 1.924486 196.3889 0.2178 0.1738 0.2002 −0.5799 −0.1933 0.5970 16 
447.6368 1.830473 211.6454 0.2380 0.1653 0.2157 −0.5799 −0.1932 0.7100 18 
396.0915 1.983618 204.6936 0.2106 0.1791 0.2086 −0.5799 −0.1933 0.5747 15 
437.9675 2.946243 215.5425 0.2328 0.2661 0.2197 −0.5797 −0.1932 0.9375 26 
174.4423 1.914002 128.1041 0.0927 0.1729 0.1306 −0.5802 −0.1933 0.1918 2 
220.7251 2.050069 143.7265 0.1173 0.1851 0.1465 −0.5801 −0.1933 0.3017 6 
142.7404 1.655947 83.77385 0.0759 0.1495 0.0854 −0.5803 −0.1934 0.0000 1 
299.3917 2.214356 170.1335 0.1592 0.2000 0.1734 −0.5800 −0.1933 0.4569 11 
260.6497 1.569603 158.5022 0.1386 0.1418 0.1615 −0.5801 −0.1933 0.1972 3 
325.648 2.052732 137.5602 0.1731 0.1854 0.1402 −0.5800 −0.1933 0.3590 7 
469.7263 2.047881 224.6752 0.2497 0.1849 0.2290 −0.5798 −0.1932 0.8085 25 
207.0041 1.973061 141.2001 0.1101 0.1782 0.1439 −0.5801 −0.1933 0.2543 4 
246.1514 2.76224 154.44 0.1309 0.2495 0.1574 −0.5800 −0.1932 0.6650 17 
425.7669 2.531105 214.1387 0.2264 0.2286 0.2182 −0.5798 −0.1933 0.7329 20 
436.1839 2.665395 213.5229 0.2319 0.2407 0.2176 −0.5798 −0.1932 0.8017 24 
444.4571 2.54873 227.5397 0.2363 0.2302 0.2319 −0.5797 −0.1932 0.7929 23 

Table A10. VIKOR analysis for alumina–graphene. 

Decision Matrix Normalizing Matrix     

CuttingForce 
(N) 

Surface Rough 
Ness 
(µm) 

Temperature 
(°C) 

   u r Q Rank 

466.982 1.833 206.295 0.2833 0.2386 0.2409 −0.5797 −0.1932 1.0000 27 
416.010 1.601 185.731 0.2524 0.2083 0.2168 −0.5798 −0.1932 0.7975 23 
275.566 0.881 184.549 0.1672 0.1146 0.2155 −0.5800 −0.1933 0.4698 12 
218.882 1.505 129.479 0.1328 0.1959 0.1512 −0.5800 −0.1933 0.3816 7 
341.841 1.431 170.509 0.2074 0.1862 0.1991 −0.5799 −0.1933 0.5456 15 
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428.187 1.643 187.083 0.2598 0.2139 0.2184 −0.5798 −0.1932 0.8395 24 
420.214 1.231 209.147 0.2549 0.1602 0.2442 −0.5798 −0.1932 0.7865 22 
245.700 1.131 173.671 0.1491 0.1472 0.2028 −0.5800 −0.1933 0.4268 9 
322.866 1.193 167.294 0.1959 0.1552 0.1953 −0.5800 −0.1933 0.4543 11 
251.789 1.318 134.084 0.1528 0.1716 0.1565 −0.5800 −0.1933 0.2966 5 
329.283 1.410 166.504 0.1998 0.1835 0.1944 −0.5799 −0.1933 0.5023 13 
381.823 1.338 169.741 0.2316 0.1741 0.1982 −0.5799 −0.1932 0.6436 17 
408.718 1.281 182.915 0.2480 0.1667 0.2136 −0.5798 −0.1932 0.7278 20 
327.195 1.381 176.862 0.1985 0.1797 0.2065 −0.5799 −0.1933 0.5337 14 
352.906 2.061 168.371 0.2141 0.2683 0.1966 −0.5798 −0.1932 0.8551 26 
159.859 1.330 110.731 0.0970 0.1731 0.1293 −0.5802 −0.1933 0.2131 3 
185.999 1.431 124.199 0.1128 0.1863 0.1450 −0.5801 −0.1933 0.3083 6 
117.917 1.151 72.428 0.0715 0.1498 0.0846 −0.5803 −0.1934 0.0000 1 
247.324 1.542 147.002 0.1500 0.2007 0.1716 −0.5800 −0.1933 0.4450 10 
215.319 1.090 98.396 0.1306 0.1418 0.1149 −0.5802 −0.1934 0.0891 2 
302.967 1.436 128.114 0.1838 0.1868 0.1496 −0.5800 −0.1933 0.3937 8 
388.041 1.426 194.190 0.2354 0.1856 0.2267 −0.5798 −0.1932 0.7049 19 
171.010 1.371 122.044 0.1037 0.1785 0.1425 −0.5801 −0.1933 0.2597 4 
203.345 1.924 133.458 0.1234 0.2504 0.1558 −0.5800 −0.1932 0.6285 16 
351.721 1.763 185.077 0.2134 0.2294 0.2161 −0.5798 −0.1933 0.6960 18 
360.343 1.864 184.502 0.2186 0.2426 0.2154 −0.5798 −0.1932 0.7620 21 
310.181 1.683 229.770 0.1882 0.2190 0.2683 −0.5798 −0.1932 0.8513 25 

Table A11. TOPSIS analysis for alumina. 

Decision Matrix Normalizing Matrix   

Cutting Force 
(N) 

Surface Rough 
Ness 
(µm) 

Temperature 
(°C) 

   S+ S− Ri Rank 

511.4568 2.63064 238.717 0.2719 0.2376 0.2433 0.1371 0.0144 0.095 27 
461.075 2.29599 195.552 0.2451 0.2074 0.1993 0.1093 0.0400 0.268 21 
304.0594 1.426832 198.8272 0.1617 0.1289 0.2026 0.0726 0.0907 0.555 10 
247.841 2.15581 149.8645 0.1318 0.1947 0.1527 0.0548 0.0916 0.626 7 
374.3974 2.051186 197.3411 0.1990 0.1852 0.2011 0.0891 0.0590 0.398 15 
427.3259 2.360216 216.5133 0.2272 0.2132 0.2207 0.1099 0.0370 0.252 22 
464.4795 1.767456 242.0562 0.2469 0.1596 0.2467 0.1186 0.0547 0.316 19 
250.7642 1.627584 190.1616 0.1333 0.1470 0.1938 0.0620 0.0951 0.605 8 
363.342 1.717272 193.6079 0.1932 0.1551 0.1973 0.0821 0.0724 0.468 13 
270.5931 1.893312 155.181 0.1439 0.1710 0.1582 0.0541 0.0912 0.628 6 
360.6416 2.016965 192.6746 0.1917 0.1822 0.1964 0.0845 0.0633 0.428 14 
409.7601 1.924486 196.3889 0.2178 0.1738 0.2002 0.0940 0.0583 0.383 16 
447.6368 1.830473 211.6454 0.2380 0.1653 0.2157 0.1056 0.0554 0.344 18 
396.0915 1.983618 204.6936 0.2106 0.1791 0.2086 0.0947 0.0565 0.374 17 
437.9675 2.946243 215.5425 0.2328 0.2661 0.2197 0.1240 0.0238 0.161 26 
174.4423 1.914002 128.1041 0.0927 0.1729 0.1306 0.0326 0.1165 0.781 2 
220.7251 2.050069 143.7265 0.1173 0.1851 0.1465 0.0464 0.1006 0.684 4 
142.7404 1.655947 83.77385 0.0759 0.1495 0.0854 0.0103 0.1397 0.931 1 
299.3917 2.214356 170.1335 0.1592 0.2000 0.1734 0.0703 0.0749 0.516 12 
260.6497 1.569603 158.5022 0.1386 0.1418 0.1615 0.0497 0.1006 0.669 5 
325.648 2.052732 137.5602 0.1731 0.1854 0.1402 0.0626 0.0831 0.570 9 
469.7263 2.047881 224.6752 0.2497 0.1849 0.2290 0.1162 0.0430 0.270 20 
207.0041 1.973061 141.2001 0.1101 0.1782 0.1439 0.0419 0.1055 0.716 3 
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246.1514 2.76224 154.44 0.1309 0.2495 0.1574 0.0754 0.0839 0.527 11 
425.7669 2.531105 214.1387 0.2264 0.2286 0.2182 0.1121 0.0328 0.226 23 
436.1839 2.665395 213.5229 0.2319 0.2407 0.2176 0.1165 0.0278 0.193 24 
444.4571 2.54873 227.5397 0.2363 0.2302 0.2319 0.1199 0.0263 0.180 25 

Table A12. TOPSIS analysis for alumina–graphene. 

Decision Matrix Normalizing matrix   
Cutting 

Force 
(N) 

Surface Rough 
Ness 
(µm) 

Temperature 
(°C)    S+ S− Ri Rank 

466.982 1.833 206.295 0.2833 0.2386 0.2409 0.1455 0.0202 0.122 27 
416.010 1.601 185.731 0.2524 0.2083 0.2168 0.1214 0.0424 0.259 25 
275.566 0.881 184.549 0.1672 0.1146 0.2155 0.0811 0.0998 0.552 9 
218.882 1.505 129.479 0.1328 0.1959 0.1512 0.0608 0.1020 0.626 6 
341.841 1.431 170.509 0.2074 0.1862 0.1991 0.0958 0.0657 0.407 16 
428.187 1.643 187.083 0.2598 0.2139 0.2184 0.1257 0.0387 0.235 26 
420.214 1.231 209.147 0.2549 0.1602 0.2442 0.1237 0.0572 0.316 19 
245.700 1.131 173.671 0.1491 0.1472 0.2028 0.0725 0.0961 0.570 8 
322.866 1.193 167.294 0.1959 0.1552 0.1953 0.0857 0.0802 0.484 13 
251.789 1.318 134.084 0.1528 0.1716 0.1565 0.0613 0.0986 0.617 7 
329.283 1.410 166.504 0.1998 0.1835 0.1944 0.0912 0.0700 0.434 14 
381.823 1.338 169.741 0.2316 0.1741 0.1982 0.1026 0.0641 0.385 17 
408.718 1.281 182.915 0.2480 0.1667 0.2136 0.1123 0.0603 0.349 18 
327.195 1.381 176.862 0.1985 0.1797 0.2065 0.0938 0.0687 0.423 15 
352.906 2.061 168.371 0.2141 0.2683 0.1966 0.1188 0.0498 0.295 23 
159.859 1.330 110.731 0.0970 0.1731 0.1293 0.0390 0.1256 0.763 3 
185.999 1.431 124.199 0.1128 0.1863 0.1450 0.0512 0.1129 0.688 5 
117.917 1.151 72.428 0.0715 0.1498 0.0846 0.0176 0.1522 0.896 1 
247.324 1.542 147.002 0.1500 0.2007 0.1716 0.0727 0.0890 0.550 10 
215.319 1.090 98.396 0.1306 0.1418 0.1149 0.0359 0.1253 0.777 2 
302.967 1.436 128.114 0.1838 0.1868 0.1496 0.0742 0.0875 0.541 12 
388.041 1.426 194.190 0.2354 0.1856 0.2267 0.1141 0.0521 0.313 20 
171.010 1.371 122.044 0.1037 0.1785 0.1425 0.0460 0.1184 0.720 4 
203.345 1.924 133.458 0.1234 0.2504 0.1558 0.0809 0.0982 0.548 11 
351.721 1.763 185.077 0.2134 0.2294 0.2161 0.1125 0.0477 0.298 22 
360.343 1.864 184.502 0.2186 0.2426 0.2154 0.1174 0.0437 0.271 24 
310.181 1.683 229.770 0.1882 0.2190 0.2683 0.1207 0.0536 0.307 21 
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