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Contemporary records from multibeam sonars or even elevations from 3D shuttle radar 

topography missions feature high resolution. On the other hand, bathymetric models of a 

different resolution from different sensors are available as well, beginning from very high 

resolution MBS records and low resolution records coming from regular scattered 

measurements. Approximating and eventually visualizing the high volume scattered 3D raster 

data of different resolutions results in some difficulties related to the extent of computer 

processing power. The paper presents some advantages of using multiresolution splines 

combined with the Hilbert curve approach in the context. The proposed approach consists of 

two stages: firstly, data pertaining to different resolutions are interpolated using the spline 

technique and finally the knots and control points are saved using the Hilbert curve. Such an 

approach particularly facilitates high volume spatial data for the level of details 

(LoD)visualization technique. 

 

 

INTRODUCTION 

The topographic or bathymetric data features a wide range of vertical resolutions. In general, 

unlike terrestrial elevation data, undersea records tend not to lie in regular grids and also tend 

to be much denser near land-masses. Bathymetric records from multibeam sonar (MBS) 

possess resolutions of decimeters or an even higher resolution, whereas ocean bathymetry 

provides us with a 1 km resolution. The applications of high resolutions to many areas may 

obviously appear to be redundant or even ambiguous [3], but can simultaneously be useful in 

approximation approaches. The paper presents an approximation approach using hierarchical 

spline techniques. This approach permits a flexible and appropriate resolution for different 

scales in the visualization process as well as for 3D global elevation data imaging. 
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1. SPLINE FUNCTIONS 

Spline functions can be expressed as a linear combination: 

     (1) 

where  is a control point, and a base function of n degrees. The linear combination is 

responsible for the spline function’s smoothness. The spline functions of integer knots can be 

interpreted as functions of a different resolution within the context of multiscale 

representation [1]. The base function equation for n = 0 yields , and is 1 for 

 and 0 otherwise: 

    (2) 

where  represents the filter of Z transform therefore a discrete impulse 

of length m. The (n+1) convolution of the function reads: 

(3) 

which represents n+1-th convolution of the discrete pulse and can be implemented by 

extremely rapid algorithms e.g. FIR filters. The coefficients of the filter both yield and 

resemble the Pascal triangle. 

 
 

Fig. 1. Figures and photo should be in the text. 

 

This situation is shown in Fig. 1 for a spline function of order 1, as a so-called spline function 

pyramid. Eventually, the spline function representation for n order is represented as: 

 

      (4) 

and can be interpreted as a spline function hierarchy. 

 

2. MULTIRESOLUTION SPLINE REPRESENTATION 

The multiresolution spline approach can be analyzed using the sampling Nyquist theorem, 

which was introduced in Chapter 2 of the paper. The chapter underlines an  important aspect 

of spline functions analysis, namely the possibility of their FIR filter implementation. 

However, in the context of the paper and the 3D data representation, a geometric approach 

seems to be of a more convenient and general nature. 

Let  represent the control point space of resolution k. There is a transformation which 

transforms one space into the other: 
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       (5) 

where S depicts the transformation. The multiresolution spline model of 3D records from 

MBS of different resolution is shown in Fig.4. The figure presents low and high resolution 

control point representations as a regular grid in different colors. Supposing  represents a 

control point translation in a newer space of a higher resolution, the translation in this space 

reads as follows: 

      (6) 

where  operator can be interpreted as transposition . The result of the operation was 

shown in Fig. 4 as the high density yellow grid overlaying the base low resolution control 

points grid. 

 

The hierarchical spline representation may be applied to different kinds of data, e.g. from the 

bathymetric data of electronic chart (low resolution) to the bathymetric data from multibeam 

sonar (high density resolution), and so on. 

 

 
 

Fig. 2. Multibeam 3D data records of a submerged pipeline [11] 
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Fig. 3. Submerged pipeline observed from a ROV camcorder [11] 

 

 

 

 

 

 

Fig. 4. Multi-resolution 3D data representation using hierarchical spline function techniques 

 

The crucial question arising at this point refers to the approximation error, as the error could 

be used by the automatic multiresolution spline grid generation process. The error may be 

calculated by the following mean square error: 

       (7) 

where  represents the bathymetric measurement at point x and is the spline 

approximation at point x. The approximation error will depend on the sampling frequency (so 

the Nyquist theorem) and consequently this is the reason why the hierarchical splines are so 

useful, because the hierarchical splines can approximate the data, all the while taking into 

account their local density and locality. Therefore the local spline approximation error can be 

of use in the context of vertical spline konts  or grid resolution estimation. 
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3. HILBERT CURVE APPLICATION IN THE MUTLIRESOLUTION DATA STORING 

AND DISPLAYING PROCESS 

 

Hilbert Curves are space-filling curves, because they are one dimensional lines that 

regardlessly fill all available space in a fixed area, therefore representing part of the class of 

one-dimensional fractals. The process of quad-tree spatial indexing based on the Hilbert curve 

(Fig. 5) provides us with an efficient indexing method and if the ordered sequence of the 

spatial x, y coordinates required to draw a Hilbert curve is expressed in binary form, then the 

number of queries can be reduced to a minimum. Beginning at the root level (Fig. 5), the 

enumeration of the points is as follow: we choose a direction and a starting point, and proceed 

around the four quadrants, numbering them from 0 to 3. Then the sub-quadrants are 

enumerated, whilst maintaining the overall adjacency property. Each of the sub-quadrants' 

curves is a transformation of the original. This applies recursively to sub-sub quadrants, and 

so forth. The curve we use for a given quadrant is determined by the curve we used for the 

square in which it is located [10]. The conversion method between the  x, y coordinates and 

the Hilbert curve positions uses the Hilbert map [10]: 

HILBERT_MAP = {'a':  

{(0, 0): (0, 'd'), (0, 1): (1, 'a'), (1, 0): (3, 'b'), (1, 1): (2, 'a')}, 'b': {(0, 0): (2, 'b'), (0, 1): (1, 

'b'), (1, 0): (3, 'a'), (1, 1): (0, 'c')}, 'c': {(0, 0): (2, 'c'), (0, 1): (3, 'd'), (1, 0): (1, 'c'), (1, 1): (0, 

'b')}, 'd': {(0, 0): (0, 'a'), (0, 1): (3, 'c'), (1, 0): (1, 'd'), (1, 1): (2, 'd')},} 
a)        b) 

   
 

Fig. 5. Hilbert curve applied to sub-quadrants (a) and the quad-tree indexing process b) The 

quad-tree indexing process and meta code depicts the procedure [10]: 

 

POINT2HILBERT (x, y, zoom=16): 

CURRENT_SQUARE = 'a' 

POSITION = 0 

FOR i IN RANGE(order - 1, -1, -1): 
POSITION <<= 2 

QUAD_X = 1 if x & (1 << i) else 0 

QUAD_Y = 1 if y & (1 << i) else 0 

QUAD_POSITION, CURRENT_SQUARE = HILBERT_MAP[CURRENT_SQUARE][(quad_x, 

quad_y)] 

POSITION |= QUAD_POSITION 

RETURN POSITION 
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4. CONCLUSIONS 

 

The problem of efficient 3D spatial data representation is still open. There are two main 

reasons for this, namely data redundancy and excessive amounts of data. Interpolating, 

approximating, merging and eventually displaying scattered 3D raster data of high volumes 

and different resolutions leads to some difficulties as regards computer processing power. The 

proposed approach consists of two stages: firstly, all acquired high resolution data is 

interpolated with high density uniform spline interpolation and then data of a different 

resolution is stored using the Hilbert curve. The latter method, presented as a relatively 

straightforward concept is only well-suited for point indexing, which may be a drawback in 

other regards. At the same time, any redundancy and ambiguity of the records is not 

a drawback in the context of spline approximation, but rather as an advantage, and, in fact, is 

indispensable [3]. This flexible approach (Fig. 4) allows for spline multiresolution technique 

usage in the areas in which it is required only, namely areas of high resolution horizontal 

records. 
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