Study of free convective heat transfer from horizontal conic

W.M. Lewandowski *, S. Leble
Department of Apparatus and Chemical Machinery, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland
Received 16 January 2003; received in revised form 2 April 2003

Abstract

Theoretical and experimental considerations of free convective heat transfer from horizontal isothermal conic in unlimited space are presented. In the theoretical part of the paper we introduced the curvilinear coordinate system compatible with conical surface and gravity field. The equations of Navier-Stokes and Fourier-Kirchhoff were simplified in this local orthogonal system. The resulting equation have been solved by asymptotic series in the vicinity of horizontal element of the cone. The final Nusselt-Rayleigh relation as a function of the conic base angle was verified experimentally. The experimental study was performed in water and air for conics with the angles equal to $\alpha=0$ (vertical round plate), $30^{\circ}, 45^{\circ}$ and 60° and diameter of the base $D=0.1 \mathrm{~m}$. The experimental results are in a good accordance (maximum within $+8.7 \%$) with the theory. © 2003 Published by Elsevier Ltd.

1. Introduction

The results of theoretical and experimental study of free convective heat transfer from conical surfaces were published and they are very useful to determine convective heat losses from conical fragments of apparatus in industrial or energetic installations, electronic equipment, architectonic objects and so on by engineers and designers. Unfortunately available dates are not complete. There are some information on vertical faced down or up cones [1-6] but for the horizontal ones we have found the only paper, written by Oosthuizen [7]. In the Churchill's review paper [8] among about 120 results devoted to free convection four positions are concerned conical (only vertical) surfaces. Oosthuizen's paper deal only with the experimental study.

Hence the paper presents theoretical solution of the natural convective heat transfer problem from the isothermal surface of a horizontal conic. We also show the experimental verification of the obtained analytical for-

[^0]mulas. The experiments were performed in water and air 37 for conics with the base angle: $\alpha=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°. 38

The phenomenon of convective fluid flow pattern for 39 the configuration to be considered is complicated, be- 40 cause of the gravity field breaks the axis symmetry in 41 comparison with vertical cones (Fig. 1a). In our first 42 attempts we used of the cylindrical coordinate system 43 successive in the case of horizontal cylinder (Fig. 1b) for 44 the hypoeutectic stream line description (Fig. 1c). 45 However, more profound study and the visualization 46 (Fig. 2a) had been shown a failure of this first attempt. 47

This is the reason why we decided to introduce the 48 special curvilinear coordinate system $\left(\epsilon, \epsilon_{\mathrm{m}}\right)$ based on the 49 stream line curves S_{i}, shown in Fig. 2b and described in 50 details together with continuous maps, transformations 51 and final solution in papers [9,10]. We would like to 52 stress that each curve S_{i} is not plain, by other words it is 53 not conic. The variety of the curves cover the conic 54 surface and parameterized by $\epsilon_{\mathrm{m}}=\max (\epsilon)$.
2. The coordinate system and physical model 56

The isothermal lateral conic surface in Cartesian coordinates is described by the equation57

Nomenclature

$x^{2}+y^{2}-z^{2} \cot ^{2}(\alpha)=0, \quad 0 \leqslant z \leqslant H$
60 or by ρ, ε, z, where $x=\rho \sin (\epsilon), y=\rho \cos (\epsilon)$ (Fig. 3). The 61 base angle α is a parameter of the conical surface which 62 varied from $\alpha=\pi / 2$-horizontal cylinder to $\alpha=0$ 63 round vertical plate.
64 At arbitrary point M_{i} of the lateral conical surface Σ 5 one may distinguish two tangent vectors $\bar{\tau}_{\rho}$ and $\bar{\tau}_{\epsilon}$ and 6 normal $\bar{\sigma}$ to the surface.
$\bar{\tau}_{\rho}=\frac{\partial \bar{r}}{\partial \rho}, \bar{\tau}_{\epsilon}=\frac{\partial \bar{r}}{\partial \epsilon} \quad$ where $\bar{r}=(x, y, z) \in \Sigma$,
$\bar{\sigma}=\bar{\imath} \sin \alpha \sin \epsilon+\bar{j} \sin \alpha \cos \epsilon-\bar{k} \cos \alpha$.
9 Decomposition of the gravity with respect to these 0 coordinates gives the normal component of gravity force
$1 g_{\sigma}=g \sin \alpha \sin \epsilon, \bar{g}=(-g, 0,0)=-\bar{l} g$.

Fig. 1. Free convective fluid flow pattern described by boundary layer thickness (black lines) and stream lines close heated surface and in a plume (gray lines) for: (a) vertical cones, (b) horizontal cylinder and (c) horizontal conic.

Fig. 2. Result of the visualization of the stream lines on the horizontal, isothermal conic transferred heat by free convection (a) and the model of the phenomenon described by curvilinear coordinate system (ε, l) with stream line curves S_{i} (b).

Let us now define a tangent component of the grav-

$$
\begin{align*}
\bar{s} & =\frac{\bar{g}-(\bar{g}, \bar{\sigma}) \bar{\sigma}}{g \sqrt{1-\sin ^{2} \alpha \sin ^{2} \epsilon}} \\
& =\frac{-\bar{l}\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right)+\bar{j} \sin ^{2} \alpha \sin \epsilon \cos \epsilon-\bar{k} \cos \alpha \sin \alpha \sin \epsilon}{\sqrt{1-\sin ^{2} \alpha \sin ^{2} \epsilon}} . \tag{4}
\end{align*}
$$

Fig. 3. Coordinate systems: Cartesian, curvilinear and local for the conic.

Fig. 4. The illustration of the curve S construction: it is defined as the vector \bar{s} is tangent at every point of the curve S.

This unit vector \bar{s} defines the curve S on the surface 75 (Fig. 4). Hence the gravity component along $\bar{s} \times \bar{\sigma}$ is 76 zero. That is why we solve the equations: Navier-Stokes, 77 Fourier-Kirchhoff and continuity in these two charac- 78 teristic directions $\bar{\sigma}$ and \bar{s}.

We use assumptions typical for natural convection [9]:

- fluid is incompressible and its flow is laminar, 81
- inertia forces are negligibly small in comparison with 82 viscosity ones,83
- the mass density ρ_{f}, kinematic viscosity v and volu- 84 metric expansion β in the boundary layer and undis- 85 turbed region (index ∞) are constant,86
- tangent to the heated surface component of the veloc- 87 ity inside the boundary layer is significantly larger 88 than normal one $W_{s} \gg W_{\sigma}$. By this assumption two 89 marginal regions are excluded: the first where the 90 boundary layer arises $\epsilon=-\epsilon_{\mathrm{m}}$ and the second where 91 it is transferred into the free buoyant plum $\epsilon=\epsilon_{\mathrm{m}} . \quad 92$
- temperature of the lateral conical surface T_{w} is con- 93 stant, 94
- thicknesses of the thermal and hydraulic boundary 95 layers are the same. 96

Finally the Navier-Stokes equations may be written
$v \frac{\partial^{2} W_{s}}{\partial \sigma^{2}}-g_{s} \beta\left(T-T_{\infty}\right)-\frac{1}{\rho_{\mathrm{f}}} \frac{\partial p}{\partial s}=0$,
$-g_{\sigma} \beta\left(T-T_{\infty}\right)-\frac{1}{\rho_{\mathrm{f}}} \frac{\partial p}{\partial \sigma}=0$.
The coordinates σ and s are local ones along the 100 vectors $\bar{\sigma}$ and \bar{s}. 101

We evaluate the normal and tangent components of 102 gravity as
$g_{\sigma}=\bar{\sigma} \cdot \bar{g}=-g \sin \alpha \sin \epsilon$,
$g_{s}=g \sqrt{1-\sin ^{2} \alpha \sin ^{2} \epsilon}$.

We assumed that relation for temperature distribution inside boundary layer can be used as solution of
108 Fourier-Kirchhoff equation [10,11]

$$
\begin{equation*}
\Theta=\frac{T-T_{\infty}}{T_{\mathrm{w}}-T_{\infty}}=\left(1-\frac{\sigma}{\delta}\right)^{2} \quad \text { or } \quad T-T_{\infty}=\Delta T\left(1-\frac{\sigma}{\delta}\right)^{2} . \tag{9}
\end{equation*}
$$

110 Plugging (7)-(9) into (5) and (6) gives
$v \frac{\partial^{2} W_{s}}{\partial \sigma^{2}}-g \beta \Delta T\left(1-\frac{\sigma}{\delta}\right)^{2} \sqrt{1-\sin ^{2} \alpha \cdot \sin \epsilon}-\frac{1}{\rho_{\mathrm{f}}} \frac{\partial p}{\partial s}=0$.
$-g \beta \Delta T \sin \alpha \sin \epsilon\left(1-\frac{\sigma}{\delta}\right)^{2}-\frac{1}{\rho_{\mathrm{f}}} \frac{\partial p}{\partial \sigma}=0$.

$$
\begin{equation*}
p_{\sigma}=-p_{\infty(\sigma \geqslant \delta)}-\rho_{\mathrm{f}} g \beta \Delta T \sin \alpha \sin \epsilon\left(\sigma-\frac{\sigma^{2}}{\delta}+\frac{\sigma^{3}}{3 \delta^{2}}-\frac{\delta}{3}\right) . \tag{12}
\end{equation*}
$$

gives

$$
\begin{align*}
\frac{\partial p}{\partial s}= & -\rho_{\mathrm{f}} g \beta \Delta T \sin \alpha \frac{(\cos \epsilon)^{\cos ^{2} \alpha+1}}{\rho_{0} \sqrt{1-\sin ^{2} \epsilon \sin ^{2} \alpha}}\left[\operatorname { c o s } \epsilon \left(\sigma-\frac{\sigma^{2}}{\delta}\right.\right. \\
& \left.\left.+\frac{\sigma^{3}}{3 \delta^{2}}-\frac{\delta}{3}\right)+\sin \epsilon\left(\frac{\sigma^{2}}{\delta}-\frac{2 \sigma^{3}}{3 \delta^{3}}-\frac{1}{3}\right) \frac{\mathrm{d} \delta}{\mathrm{~d} \epsilon}\right] . \tag{14}
\end{align*}
$$

The parametrization of the curve S by ρ_{0} in (13) is equivalent to the parametrization by

$$
\begin{equation*}
\epsilon_{\mathrm{m}}=\arcsin \rho_{0} / R-\pi / 2 . \tag{15}
\end{equation*}
$$

131 Plugging of the equality (14) into Eq. (10) leads to

$$
\begin{align*}
& v \frac{\partial^{2} W_{s}}{\partial \sigma^{2}}+\rho_{\mathrm{f}} g \beta \Delta T\left\{-\left(1-\frac{\sigma}{\delta}\right)^{2} \sqrt{1-\sin ^{2} \alpha \sin \epsilon}\right. \\
& \quad+\frac{\sin \alpha(\cos \epsilon)^{\cos ^{2} \alpha+1} \cos \epsilon}{\rho_{0} \sqrt{1-\sin ^{2}(\epsilon) \sin ^{2}(\alpha)}}\left(\sigma-\frac{\sigma^{2}}{\delta}+\frac{\sigma^{3}}{3 \delta^{2}}-\frac{\delta}{3}\right) \\
& \left.\quad+\sin \epsilon\left(\frac{\sigma^{2}}{\delta^{2}}-\frac{2 \sigma^{3}}{3 \delta^{3}}-\frac{1}{3}\right) \frac{\mathrm{d} \delta}{\mathrm{~d} \epsilon}\right\}=0 . \tag{16}
\end{align*}
$$

A double integration of Eq. (16) for the boundary conditions $W_{s}=0$ at $\sigma=0, \delta$ and mean value evaluation through boundary layer gives:

$$
\begin{align*}
\overline{W_{s}}= & \frac{1}{\delta} \int_{0}^{\delta} W_{s} \mathrm{~d} \sigma \\
= & \frac{g \beta \Delta T \delta^{2}(\cos \epsilon)^{\cos ^{2} \alpha+1}}{v \sqrt{1-\sin ^{2} \epsilon \sin ^{2} \alpha}}\left(-\frac{1-\sin ^{2} \epsilon \sin ^{2} \alpha}{40(\cos \epsilon)^{\cos ^{2} \alpha+1}}\right. \\
& \left.+\frac{\sin \alpha \cos \epsilon \delta}{180 \rho_{0}}+\frac{\sin \alpha \sin \epsilon}{72 \rho_{0}} \frac{\mathrm{~d} \delta}{\mathrm{~d} \epsilon}\right) \tag{17}
\end{align*}
$$

The account the law of energy conservation
$\left.\mathrm{d} Q=-\rho_{\mathrm{f}} c_{p} \overline{T-T_{\infty}}\right) \mathrm{d}\left(A \overline{W_{s}}\right)$,
where A is the cross-section area of the boundary layer (see Fig. 5), after the substitution of the mean value of the temperature: $\left(\overline{T-T_{\infty}}\right)=\frac{\Delta T}{3}$ yields:
$\mathrm{d} Q=-\frac{1}{3} \rho_{\mathrm{f}} c_{p} \Delta T \mathrm{~d}\left(A \overline{W_{s}}\right)$.
The heat flux described by Eq. (19) should be equal to the heat flux determined by the Newton's equation (20):
$\mathrm{d} Q=-\lambda\left(\frac{\partial \Theta}{\partial \sigma}\right)_{\sigma=0} \Delta T \mathrm{~d} A_{k}$,
where $\mathrm{d} A_{k}$ is the control surface of the conic (see Fig. 5).
The simplifying assumption of the temperature profile inside boundary layer (9), the dimensionless temperature gradient on the heated surface may be evaluated as

$$
\left(\frac{\partial \Theta}{\partial \sigma}\right)_{\sigma=0}=-\frac{2}{\delta}
$$

leads to

Fig. 5. Presentation of the elementary control surfaces: A and $\mathrm{d} A_{k}$, defined by Eq. (21) and (22) for the coordinate curves $S\left(\rho_{0}\right)$ and $S\left(\rho_{0}+\mathrm{d} \rho_{0}\right)$ and the distance $\mathrm{d} \xi$ between them.
$\frac{1}{6 \lambda} \rho_{\mathrm{f}} c_{p} \delta \mathrm{~d}\left(A \overline{W_{\tau}}\right)=-\mathrm{d} A_{k}$.
155 The definitions of the cross-sectional area and the con156 trol surface A and $\mathrm{d} A_{k}$ are:
$A=\mathrm{d} \xi \delta=\frac{-(\cos \epsilon)^{1-\cos ^{2} \alpha} \mathrm{~d} \rho_{0} \delta}{\cos \alpha \sqrt{1-\sin ^{2} \alpha \sin ^{2} \epsilon}}$,
$\mathrm{d} A_{k}=\mathrm{d} \xi \mathrm{d} \tau=\frac{-(\cos \epsilon)^{-2 \cdot \cos ^{2} \alpha} \rho_{0} \mathrm{~d} \epsilon \mathrm{~d} \rho_{0}}{\cos \alpha}$,
159 where
$\mathrm{d} \xi=|[\bar{\sigma} \times \bar{\tau}] \mathrm{d} \bar{r}|=\frac{-(\cos \epsilon)^{1-\cos ^{2} \alpha} \mathrm{~d} \rho_{0}}{\cos \alpha \sqrt{1-\sin ^{2} \alpha \sin ^{2} \epsilon}}$,
Substituting Eqs. (17), (22) and (23) in Eq. (21) and evaluating the differentials one have
$X_{3}\left(\delta \delta^{\prime \prime}+3 \delta^{\prime 2}\right)+\left(4 X_{2}+X_{3}^{\prime}\right) \delta \delta^{\prime}+X_{2}^{\prime} \delta^{2}+3 X_{1} \rho_{0} \delta^{\prime}$

$$
\begin{equation*}
+X_{1}^{\prime} \rho_{0} \delta=\frac{\rho_{0}^{2} X_{4}}{K \delta^{3}} \tag{25}
\end{equation*}
$$

$X_{3}=\frac{5}{9} \frac{(\cos \epsilon)^{2+\cos ^{2} \alpha} \sin \alpha \sin \epsilon}{\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right)}$,
$X_{4}=(\cos \epsilon)^{-2 \cos ^{2} \alpha}$.
$X_{2}=\frac{2}{9} \frac{(\cos \epsilon)^{3+\cos ^{2} \alpha} \sin \alpha}{\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right)}$,

Eq. (25) is the nonlinear ordinary differential equation to be considered as the basic one for free convection heat transfer along the arbitrary curve S which family covers the whole surface of isothermal horizontal conic.

3. Analytical approximate solution of the resulting equation

The resulting equation of the physical model could be solved by a simple numerical method. We, however, would apply analytical method to construct approximate formulas for the boundary layer thickness δ as a function of variables ϵ and ρ_{0}. Let us underline that our choice of the coordinate system allows to consider ρ_{0} as a parameter. Rescaling in (25) $y(\epsilon)=\delta K^{1 / 3}, r=\rho_{0} K^{1 / 3}$ yields:

$$
\begin{align*}
& y^{4}(\epsilon) E \frac{\partial \frac{\partial y(\epsilon)}{\partial \epsilon}}{\partial \epsilon}+3 y^{3}(\epsilon) E \frac{\partial y(\epsilon)^{2}}{\partial \epsilon}+y^{3}(\epsilon) \frac{\partial y(\epsilon)}{\partial \epsilon} G \\
& \quad+y^{5}(\epsilon) H+y^{4}(\epsilon) F \\
& \quad=r^{2}\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right) \cos ^{-2 \cos ^{2} \alpha} \epsilon . \tag{31}
\end{align*}
$$

where the coefficients are defined by
$E=X_{3}\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right)=\frac{5}{9} \cos ^{2+\cos ^{2} \alpha} \epsilon \sin \alpha \sin \epsilon$,

$$
\begin{align*}
G= & {\left[y\left(4 X_{2}+X_{3}^{\prime}\right)+3 X_{1} r\right]\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right) } \tag{32}\\
= & 3\left(\cos ^{1-\cos ^{2} \alpha} \epsilon\right) r\left(\cos ^{2} \epsilon+\cos ^{2} \alpha-\cos ^{2} \epsilon \cos ^{2} \alpha\right) \\
& +\frac{8}{9}\left(\cos ^{3+\cos ^{2} \alpha} \epsilon \sin \alpha\right) y(\epsilon), \tag{33}
\end{align*}
$$

$H=X_{2}^{\prime}\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right)$
$=\frac{2}{9} \frac{\sin \epsilon \sin \alpha}{\sin ^{2} \alpha \sin ^{2} \epsilon-1} \cos ^{2+\cos ^{2} \alpha} \epsilon\left(\sin ^{2} \epsilon \cos ^{4} \alpha\right.$ $\left.+3 \cos ^{2} \alpha+\cos ^{2} \epsilon\right)$,
$F=X_{1}^{\prime} r\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right)$
$=\frac{r \sin ^{2} \alpha\left(1-\sin ^{2} \alpha \sin ^{2} \epsilon\right)}{\cos ^{\cos ^{2} \alpha} \epsilon} \sin \epsilon$.
We consider an asymptotic solution as a power series in the vicinity of the point $\epsilon=0$. This point is the singularity point of the equation: the coefficient by the second derivative is equal to zero when $\epsilon=0$. The formal Taylor series expansion is
$y(\epsilon)=\sum_{i=0}^{\infty} c_{i} \epsilon^{i}=Y+g \epsilon+f \epsilon^{2} / 2+\cdots$
The coefficients of the expansion we determine directly from the differential equation (31) in the point $\epsilon=0$. The equation gives connection of all coefficients with the first one $Y=y(0)$. This unique parameter is defined via the boundary condition $y\left(\epsilon_{\mathrm{m}}\right)=0$ in the point $\epsilon=\epsilon_{\mathrm{m}}=\arccos \left(\rho_{0} / R\right)$.

Let us evaluate the first derivative of $y(\epsilon)$ at the point $(\epsilon=0)$. We start from Eq. (31) and solve it with respect to:
$g=\left[\frac{\partial y(\epsilon)}{\partial \epsilon}\right]_{\epsilon=0}=\frac{9 r^{2}}{(27 r+8(\sin \alpha) Y) Y^{3}}$.
Next we should evaluate the second derivative of $y(\epsilon)$ at the point $\epsilon=0$. For this aim we differentiate Eq. (36) 204 and then solve the result with respect to:

$$
\begin{align*}
f= & {\left[\frac{\partial \frac{\partial y(\epsilon)}{\partial \epsilon}}{\partial \epsilon}\right]_{\epsilon=0} } \\
= & -9 \frac{423 r^{4}(\sin \alpha) Y+729 r^{2}\left(r^{3}+r Y^{8} \sin ^{2} \alpha+(\sin \alpha) Y^{9}\right)}{Y^{7}(27 r+13(\sin \alpha) Y)(27 r+8(\sin \alpha) Y)^{2}} \\
& -9 \frac{16 Y^{9}\left(\sin ^{2} \alpha\right)(Y+r \sin \alpha)(4(\sin \alpha) Y+27 r)}{Y^{7}(27 r+13(\sin \alpha) Y)(27 r+8(\sin \alpha) Y)^{2}} . \tag{37}
\end{align*}
$$

Details of the derivation of (36) and (37) are shown in 207 papers [9,10]. 208

Now we introduce the boundary condition at the 209 edge of the cone, where the boundary layer arises 210
$y\left(-\epsilon_{\mathrm{m}}\right)=0$.
$y(\epsilon)=Y+g \epsilon+\frac{1}{2} f \epsilon^{2}$.

Eq. (38) for the parameter Y is algebraic equation of high order, which has no explicit solution. So we expand the equation in Taylor series with respect to the variable $z=Y \sin \alpha / r$. In the region $(1 / 2) Y \sin \alpha \ll r$ one have in the first approximation
$g=\frac{1}{3} \frac{r}{Y^{3}}$,
$f=-\frac{1}{3} \frac{r^{2}}{Y^{3}}$.
After substitution of (40) and (41) into Eq. (39) it simplifies
$Y^{8}-\frac{1}{3} r \arccos \left(\rho_{0} / R\right) Y^{4}-\frac{1}{6} r^{2} \arccos ^{2}\left(\rho_{0} / R\right)=0$.

Finally the boundary layer thickness is

$$
\begin{align*}
\delta(\epsilon)= & \left(\frac{240 \rho_{0} R^{3}}{R a}\right)^{1 / 4}\left(\sqrt[4]{\frac{1}{12}(1+\sqrt{7})\left[\pi-2 \arcsin \left(\rho_{0} / R\right)\right]}\right. \\
& +\frac{\epsilon}{3\left(\frac{1}{12}(1+\sqrt{7})\left[\pi-2 \arcsin \left(\rho_{0} / R\right)\right]\right)^{3 / 4}} \\
& \left.-\frac{\epsilon^{2}}{6\left(\frac{1}{12}(1+\sqrt{7})\left[\pi-2 \arcsin \left(\rho_{0} / R\right)\right]\right)^{7 / 4}}\right) \tag{44}
\end{align*}
$$

236 4. Integral heat transfer coefficient for practical applica-

 tionsThe solution (44) is local. However for practical applications one use the mean value of heat transfer coefficient, that is defined as the integral of the local value over the whole body surface.

From Eq. (20) it follows that the local value of heat transfer coefficient is
$h=\frac{2 \lambda}{\delta}$.

The expression for boundary layer thickness (44) may be rewritten as
$\delta(\epsilon)=R\left(\frac{240\left(\cos \epsilon_{\mathrm{m}}\right)}{R a}\right)^{1 / 4} a\left(\epsilon_{\mathrm{m}}\right) \cdot P\left(\frac{\epsilon}{\epsilon_{\mathrm{m}}}\right)$,
where
$a\left(\epsilon_{\mathrm{m}}\right)=\sqrt[4]{\frac{1}{6}(1+\sqrt{7}) \epsilon_{\mathrm{m}}}$,

$$
\begin{aligned}
P\left(\frac{\epsilon}{\epsilon_{\mathrm{m}}}\right) & =1+\frac{\epsilon}{\frac{1}{2}(1+\sqrt{7}) \epsilon_{\mathrm{m}}}-\frac{\epsilon^{2}}{\frac{1}{6}(1+\sqrt{7})^{2} \epsilon_{\mathrm{m}}^{2}} \\
& =\left(1+\frac{\epsilon}{3 a^{4}}-\frac{\epsilon^{2}}{6 a^{8}}\right)
\end{aligned}
$$

Taking into account above given transformations of boundary layer thickness the local heat transfer coefficient h and it's dimensionless form $N u$ are:

$$
\begin{equation*}
N u=\frac{h \cdot R}{\lambda}=\frac{2}{\left(\cos \epsilon_{\mathrm{m}}\right)^{1 / 4} a\left(\epsilon_{\mathrm{m}}\right) P\left(\frac{\epsilon}{\epsilon_{\mathrm{m}}}\right)}\left(\frac{R a}{240}\right)^{1 / 4} \tag{47}
\end{equation*}
$$

The mean value of Nusselt number for whole lateral surface of horizontal conic S can be expressed by the relation:
retaton.

$$
\begin{equation*}
N u_{\mathrm{m}}=\frac{2}{S}\left(\frac{R a}{240}\right)^{1 / 4} \int_{0}^{\pi / 2} \int_{-\epsilon_{\mathrm{m}}}^{\epsilon_{\mathrm{m}}} \frac{1}{\left(\cos \epsilon_{\mathrm{m}}\right)^{1 / 4} a\left(\epsilon_{\mathrm{m}}\right) P\left(\frac{\epsilon}{\epsilon_{\mathrm{m}}}\right)} \cdot \mathrm{d} A_{k} \tag{48}
\end{equation*}
$$

Control surface of the cone $\mathrm{d} A_{k}$ is described with the use of ρ_{0} (13) and $\mathrm{d} \rho_{0}$ as the functions of ϵ_{m} (15):

$$
\begin{align*}
\mathrm{d} A_{k}= & \cos \alpha \cdot(\cos \epsilon)^{-2 \cdot \cos ^{2} \alpha} \cdot R^{2} \cdot \sin \epsilon_{m} \\
& \cdot\left(\cos \epsilon_{m}\right)^{2 \cos ^{2} \alpha-1} \mathrm{~d} \epsilon_{\mathrm{m}} \mathrm{~d} \epsilon . \tag{49}
\end{align*}
$$

Plugging (49) into (48) leads to final relation
$N u_{\mathrm{m}}=C_{R} \cdot R a^{1 / 4}$,
where
$C_{R}=\frac{2}{\pi}(\cos \alpha)^{2}\left(\frac{1}{240}\right)^{1 / 4} J$
and

$$
\begin{align*}
J= & \int_{0}^{\pi / 2}\left(\frac{\sin \epsilon_{\mathrm{m}}\left(\cos \epsilon_{\mathrm{m}}\right)^{2 \cos ^{2} \alpha-1}}{\left(\cos \epsilon_{\mathrm{m}}\right)^{1 / 4} a\left(\epsilon_{\mathrm{m}}\right)}\right) \\
& \times\left(\int_{-\epsilon_{\mathrm{m}}}^{\epsilon_{\mathrm{m}}} \frac{(\cos \epsilon)^{-2 \cdot \cos ^{2} \alpha} \mathrm{~d} \epsilon}{P\left(\frac{\epsilon}{\epsilon_{\mathrm{m}}}\right)}\right) \mathrm{d} \epsilon_{\mathrm{m}} . \tag{52}
\end{align*}
$$

For practical application the obtained solution requires evaluation of the double integral over the surface J (52) which we made numerically. These calculations were performed for the following numbers of integration

245
steps: $n=300$, for the internal integral and $p=150$, for the external one. The model of the boundary layer (44) is simplified, the direct corollary of this is the deviation of the asymptotic behavior of the local Nusselt number at the vicinity of the point $-\epsilon_{\mathrm{m}}$, where the boundary layer arises. The integral (52) is hence divergent in this point. To regularize this discrepancy we integrate from the starting step -147 in all calculations. The results of the integral evaluations are: $J=7.9359,10.337,14.885$ and 25.692 for $\alpha=0,30^{\circ}, 45^{\circ}$ and 60°, respectively, and next: $C_{R}=0.6478,0.6270,0.6019$ and 0.5194 for $\alpha=0,30,45$ and 60 degrees for the radius of the cone base R as a characteristic linear dimension in Nusselt-Rayleigh relation (47) and (26). For comparison with experimental results elaborated with the use of the diameter $D=2 R$ as the characteristic linear dimension one can obtain: $C_{D}=\sqrt[4]{2} \cdot C_{R}=0.763,0.746,0.716$ and 0.618 for $\alpha=0$, $30^{\circ}, 45^{\circ}$ and 60° respectively.

5. Experimental apparatus

The experimental studies were performed in two setups using two fluids: distilled water and air. The both set-ups consist of a Plexiglas tank in a form of a rectangular prism of the volume $150 \mathrm{dm}^{3}$ for the water as a test fluid and $200 \mathrm{dm}^{3}$ for the air. The visualization of convective flow structures was performed in the water only while the quantitative experiments were made both in the water and in the air for four cones: $\alpha=0$ (vertical round plate), $\pi / 6, \pi / 4$ and $\pi / 3$. The investigated samples, excluding the vertical round plate $(\alpha=0)$, consist of two identical copper cones of the base diameter $D=0.1 \mathrm{~m}$, that were joined in pairs according with Fig. 6 by the epoxy-resin (DISTAL). Each cone couple was suspended in a horizontal position by the use of nylon fishing twine of the diameter 0.1 mm . In this way the heat losses through the base or supports were eliminated. We assumed that the heat losses through electric wiring were negligible small. The electric resistor as a source of heat was placed symmetrically inside the cavity of each sample. The concept of performed experimental measurement of a convective heat flux and the construction of the round vertical plate of the diameter $D=0.07 \mathrm{~m}$ were different in comparison with the cone case. The vertical plate of the sandwich layer construction consisted of two circular copper plates and epoxy-resin circular plate, of known thickness and heat conduction coefficient, between them was used in experiments. In this case the back heat losses flux was measured independently from temperature differences on both sides of epoxide plate with respect to Fourier equation. The thermal coefficient of conductivity for the laminate (copper-epoxy-resin-copper) was experimentally determined at a specially constructed stand. More details for this case one can found in our previous paper [14].

Fig. 6. Arrangement of the experimental apparatus and tested conic (enlarged detail " a ").

The surface of the cones were polished and next covered by chromium (electroplating) because the radiative heat losses have to be also taken into account in the experiments performed in the air. In calculations the emissive coefficient for the polished chromium was taken from the physical constants tables.

At the top of the tanks a cooler with thermostatic water of temperature equal to surrounding $\pm 0.1 \mathrm{~K}$ was mounted. To measure the surface temperature T_{w} of the cones six transistors of the type BL 8473 were used. The transistors inserted through the opening of diameter 1 mm drilled from the base were glued by epoxy-resin to the surface of the cone. Also six transistors measured the fluid temperature in the undisturbed region T_{∞}. The temperatures of cone surfaces and fluids were calculated as a average value of all the particular transistors $T_{\mathrm{w}, i}$ and $T_{\infty, i}$. The output signals from the transistors were processed by a computer program.

Experimental determination of Nusselt number was accomplished with an accuracy of $\pm 6.6 \%$ for the water and $\pm 5.6 \%$ for the air. The accuracy of Rayleigh numbers evaluation were $\pm 4.3 \%$ (water) and $\pm 2.1 \%$ (air).

6. Experimental results

Experimental results obtained for the water (dark points) and the air (white points) for the cones of the

Fig. 7. Comparison of the theoretical results (brown lines) with the experiments (black line) performed in the air (white points) and the water (dark points).

$$
7
$$

line but for the theoretical results, obtained by numerical372

evaluation of the integral (52).As one can see the theoretical solution is convergentwith experiments for vertical round plate $\alpha=0^{\circ}$ and forhorizontal cone of the base angle $\alpha \leqslant 60^{\circ}$. For the conesof the base angle α between 60° and 90° (horizontalcylinder) there is a divergences. It is a consequence of theuse of the simplified asymptotic method of solution ofEq. (44).
The constants in Nusselt-Rayleigh experimental correlations recalculated for D as a characteristic linear dimension: $C_{\text {exp }}=0.749$ for $\alpha=30^{\circ}, C_{\text {exp }}=0.742$ for $\alpha=45^{\circ}$ and $C_{\text {exp }}=0.677$ for $\alpha=60^{\circ}$, differs from the present solutions: $\quad C_{\text {theor }}=0.746$ for $\alpha=30^{\circ}$, $C_{\text {theor }}=0.716$ for $\alpha=45^{\circ}$ and $C_{\text {theor }}=0.618$ for $\alpha=60^{\circ}$ of about: $+0.4 \%$ for $\alpha=30^{\circ},+3.5 \%$ for $\alpha=45^{\circ}$ and -8.2% and $+8.7 \%$ for $\alpha=60^{\circ}$. This comparison can be regarded as a positive result of verification of obtained solution.

7. Conclusions

The results of the own experimental measurements and literature data of the free convective heat transfer in unlimited space of water and air from horizontal conics for the range of temperature differences $9 \mathrm{~K} \leqslant \Delta T \leqslant 43$ K for air and $0.7 \mathrm{~K} \leqslant \Delta T \leqslant 9 \mathrm{~K}$ for water and Rayleigh numbers $6 \times 10^{5}<R a<2 \times 10^{8}$ for air and $1 \times 10^{7}<R a<2 \times 10^{8}$ for water are presented by the spline curve of the second-order for the base angle of the cone $0 \leqslant \alpha \leqslant 90 \mathrm{deg}$. The spline function has the form: $C_{\text {exp }}=0.672+3.959 \times 10^{-9} \alpha-5.836 \times 10^{-5} \alpha^{2}$.

The theory elaborated in this paper is based on the typical for natural convection assumptions and cover all conditions described above. The resulting differential equation of the theory (25) is one-dimensional in the coordinate system that was specially constructed to account the geometry of horizontal cones and the gravitational field.

The obtained approximate solution describes convective heat transfer over horizontal isothermal conic in unlimited space. The structure of boundary layer that define the heat transfer and streamlines near the conical surface is described by the Taylor series near the points at $\epsilon=0$. In this paper we present the solution based only on the first three terms of series. The approximate method of solution of the differential equation for boundary layer thickness in principle does not allow to obtained the correct description of the thickness in the vicinity of the starting point $\epsilon=-\epsilon_{\mathrm{m}}$. The consequence of this is the divergence of the integral (52) that define the mean value of heat transfer coefficient. For all the cases of conic angles α we used universal approach of regularization of the integral.392393

Table 1
Comparison of own and literature theoretical and experimental results of free convective heat transfer from horizontal cones
$\left.\begin{array}{lll}\hline \text { Case } & \text { Criterial relations } & \text { Notes } \\ \hline \alpha=0^{\circ} \text { round vertical plate } & N u=0.763 \cdot R a^{1 / 4} & \begin{array}{l}\text { Present solution } \\ \\ \\ \\ \\ \text { Experiment of vertical round plate of } \\ \text { diameter } D=0.587 \cdot R a^{1 / 4}\end{array} \\ & N u=0.655 \cdot R a^{1 / 4} & \text { Experiment of vertical round plate of } \\ \text { diameter } D=0.07 \mathrm{~m}, \text { air, [14] }\end{array}\right]$ Numerical calculations, FLUENT/UNS

Fig. 8. Comparison of the own and literature experimental results described by $C_{D}=N u_{D} / R a_{D}^{1 / 4}$ (points and gray line) with analytical solution (black line).

Eventually the discrepancy in the result of calculations is connected with this. We plan to improve this point of the theory by matching of two asymptomatic for both singular points $\epsilon=0, \epsilon=-\epsilon_{\mathrm{m}}$. The algorithm described in the article allows to account arbitrary number of such terms in the Taylor series near the points at $\epsilon=0$ and hence improve the heat transfer description.

8. Uncited references

$[12,13]$

Acknowledgements

This research was supported by Scientific Research of 434 the Chemistry Faculty Gdańsk University of Technology. 435

References

[1] Md. Alamgir, Over-all heat transfer from vertical cones in 437 laminar free convection an approximate method, J. Heat 438 Transfer Trans. ASME 101 (1979) 174-176. 439
[2] W.M. Lewandowski, S. Szymański, P. Kubski, E. Rad- 440 ziemska, H. Bieszk, Natural convective heat transfer from 441 isothermal conic, Int. J. Heat Mass Transfer 42 (1999) 442 1895-1907. 443
[3] W.M. Lewandowski, P. Kubski, S. Szymański, H. Bieszk, 444 T. Wilczewski, E. Radziemska, T. Seramak, Natural 445 convective heat transfer from conical surfaces, in: V UK 446 National Conference on Heat Transfer, 1997.
[4] W.E. Stewart, Asymptotic calculation of free convection in laminar three-dimensional systems, Int. J. Heat Mass Transfer 14 (1971) 1013-1031.
[5] R.G. Hering, Laminar free convection from non isothermal cone at low Prandtl numbers, Int. J. Heat Mass Transfer 8 (1965) 1333-1337.
[6] P.H. Oosthuizen, E. Donaldson, Free convective heat transfer from vertical cones, J. Heat Transfer Trans. ASME (1972) 330-331.
[7] P.H. Oosthuizen, Free convective heat transfer from horizontal cones, J. Heat Transfer Trans. ASME (1973) 409-410.
[8] S.W. Churchill, Free convection around immersed bodies, 2.5 Single-Phase Convective Heat Transfer, in: 2.5 SinglePhase Convective Heat Transfer, Hemisphere Publishing Corporation, Washington, DC, 1983.
[9] S. Leble, W.M. Lewandowski, Analytical description of heat transfer by free convection from isothermal horizontal conic in unlimited space, MPS: Applied Mathematics/ 0301006.
[10] S. Leble, W.M. Lewandowski, A theoretical consideration 468 of a free convective boundary layer on an isothermal 469 horizontal conic, Appl. Math. Model. (submitted).
[11] W.M. Lewandowski, Natural convection heat transfer 471 from plates of finite dimensions, Int. J. Heat Mass Transfer 472 34 (3) (1991) 875-885.
[12] H.B. Squire, in: S. Goldstein (Ed.), Modern Developments 474 in Fluid Dynamics, Clarendon Press, Oxford, 1938, or in 475 Dover, New York, 1965.
[13] E.R.G. Eckert, Heat and Mass Transfer, McGraw-Hill 477 Book Company, New York, 1959, pp. 312.478
[14] W.M. Lewandowski, E. Radziemska, Heat transfer by free 479 convection from an isothermal vertical round plate in 480 unlimited space, Appl. Energy 68 (2001) 187-201.

481
[15] U.T. Morgan, The overall convective heat transfer from 482 smooth circular cylinders, Adv. Heat Transfer 11 (1975) 483 199-264.
[16] S.W. Churchill, H.H.S. Chu, Correlating equations for 485 laminar and turbulent free convection from a horizontal 486 cylinder, Int. J. Heat Mass Transfer 18 (1975) 1049-1053. 487
[17] B. Gebhart, Natural convection flows and stability, Adv. 488 Heat Transfer 9 (1973) 273-346. 489

[^0]: * Corresponding author. Tel.: +48-58-347-24-10; fax: +48-58-347-24-58.

 E-mail address: ewarad@chem.pg.gda.pl (W.M. Lewandowski).

