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A B S T R A C T

We introduce the surface viscoelasticity under finite deformations. The theory is straightfor-
ward generalization of the Gurtin–Murdoch model to materials with fading memory. Surface
viscoelasticity may reflect some surface related creep/stress relaxation phenomena observed
at small scales. Discussed model could also describe thin inelastic coatings or thin interfacial
layers. The constitutive equations for surface stresses are proposed. As an example we discuss
propagation shear (anti-plane) waves in media with surface stresses taking into account
viscoelastic effects. Here we analysed surface waves in an elastic half-space with viscoelastic
coatings. Dispersion relations were derived.

. Introduction

Waves in solids and fluids constitute a rather important branch of mechanics and physics. Among them it is worth to mention
urface/interfacial waves, i.e. waves localized in vicinity of free surfaces or interfaces, see e.g. Achenbach (1973), Strutt (1945),
berall (1973) and Kaplunov and Prikazchikov (2017). Considering real materials one can observe that dissipation phenomena
ay play a crucial role. For example, Brekhovskikh (1960) noted that the elastic waves theory cannot describe some experimentally

bserved phenomena. In fact, in the case of Rayleigh waves in viscoelastic media studied by Currie et al. (1977), Currie and O’Leary
1978) and Currie (1979) it was discovered that unlike the elastic case it could be more than one surface wave. For discussion of the
umber of Rayleigh waves in viscoelastic half-space we refer to Carcione (1992), Chiriţă et al. (2014), Romeo (2001) and Sharma
2020). Similarly, viscoelastic Love waves were analysed by Kiełczyński (2018), Subhash and Gaur (1978). For a current state of
he theory of viscoelastic waves we refer to the fundamental book by Borcherdt (2009).

The aim of this paper is to introduce surface viscoelasticity and discuss antiplane surface waves propagation. Surface elasticity
odel was proposed by Gurtin and Murdoch (1975, 1978) and was generalized by Steigmann and Ogden (1997, 1999). From

he physical point of view, these models describe deformations of an elastic solid body with perfectly attached to its surface an
lastic membrane or shell, respectively. Nowadays, surface elasticity found various applications at small scales, see e.g. Duan et al.
2008), Eremeyev (2016), Firooz et al. (2021), Jiang et al. (2022), Mogilevskaya et al. (2021), Wang et al. (2011), Zheng et al.
2021) and Kushch and Mogilevskaya (2022). Moreover, it could be also extended to other scales, in particular, as a technique of
urface/interface design, see e.g. Aghaei et al. (2021), Halvey et al. (2019). It was shown that within surface elasticity there exist
nti-plane surface waves (Eremeyev et al., 2016; Xu et al., 2015), see also Eremeyev (2020), Eremeyev et al. (2019, 2020), Eremeyev
nd Sharma (2019), Jia et al. (2018), Mikhasev et al. (2021, 2022, 2023), Wu et al. (2020), Zhu et al. (2019) and the reference
herein.

Linear model of surface elasticity by Gurtin and Murdoch was extended to viscoelasticity by Ru (2009), where it was used
or modelling of nanobeams. Similar one-dimensional model was used by Hasheminejad and Gheshlaghi (2010). Beams with thin
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viscoelastic coatings were studied by Lyu et al. (2020). Two-dimensional surface viscoelasticity was introduced by Altenbach et al.
(2012), Hasheminejad and Gheshlaghi (2013) in order to model thin plates and shells. In these papers linear constitutive equations
for surface stresses were used.

In our paper we provide a generalization of the Gurtin–Murdoch model towards a finite surface viscoelasticity, i.e. considering
inite deformations. In Section 2 we introduce surface stress tensors as a tensor-valued operator dependent of the history of surface
eformations. As a result, we get a nonlinear-boundary-value problem taking into account viscoelastic surface stresses. Linearization
f the latter problem is also provided. Finally, in order to demonstrate some properties of the model, in Section 3 we consider anti-
lane surface waves in an elastic half-space considering viscoelastic surface stresses. Dispersion relations are given, i.e. dependencies
f the wave-number and the attenuation coefficient on the frequency.

In the following we use direct tensor calculus as in Lurie (1990), Simmonds (1994) and Eremeyev et al. (2018), so vectors and
ensors are shown in bold.

. Surface viscoelasticity

Let us consider a deformed solid body 𝐵 which occupies in a reference placement 𝜅 a volume 𝑉 ⊂ R3 with a smooth
enough boundary 𝑆 = 𝜕𝑉 . Deformations of 𝐵 can be described as a smooth invertible mapping from 𝜅 into a current placement
𝜒(𝑡) (Truesdell & Noll, 2004)

𝐱 = 𝐱(𝐗, 𝑡), (1)

where 𝐗 and 𝐱 are the position vectors in 𝜅 and 𝜒 , respectively, and 𝑡 is time.
We introduce the deformation gradient 𝐀 and the surface deformation gradient 𝐅 as follows

𝐀 = ∇𝜅𝐱, 𝐅 = ∇𝑆𝐱, (2)

where ∇𝜅 and ∇𝑆 are the Lagrangian 3D and 2D nabla-operators defined in 𝑉 and on 𝑆. They are related to each other through
the formula

∇𝑆 = 𝐈2 ⋅ ∇𝜅 ,

where 𝐈2 = 𝐈−𝐍⊗𝐍, 𝐈 is the unit tensor, ‘‘⋅’’ stands for the dot product, ‘‘⊗’’ denotes the dyadic product, and 𝐍 is the unit outward
normal vector to 𝑆.

In the following we restrict ourselves to elastic behaviour in the bulk. So there exists a strain energy density 𝑊 introduced as a
function of 𝐀 (Ogden, 1997; Truesdell & Noll, 2004)

𝑊 = 𝑊 (𝐀). (3)

In the bulk we have the Piola–Kirchhoff stress tensor of the first kind 𝐏 and the Cauchy stress tensor 𝐓 given by the formulae (Ere-
meyev et al., 2018; Lurie, 1990)

𝐏 = 𝜕𝑊
𝜕𝐀

, 𝐓 = 𝐽𝐀−𝑇 ⋅ 𝐏, (4)

here 𝐽 = det 𝐀 and superscript ‘‘𝑇 ’’ denotes the transposed tensor.
We also introduce the kinetic energy density by the standard formula

𝐾 = 1
2
𝜌𝐯 ⋅ 𝐯, 𝐯 = 𝐱̇, (5)

where 𝜌 is a mass density in current placement 𝜒 and the overdot stands for the derivative with respect to 𝑡.
As a result, in the bulk we have the following Eulerian equation of motion

∇𝜒 ⋅ 𝐓 + 𝜌𝐟 = 𝜌𝐱̈, (6)

where 𝐟 is mass force vector and ∇𝜒 is the 3D nabla-operator in 𝜒 and 𝐧 is the unit normal to the boundary of 𝐵 in the current
placement.

Following Gurtin and Murdoch (1975, 1978) we introduce the surface Cauchy stress tensor 𝐒 and the surface mass density 𝑚.
So we get the surface kinetic energy density

𝐾𝑠 =
1
2
𝑚𝐯 ⋅ 𝐯, (7)

and on the boundary we have non-trivial boundary condition

𝐧 ⋅ 𝐓 = ∇𝑠 ⋅ 𝐒 − 𝑚𝐱̈, (8)

where ∇𝑠 = (𝐈 − 𝐧 ⊗ 𝐧) ⋅ ∇𝜒 is the surface nabla-operator in 𝜒 , and 𝐧 is the normal to the surface of 𝐵 in the current placement.
Eq. (8) plays a crucial role in dynamics of solids with surface stresses.

In order to take into account surface viscoelasticity we consider 𝐒 dependent of history of deformations as follows
𝑡 𝑡
2

𝐒 = (𝐅 (𝑠)), 𝐅 (𝑠) = 𝐅(𝑡 − 𝑠), 𝑠 ≥ 0, (9)

http://mostwiedzy.pl
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where  is an operator describing dependence on the history of deformations 𝐅𝑡(𝑠). Let us recall that according to the principle of
aterial frame indifference 𝐒 should be an indifferent (objective) tensor. This means it has some invariance properties under rigid

ody motions. So if we consider equivalent motion 𝐱∗ as

𝐱∗ = 𝐚(𝑡) + 𝐱 ⋅𝐎(𝑡)

here vector 𝐚 and 𝐎 are time-dependent vector and orthogonal tensor, respectively, then we get that 𝐒∗ = 𝐎𝑇 ⋅ 𝐒 ⋅ 𝐎. Under this
ransformation we also have 𝐅∗ = 𝐅 ⋅𝐎. So  has the following property

(𝐅𝑡(𝑠) ⋅𝐎(𝑡 − 𝑠)) = 𝐎𝑇 (𝑡) ⋅(𝐅𝑡(𝑠)) ⋅𝐎(𝑡) ∀𝐎 ∶ 𝐎 ⋅𝐎𝑇 = 𝐈. (10)

or 𝐅 we have the polar decomposition in the form

𝐅 = 𝐔 ⋅𝐐, (11)

here 𝐐 is an orthogonal tensor and 𝐔 is a symmetric non-negative tensor. Note that as 𝐍 ⋅ 𝐅 = 𝟎, 𝐅 is a singular tensor. So the
tandard polar decomposition requires some modifications, see e.g. Eremeyev et al. (2018) for more details. Taking 𝐎 = 𝐐𝑇 we
ame to another form of the constitutive equation for 𝐒

𝐒 = 𝐐𝑇 (𝑡) ⋅ (𝐔𝑡(𝑠)) ⋅𝐐(𝑡) (12)

ith new operator . Eq. (12) is a general form of surface stresses for simple materials. Nevertheless, some modifications of (12)
re possible. Since 𝐔2 = 𝐂 ≡ 𝐅 ⋅ 𝐅𝑇 we can use the surface Cauchy–Green strain tensor 𝐂 instead of its square root 𝐔:

𝐒 = 𝐐𝑇 (𝑡) ⋅ (𝐂𝑡(𝑠)) ⋅𝐐(𝑡)

ith another operator . Moreover, instead of 𝐐 we can use 𝐅. Indeed, 𝐐 = 𝐔−1 ⋅ 𝐅, where by the inverse of 𝐔 we understood its
nversion in the corresponding subspace, see Eremeyev et al. (2018). Finally we came to the form

𝐒 = 𝐅𝑇 (𝑡) ⋅ (𝐂𝑡(𝑠)) ⋅ 𝐅(𝑡), (13)

hich is straightforward analogy of the 3D case, see Truesdell (1966, 1991) and Truesdell and Noll (2004).
For further specification of operator (𝐂𝑡(𝑠)) in (13) we can use the concept of fading memory and the relative tensors as

n Truesdell (1966, 1991) and Truesdell and Noll (2004). First, we introduce the relative surface gradient tensor 𝐅𝑡(𝜏). To this
nd we consider 𝜒(𝑡) as the reference placement and 𝜒(𝜏) as a current one. Here 𝑡 and 𝜏 are some time instants. So 𝐅𝑡(𝜏) is defined
hrough the formula

𝐅𝑡(𝜏) = ∇𝜒(𝑡)𝐱(𝜏),

here we have specified the nabla-operator taken in 𝜒(𝑡). We have the formula related 𝐅𝑡(𝜏) to 𝐅(𝜏) and 𝐅(𝑡):

𝐅(𝜏) = 𝐅(𝑡) ⋅ 𝐅𝑡(𝜏). (14)

bviously, 𝐅𝑡(𝑡) = 𝐈. Using 𝐅𝑡(𝜏) we can introduce the relative surface Cauchy–Green strain tensor 𝐂𝑡(𝜏) by the formula

𝐂𝑡(𝜏) = 𝐅𝑡(𝜏) ⋅ 𝐅𝑇
𝑡 (𝜏).

imilar to (14) we have that

𝐂(𝜏) = 𝐅(𝑡) ⋅ 𝐂𝑡(𝜏) ⋅ 𝐅𝑇 (𝑡), (15)

nd 𝐂𝑡(𝑡) = 𝐈. So 𝐂𝑡(𝜏) can be treated as a relative strain measure describing deformations between 𝜒(𝑡) and 𝜒(𝜏). Introducing the
istory of the relative Cauchy–Green strain tensor 𝐂𝑡

𝑡(𝑠) = 𝐂𝑡(𝑡 − 𝑠) we came to another form of constitutive equation for 𝐒

𝐒 = 𝐅𝑇 (𝑡) ⋅ 𝐒𝑒 (𝐂(𝑡)) ⋅ 𝐅(𝑡) + 𝐅𝑇 (𝑡) ⋅ 𝑣
(

𝐆𝑡
𝑡(𝑠),𝐂(𝑡)

)

⋅ 𝐅(𝑡), (16)

here 𝐆𝑡
𝑡(𝑠) = 𝐐(𝑡) ⋅ 𝐂𝑡

𝑡(𝑠) ⋅ 𝐐(𝑡)𝑇 − 𝐈, 𝐒𝑒 is a tensor-valued function of the current value of 𝐂, and a history-dependent operator 𝑣
anishes when 𝐆 = 𝟎:

𝑣(𝟎,𝐂(𝑡)) = 𝟎.

onstitutive Eq. (16) is a sum of an ‘‘equilibrium term’’ and a ‘‘viscoelastic term’’ that vanishes when the material was always in
he rest.

As an example of constitutive equations we can consider so-called linear finite surface viscoelasticity with 𝑣 given by

𝑣 = ∫

0

−∞
𝐊 (𝐂(𝑡), 𝑠) ∶ 𝐆𝑡

𝑡(𝑠) 𝑑𝑠, (17)

here 𝐊 is a fourth-order tensor (kernel) dependent on 𝐂 and 𝑠, ‘‘∶’’ stands for the double-dot product. Note that by the linear
inite surface viscoelasticity here we mean linear dependence on history 𝐂𝑡

𝑡(𝑠). Other nonlinear integral constitutive relations can
e introduced similarly to 3D finite viscoelasticity, see e.g. Christensen (1971, 1980), Truesdell and Noll (2004).
3
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If we restrict ourselves to isotropic material behaviour we can represent (16) as follows

𝐒 = 𝐟 (𝐁(𝑡)) + 
(

𝐇𝑡
𝑡(𝑠),𝐁(𝑡)

)

,  (𝟎,𝐁(𝑡)) = 𝟎, (18)

where 𝐁 = 𝐅𝑇 ⋅ 𝐅 is the left surface Cauchy–Green tensor, 𝐇𝑡
𝑡(𝑠) = 𝐂𝑡

𝑡(𝑠) − 𝐈, and 𝐟 and  satisfy the isotropy conditions

𝐎 ⋅ 𝐟 (𝐁) ⋅𝐎𝑇 = 𝐟 (𝐎 ⋅ 𝐁 ⋅𝐎𝑇 ), ∀ 𝐎 ∶ 𝐎 ⋅𝐎𝑇 = 𝐈,

𝐎(𝑡) ⋅ 
(

𝐇𝑡
𝑡(𝑠),𝐁(𝑡)

)

⋅𝐎𝑇 (𝑡) = 
(

𝐎𝑡
𝑡(𝑠) ⋅𝐇

𝑡
𝑡(𝑠) ⋅𝐎

𝑡
𝑡(𝑠)

𝑇 ,𝐎(𝑡) ⋅ 𝐁(𝑡) ⋅𝐎𝑇 (𝑡)
)

.

Another example of constitutive relations can be introduced using surface Rivlin–Ericksen tensors 𝐀𝑗 . Using the formal series
expansion

𝐂𝑡
𝑡(𝑠) =

∞
∑

𝑖=0

(−1)𝑖𝑠𝑖

𝑖
𝐀𝑖(𝑡) (19)

nd taking only a finite number 𝑛 of term in (19), we came to the constitutive relations of differential type of order 𝑛

𝐒 = 𝐟 (𝐁(𝑡)) + 𝐋
(

𝐁(𝑡),𝐀1(𝑡),…𝐀𝑛(𝑡)
)

, 𝐋(𝐁(𝑡), 𝟎,… 𝟎) = 𝟎, (20)

where 𝐋 is a tensor-valued function. Tensors 𝐀𝑗 can be introduced using the recurrent formulae as follows

𝐀𝑖+1 = 𝐀̇𝑖 + ∇𝜒𝐯 ⋅ 𝐀𝑖 + 𝐀𝑖 ⋅ (∇𝜒𝐯)𝑇 , 𝐀1 = 2𝐃 ≡
(

∇𝜒𝐯 ⋅ 𝐈′2 + 𝐈′2 ⋅ (∇𝜒𝐯)𝑇
)

. (21)

Here 𝐈′2 = 𝐈 − 𝐧⊗ 𝐧 and 𝐃 is the surface strain rate.
The simplest case is the viscoelastic material of order 1 with constitutive relation

𝐒 = 𝐟 (𝐁) + 𝐋(𝐁,𝐃), 𝐋(𝐁, 𝟎) = 𝟎. (22)

As 𝐁 and 𝐃 are symmetric 2D tensors, from isotropy conditions it follows that 𝐟 and 𝐋 have the form

𝐟 (𝐁) = 𝑓0(𝐼1, 𝐼2)𝐈′2 + 𝑓1(𝐼1, 𝐼2)𝐁, (23)

𝐋(𝐁,𝐃) = 𝓁0𝐈′2 + 𝓁1𝐁 + 𝓁1𝐃, (24)

where scalar coefficients 𝑓0, 𝑓1, and 𝓁𝑖 = 𝓁𝑖(𝐼1,… , 𝐼5) are functions of invariants 𝐼𝑘, 𝑘 = 1,… , 5, are given by

𝐼1 = tr 𝐁, 𝐼2 = tr 𝐁2, 𝐼2 = tr 𝐃, 𝐼4 = tr 𝐃2, 𝐼5 = tr (𝐃 ⋅ 𝐁),

see e.g. Zubov (1982) for representation of isotropic functions. Restricting ourselves to linear dependence on 𝐃 we came to the
following representation of the surface stresses

𝐒 =𝑓0(𝐼1, 𝐼2)𝐈′2 + 𝑓1(𝐼1, 𝐼2)𝐁 + 𝑔1(𝐼1, 𝐼2)(tr 𝐃)𝐈′2 + 𝑔2(𝐼1, 𝐼2)(tr 𝐃)𝐁

+ 𝑔3(𝐼1, 𝐼2)tr (𝐃 ⋅ 𝐁)𝐈′2 + 𝑔4(𝐼1, 𝐼2)tr (𝐃 ⋅ 𝐁)𝐁 + 𝑔6(𝐼1, 𝐼2)𝐃. (25)

with new coefficients 𝑔𝑘. Since here we have 2D tensors, this representation of isotropic linearly viscous material is more simple
than its 3D counterpart, see Eq. (41.8) in Truesdell and Noll (2004).

Considering infinitesimal deformations Eqs. (16) with (17) or (25) can be transformed to linear surface viscoelasticity with
integral or differential form of governing equations. For example, Eq. (25) became

𝐒 = 𝜆𝑠𝐈2tr 𝐞 + 2𝜇𝑠𝐞 + 𝜆𝑣𝐈2tr 𝐞̇ + 2𝜇𝑣𝐞̇, (26)

where 𝐞 = 1
2

(

∇𝜅𝐮 ⋅ 𝐈2 + 𝐈2 ⋅ (∇𝜅𝐮)𝑇
)

is the surface strain tensor. Eq. (26) is a surface analogy of the Kelvin–Voigt model of 3D
viscoelasticity, see e.g. Christensen (1971). Note that here we have four material parameters that are the surface Lamé moduli 𝜆𝑠
and 𝜇𝑠, and viscosity moduli 𝜆𝑣 and 𝜇𝑣.

3. Antiplane surface waves

As an example, let us consider anti-plane surface waves in an elastic half-space with viscoelastic surface stresses. Let it takes the
volume 𝑋2 ≤ 0, where 𝑋1, 𝑋2, and 𝑋3 are the Cartesian coordinates with corresponding unit base vectors 𝐢𝑘, so 𝐍 = 𝐧 = 𝐢2, see
ig. 1. In the following we restrict ourselves to infinitesimal deformations and isotropic material behaviour. So in the bulk we have
ooke’s law

𝐓 = 2𝜇𝜺 + 𝜆𝐈tr 𝜺, 𝜺 = 1
2
(

∇𝜅𝐮 + (∇𝜅𝐮)𝑇
)

, (27)

where 𝜆 and 𝜇 are the Lamé moduli, and we use (26) as constitutive equation for the surface stresses.
Let us note that anti-plane shear gives the simplest example of motions (Achenbach, 1973). The displacement vector has the

form

𝐮 = 𝑢(𝑋 ,𝑋 , 𝑡)𝐢 . (28)
4
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Fig. 1. Elastic half-space with viscoelastic coating.

From (28) it follows that

∇𝜅𝐮 = ∇𝜅𝑢 ⊗ 𝐢3, ∇𝑠𝐮 = 𝑢,1 𝐢1 ⊗ 𝐢3,

𝜺 = 1
2
(∇𝜅𝑢 ⊗ 𝐢3 + 𝐢3 ⊗ ∇𝜅𝑢), 𝐞 = 1

2
(

𝑢,1 𝐢1 ⊗ 𝐢3 + 𝑢,1 𝐢3 ⊗ 𝐢1
)

,

where 𝑢,𝜂 =
𝜕𝑢
𝜕𝑋𝜂

, and 𝜂 = 1, 2. In this case we have

𝐓 = 2𝜇𝜺, 𝐒 = 2𝜇𝑠𝐞 + 2𝜇𝑣𝐞̇, (29)

As a result, equation of motion (6) takes the form of wave equation

𝜇𝛥𝑢 = 𝜌𝑢̈, 𝛥𝑢 = 𝑢,11 +𝑢,22 , (30)

whereas the boundary condition (8) transform into

𝜇𝑢,2 = 𝜇𝑠𝑢,11 +𝜇𝑣𝑢̇,11 −𝑚𝑢̈ at 𝑋2 = 0. (31)

Following Eremeyev et al. (2016) we are looking for a solution in the harmonic form

𝑢 = 𝑈 (𝑋1, 𝑋2)𝑒−𝑖𝜔𝑡, (32)

where 𝜔 is the angular velocity and 𝑖 =
√

−1. Eqs. (30) and (31) take the form

𝜇𝛥𝑈 = −𝜌𝜔2 𝑈, 𝜇𝑈,2 = (𝜇𝑠 − 𝑖𝜔𝜇𝑣)𝑈,11 +𝑚𝜔2𝑈, (33)

Assuming that 𝑈 decays with the distance from the half-space surface 𝑋2 = 0, we find the solution of (33) in form

𝑈 = 𝑈0𝑒
√

𝑘2−𝜔2∕𝑐2𝑇𝑋2𝑒𝑖𝑘𝑋1 , (34)

where 𝑈0 is a complex amplitude, and 𝑐𝑇 =
√

𝜇∕𝜌 is the phase velocity of transverse waves (Achenbach, 1973). Note that for a
solution relating to a surface wave we assume that the following condition is satisfied

Re𝜘 > 0, 𝜘 =
√

𝑘2 − 𝜔2∕𝑐2𝑇 .

ereinafter Re and Im denote real and imaginary parts of a complex number, respectively. As a result, the solution of (30) takes
he form

𝑢 = 𝑈0𝑒
√

𝑘2−𝜔2∕𝑐2𝑇𝑋2𝑒𝑖(𝑘𝑋1−𝜔𝑡). (35)

Note that unlike the elastic case discussed in Eremeyev et al. (2016), here 𝑘 is a complex wavenumber, in general. So 𝑘 = 𝛼 + 𝑖𝛽
here 𝛼 = Re𝑘, and 𝛽 = Im𝑘 relates to an attenuation of the wave in direction of propagation. Substituting (35) into (33)2 we get

he complex dispersion relation

𝜇
√

𝑘2 − 𝜔2∕𝑐2𝑇 = −(𝜇𝑠 − 𝑖𝜔𝜇𝑣)𝑘2 + 𝑚𝜔2, (36)

that relates 𝛼 and 𝛽 with 𝜔. Typical dependencies of 𝛼 and 𝛽 on 𝜔 are shown in Fig. 2. Here 𝛼̄ = 𝛼𝑙𝑑 , 𝛽 = 𝛽𝑙𝑑 , 𝜔̄ = 𝜔𝑇𝑠, where
𝑙𝑑 = 𝑚∕𝜌 is the dynamic characteristic length and 𝑇𝑠 = 𝑙𝑑∕𝑐𝑠 is the characteristic time in the Gurtin–Murdoch model, respectively,

√

𝜇 ∕𝑚 is the surface shear wave velocity. Here we used 𝑐 = 𝑐 ∕4.
5

and 𝑐𝑠 = 𝑠 𝑠 𝑇
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Fig. 2. Dispersion relations. Solid and dashed curves corresponds to 𝛼−𝜔 and 𝛽−𝜔 dependencies, respectively. Labels 1, 2, 3, and 4 corresponds to the following
values of ratio 𝜇𝑣∕𝜇𝑠𝑇𝑠: 0.02, 0.1, 0.2, and 1, respectively. Longdashed curve corresponds to the elastic case.

In Fig. 2 the dashed curve corresponds to the elastic case (Eremeyev et al., 2016), i.e. when 𝜇𝑣 = 0. Let us recall that for a pure
elastic material the dispersion curve begins at point (0, 0) where it has a tangent given by 𝛼 = 𝜔∕𝑐𝑇 . Then it becomes almost parallel
to the line 𝛼 = 𝜔∕𝑐𝑠. So it lies in the sector bounded by these two lines. Note that at 𝜔 → ∞ we have almost non-dispersive waves.

In the case of viscoelastic materials dispersion curves begin again at (0, 0) having the same tangent 𝛼 = 𝜔∕𝑐𝑇 . Initially they are
following the elastic case. Then they significantly deviate. For a small viscosity dispersion curve almost follows elastic one in a
certain relatively large frequency range, see e.g. solid blue curve 1 in Fig. 2. For large viscosity the difference may be significant
even for a relatively small 𝜔, see solid blue curve 4 in Fig. 2. Curves 1, 2, 3, and 4 correspond to 𝜇𝑣 = 𝑞𝜇𝑠𝑇𝑠, where 𝑞 = 0.02, 0.1,
0.2, and 1, respectively. Obviously, the attenuation depends on viscosity, see dashed red curves in Fig. 2.

Let us also underline that viscosity changes decay of the solutions with the depth. Indeed, for an elastic material we exponentially
decaying solutions, whereas for a viscoelastic material one can see some oscillations with the depth. In Fig. 3 we provide graphs of
displacement as a function of 𝑋2. Here

𝑢̄ = Re𝑈 (0, 𝑋2)∕𝑈0 ≡ 𝑒Re𝜘𝑋2 cos
(

Im𝜘𝑋2
)

.

Depending on 𝜔 and 𝜇𝑣 one can see difference in the decay. Curves 1–4 correspond to the same values of 𝜇𝑣 as in Fig. 2. Fig. 3
(a) and (b) relate to 𝜔̄ = 5 and 𝜔̄ = 50, respectively. Dashed curves corresponds to elastic behaviour. For low viscosity and low
frequency the amplitude is almost coincide with the elastic case, see e.g. curve 1 in Fig. 3 (a). For higher frequencies the difference
is distinguishable, see again curve 1 in Fig. 3 (b). Unlike the elastic material there values of the depths where the displacement
vanishes.

4. Conclusions

We introduced surface finite viscoelasticity with surface stresses dependent on a deformation history. Some particular cases
of constitutive relations are presented. The latter include the linear finite surface viscoelasticity and viscoelastic materials of the
differential type. In the case of infinitesimal deformations these relations transform into linear surface viscoelasticity. As an example
we discussed propagation of anti-plane surface waves in an elastic half-space with a thin coating modelled within the surface Kelvin–
Voigt viscoelastic model. We demonstrated that even small dissipation essentially changes the behaviour of dispersion curves and the
decay with the depth. This is more pronounced for relatively large values of 𝜔. In a similar way other types of surface or interfacial
6

waves can be studied.
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Fig. 3. Displacement 𝑢̄ vs depth 𝑦 = |𝑋2∕𝑙𝑑 |. Other parameters are same as in Fig. 2.

Let us note that surface viscoelasticity model can be also useful for determination of elastic properties of inhomogeneous material
at small scales as was done in the case of surface elasticity, see e.g. Dai and Schiavone (2023), Duan et al. (2008), Eremeyev (2016),
Firooz et al. (2021), Jiang et al. (2022), Kushch and Mogilevskaya (2022), Mogilevskaya et al. (2021), Shugailo et al. (2023), Wang
et al. (2011), Yang et al. (2023), Zheng et al. (2021) and the references therein. In particular, within the finite surface viscoelasticity
initial/residual surface stresses can be easily introduced, that can be useful for description of surface stress relaxation phenomena.

In addition we also underline that the presented approach above can be extended towards other models of surface elasticity.
In particular, the model by Steigmann and Ogden (1997, 1999) can be extended to material with memory. Following Truesdell
and Noll (2004) the Steigmann–Ogden model can be treated as constitutive equation of a 2D material of grade 2. It could be
extended towards materials with memory as in Truesdell and Noll (2004). Moreover, for materials of differential type the derived
7

for viscoelastic Kirchhoff–Love shells surface Rivlin–Ericksen tensors can be used, see Zubov (1982).
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