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Abstract 

Accurate performance evaluation of microwave components can be carried out 

using full-wave electromagnetic (EM) simulation tools, routinely employed for circuit 

verification but also in the design process itself. Unfortunately, the computational cost of 

EM-driven design may be high. This is especially pertinent to tasks entailing 

considerable number of simulations (e.g., parametric optimization, statistical analysis). 

A possible way of alleviating these difficulties is utilization of fast replacement models, 

also referred to as surrogates. Notwithstanding, conventional modeling methods exhibit 

serious limitations when it comes to handling microwave components. The principal 

challenges include large number of geometry and material parameters, highly nonlinear 

characteristics, as well as the necessity of covering wide ranges of operating conditions. 

The latter is mandatory from the point of view of the surrogate model utility. This paper 

presents a novel modeling approach that incorporates variable-fidelity EM simulations 

into the recently reported nested kriging framework. A combination of domain 

confinement due to nested kriging, and low-/high-fidelity EM data blending through co-

kriging, enables the construction of reliable surrogates at a fraction of cost required by 

single-fidelity nested kriging. Our technique is validated using a three-section 

miniaturized impedance matching transformer with its surrogate model rendered over 

wide range of operating frequencies. Comprehensive benchmarking demonstrates 

superiority of the proposed method over both conventional models and nested kriging. 
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commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived 
Versions.
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1. Introduction

Contemporary microwave engineering heavily relies on full-wave 

electromagnetic (EM) simulation tools. Utilization of EM analysis is imperative in many 

situations, whenever simpler (analytical, equivalent network) models are unavailable or 

lack accuracy, e.g., due to the presence of strong cross-coupling effects [1]-[3]. Examples 

of such structures include compact components featuring tightly arranged layouts [4] or 

(Low Temperature Co-Firing) LTCC circuits [5]. One of the commonly executed EM-

driven tasks is design closure [6], i.e., the adjustment of the system parameters, aimed at 

improving the performance figures of interest. Its major bottleneck is a high 

computational cost of the process, especially when large numbers of simulations are 

involved (e.g., global search [7], [8] or tolerance-aware design [9]). 

Maintaining small size of components and devices (e.g., the fooprint area in the 

case of planar structures) is one of important design considerations of contemporary 

microwave engineering [10]-[14]. Miniaturized geometries, especially those implemented 

using slow-wave structures [15], [16] (e.g., compact microwave resonant cells, CMRCs 

[17], [18]) are often described by a large number of variables when compared to 

conventional transmission line (TL)-based circuit solutions. This incurs additional design 

challenges, in particular, an increased computational cost of parameter tuning [19], let 

alone the cost of design procedures involving massive simulations as mentioned 

previously. In some cases, the cost may be prohibitive when the design process is carried 

out directly at the level of full-wave simulations. 

A reduction of the computational overhead of simulation-based design procedures 

is therefore a practical necessity. Extensive research conducted towards this end includes 
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the development of strictly algorithmic approaches (e.g., incorporation of adjoint 

sensitivities [20], sparse Jacobian updates [21], both in the context of gradient search 

methods) but also utilization of fast surrogate models. Surrogate-assisted methods are 

increasingly popular due to their potentially high efficacy in terms of providing means for 

rapid design in various aspects (parametric optimization [22], [23], statistical design [24], 

etc.). Some of the techniques developed over the last two decades or so include numerous 

types of space mapping (e.g., [25], [26]), response correction techniques [27], [28], or 

feature-based optimizers [29]. These methods are typically used for local search 

purposes. In terms of global search, efficient global optimization (EGO) frameworks 

[30], [31] are employed with the surrogate model iteratively constructed through 

sequential sampling [32]. The latter is often configured to both improve the model 

predictive power over the parameter space and seek for the global optimum.  

An overall replacement of EM simulations by fast surrogate models (especially, 

the data-driven ones) is an attractive idea as it potentially enables low-cost execution of 

all sorts of simulation-based design procedures. Among many available modelling 

techniques, the following are particularly popular: polynomial regression [33], radial-

basis functions [34], neural networks [35], [36], support-vector regression [37], kriging 

[38], and polynomial chaos expansion [39]. Notwithstanding, conventional techniques are 

rather limited in the sense of not being able to operate over highly-dimensional parameter 

spaces, handling nonlinear responses (common for many microwave components), and 

rendering models valid over wide ranges of geometry/material parameters and operating 

conditions. The latter is essential from the point of view of the model utility.  
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Mitigating some of the aforementioned issues is possible to a certain extent using 

methods such as high-dimensional model representation (HDMR) [40], orthogonal 

matching pursuit [41], or variable-fidelity frameworks (co-kriging [42], two-stage 

Gaussian Process Regression [43], Bayesian model fusion [44]). As indicated in [45], an 

appropriate selection of the surrogate model domain is another crucial aspect of the 

modelling process. In most cases, the lower and upper bounds for the system variables 

determine the region of interest. This leads to intractably large domains if the surrogate is 

to cover broad ranges of operating conditions. However, regardless of the particular 

choice of performance figures, high quality designs are normally allocated within small 

regions of the interval-type-of domains. This is because the optimum parameter sets are 

highly correlated. A representative example is dimension scaling with respect to the 

operating frequency, which requires (more or less) synchronized adjustment of many 

circuit parameters. From the point of view of the surrogate model construction, operating 

outside such “high quality” regions is a waste of resources. On the other hand, 

identification of the promising subset and focusing the modelling process therein may 

lead to substantial computational savings. 

Recently, several methods exploiting this concept have been proposed in the 

literature, and referred to as constrained or performance-driven modelling [45]. In [46], 

focused on constrained modelling of microwave structures, the promising region of the 

parameter space was inferred from the pre-existing set of reference designs optimized for 

selected figures of interest. However, the number of performance figures in [46] was 

limited to one (the operating frequency); furthermore, the location of the reference 

designs was not arbitrary. The method of [47] lifted these restrictions. The primary 
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advantage of domain confinement is a dramatic reduction of its volume as compared to 

the original parameter space. This leads to a considerable reduction of the number of 

training data samples necessary to yield the surrogate. Unfortunately, the methods of [46] 

and [47] are characterized by complex geometries of the model domains, which limits 

their practical usefulness due to non-trivial implementation of design of experiments and 

model optimization. The recently proposed nested kriging framework [48] effectively 

addresses both issues through the establishment of a one-to-one mapping between the 

surrogate domain and a unity hypercube. 

This work describes a novel development of low-cost and reliable surrogate 

modelling of microwave components by incorporating variable-fidelity EM simulations 

into the nested kriging of [48]. The overall objective is a further reduction of the CPU 

cost of surrogate model construction. This is achieved by operating within the confined 

domain of the nested kriging while blending densely sampled low-fidelity and sparsely 

sampled high-fidelity data using co-kriging [42]. The efficacy of the proposed procedure 

is demonstrated using a miniaturized impedance matching transformer. Comprehensive 

numerical studies indicate superiority of our method over both conventional data-driven 

surrogates (kriging, radial-basis functions) and the nested kriging involving high-fidelity 

data only. Supplementary application case studies (parametric optimization) confirm 

utility of the variable-fidelity surrogates rendered at the cost corresponding to less than 

two hundred high-fidelity simulations of the transformer structure.  
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2. Modeling Procedure 

The purpose of this section is to briefly formulate the two fundamental 

components of the proposed modeling methodology, i.e., the nested kriging framework of 

[48], and co-kriging [42]. The role of the former is to establish the surrogate model 

domain, whereas the latter permits blending the low- and high-fidelity EM simulation 

data acquired within that domain. The section is concluded with the outline of the entire 

modeling flow. Section 3 presents demonstration examples and benchmarking. 

 
2.1. Nested Kriging 

  The nested kriging modeling [48] is founded on the idea of constraining the 

surrogate model domain to a small region containing the designs that are of high-quality 

with respect to the set of performance figures pertinent to the structure at hand. This way, 

considerable computational savings can be achieved at the stage of training data 

acquisition: the volume of the aforementioned region is miniscule compared to that of the 

usual domain, here, denoted as X, and delimited by the lower bounds l and upper bounds u 

for the system variables. 

  The method of [48] constructs two kriging interpolation models. The first-level 

surrogate is employed to establish the domain. The second-level model is the actual 

surrogate. The figures of interest are denoted as fk, k = 1, …, N. These could be the target 

values of the operating frequencies, bandwidth, power split ratio, etc., but also material 

parameters (e.g., dielectric permittivity or height of the substrate the structure is 

implemented on). The objective space F is defined by the ranges fk.min  fk
(j)  fk.max, 

k = 1, …, N, to be covered by the surrogate. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


  The first-level surrogate sI(f) is constructed to map F into the design space X. It is 

identified using the data set {f(j),x(j)}, j = 1, …, p, as the training points, where x(j) 

= [x1
(j) … xn

(j)]T, are the reference designs optimized w.r.t. the performance vectors f(j) = 

[f1
(j) … fN

(j)], see also Fig. 1. These can be prepared beforehand, specifically for the 

purpose of surrogate model construction, or may be available from the prior design work 

concerning the same microwave structure.  

The goal is to set up the surrogate model in the region O(F)  X containing all 

designs that are optimum with respect to all f  F. The image sI(F)  X of the objective 

space through the first-level surrogate provides an approximation of O(F); however, its 

accuracy is limited because the number of reference designs is normally small (note that 

x(j)  O(F) for all j = 1, …, p, because these designs are optimized for f(j)  F). To ensure 

that the domain encapsulates the entire O(F), sI(F) needs to be enlarged. The nested 

kriging framework achieves this by an orthogonal extension of sI(F) towards its normal 

vectors. Let us denote by {vn
(k)(f)}, k = 1, …, n – N, an orthonormal basis of vectors 

normal to sI(F) at the objective vector f. Furthermore, we define xmax = max{x(k), k = 1, 

…, p}, xmin = min{x(k), k = 1, …, p}, and xd = xmax – xmin as the parameter variations 

within sI(F). Using these, the extension coefficients can be defined as 

(1) ( )
1( ) [ ( ) ... ( )] 0.5 | ( ) | ... | ( ) |

TT n N
n N d n d nT  
     α f f f x v f x v f                      (1) 

where T is a thickness parameter; k determine the bounds of the domain XS, located 

between manifolds M+ and M (cf. Fig. 1(b)) 

   ( )

1
: ( ) ( )

n N k
I k nk

M X 
 
   x x s f f v f                               (2) 

The surrogate model domain XS can be then defined as follows 
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( )

1

( ) ( ) ( ) : ,

1 1, 1,...,

n N
k

I k k n
kS

k

F
X

k n N

 







      
      

x s f f v f f
                                (3) 

  The actual (second-level) kriging interpolation surrogate is established in XS. The 

training data set is {xB
(k),R(xB

(k))}k = 1, …, NB, and it is acquired by allocating the points xB
(k) 

 XS and evaluating the EM-simulation model R of the structure of interest. The design 

of experiments procedure as well as surrogate model optimization have been described in 

[48]. Again, the major advantage of setting up the surrogate within XS rather than in X 

should be reiterated, which is a significantly smaller number of data samples required to 

render a reliable model without formally restricting the ranges of geometry parameters 

nor the ranges of the operating conditions. 

 
2.2. Co-Kriging 

  The second component of the proposed modeling procedure is co-kriging briefly 

recalled in this section. Its purpose is to blend information from the low- and high-fidelity 

EM simulation models, thereby permit further reduction of the computational cost of the 

training data acquisition.  

 

f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (k)

   x1

v1
(k)

M+

XS

x3

x2

sI(F)

sI(f
(k))

M-

 

                                                (a)                                                                 (b) 

Fig. 1. Nested kriging modeling [48]: (a) reference designs and the objective space F; (b) the 
image sI(F) of the first-level surrogate and the normal vector v1

(k) at f(k); the manifolds M– and M+ 
as well as the surrogate model domain XS defined as the orthogonal extension of sI(F). 
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  To begin with, we recall kriging interpolation. We denote by XB.KR = {x1, x2, …, 

xNB} a set of training data samples and by Rf(XB.KR) the corresponding set of high-fidelity 

model responses. The kriging surrogate model sKR(x) is defined as 

1
.( ) ( ) ( ( ) )KR B KRM r X     s x x f F                                   (4) 

in which M is a NB  t model matrix of the training set XB.KR and F is a 1  t vector of the 

test node x and t is the number of terms used in the regression function [42]. The vector  

of the size t  1 stands for the regression function coefficients 

1 1 1
. . . .( ) ( )T

B KR B KR B KR B KRX X X X      f                   
            

(5) 

whereas 
1( ) ( ( , ),..., ( , )) x x x x x KRN
KR KRr  is an 1  NB vector of correlations between the 

point x and the training set XB.KR, and  is a NB  NB correlation matrix where the entry 

of the i-th row and j-th column is given by i,j = (xKR
i,xKR

j). The particular choice of the 

correlation function (,) plays an important role in creating a reliable kriging surrogate. 

A widely used class of correlation functions dependent only on the distance between any 

two points (here x and x’) is defined by: 

 1
( , ') exp | ' | 


  x x

n k k p
kk

x x                                          (6) 

where n is the number of the design variables and the parameter p determines the 

prediction ‘smoothness’, whereas k, k = 1, …, n, are hyperparameters [42].  

Usually, p is constant, whereas the hyperparameters are determined using 

Maximum Likelihood Estimation (MLE) [42], i.e., by solving  

2
1 ˆ( ,..., ) arg min ( / 2) ln( ) 0.5ln(| |)n BN                                  (7)

 

where  

2 1
. .ˆ ( ( ) ) ( ( ) ) /T

f B KR f B KR BX F X F N     R R ,                          (8) 
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and || is the determinant of . Gaussian correlations functions corresponding to p = 2 are 

suitable for many practical problems. Assuming that no extrapolation capabilities are 

required, the regression function can be set constant, i.e., F = [1 … 1]T and M = 1. 

Co-kriging can be considered an extension of kriging interpolation and it allows for 

combining information from the low- and high-fidelity computational models into a single 

surrogate. This is done by exploiting correlations between the models of various fidelities. 

Implementation-wise, two kriging models are sequentially produced [42]:  

 Model sKRc constructed using he low-fidelity data samples (XB.KRc, Rc(XB.KRc)), and  

 Model sKRd model generated on the residuals of the high- and low-fidelity samples 

(XB.KRf, r), where r = Rf(XB.KRf) – Rc(XB.KRf), where  is part of the MLE of the 

second model.  

In case the low-fidelity model responses Rc(XB.KRf) are not available, they can be 

approximated using the first model as Rc(XB.KRf)  sKRc(XB.KRf). 

The particular configuration of the kriging models such as the correlation and 

regression functions can be decided upon independently for sKRc and sKRd. Furthermore, 

both models use (6) as a correlation function together with constant regression function 

F = [1 1 … 1]T and M = 1. 

The ultimate co-kriging surrogate sCO(x) is defined as  

 1( ) ( ) ( )CO M r     s x x r F                                        (9) 

In (9), the block matrices M, F, r(x) and  can be written as a function of the two kriging 

models sKRc and sKRd: 

2 2 2 2
.( ) [ ( ), ( , ) ( )]

fc c c c B KR d dr r r X r          x x x x                          (10) 
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2 2
. .

2 2 2
. .

( , )

0 ( , )
c f

f f

c c c c B KR B KR

c c B KR B KR d d

X X

X X

  

  

   
  

     
                             (11) 

0c

d d

F
F

F F
 

   
,       [ ]c dM M M                                        (12) 

in which (Fc, c, c, Mc) and (Fd, d, d, Md) are the matrices obtained from sKRc and sKRd, 

respectively; c
2 and d

2 are process variances, whereas c(,) and d(,) stand for the 

correlation matrices of two datasets with the optimized k parameters and correlation function 

of sKRc and sKRd, respectively. 

 
2.3. Nested Co-Kriging: Modeling Procedure 

  Figure 2 shows the flow diagram of the modeling procedure. In the first stage, the 

model domain XS is determined using the nested kriging of Section 2.1, whereas blending 

of low- and high-fidelity data samples is realized using co-kriging (cf. Section 2.2). In 

order to yield computational benefits, a larger number of the low-fidelity points 

supplements a small number of high-fidelity samples. The numerical experiments of 

Section 3 provide quantification of the effect of various proportions of the low-to-high-

fidelity points on the surrogate model predictive power. 

 

3. Verification Case Studies 

This section discusses validation of the modeling procedure of Section 2. It is 

based on a compact microstrip impedance matching transformer described by fifteen 

geometry parameters. The numerical experiments presented below investigate various 

setups concerning the numbers of low- and high-fidelity samples utilized to construct the 

nested co-kriging surrogates, as well as benchmarking against conventional surrogates 
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(kriging and radial basis functions) and nested kriging based on high-fidelity simulation 

data only. 

 
3.1. Case Study: Three-Section Miniaturized Impedance Matching Transformer 

  Consider a 50-to-100 ohm impedance matching transformer of Fig. 3. The circuit 

consists of three sections, all being CMRCs of Fig. 3(b). The structure is implemented on 

Taconic RF-35 substrate (r = 3.5, h = 0.76). The design parameters are x = [l1.1 l1.2 w1.1 

w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 l3.1 l3.2 w3.1 w3.2 w3.0]T. The computational models are 

implemented in CST Microwave Studio. The high-fidelity model Rf contains around 

300,000 mesh cells and simulated in around 150 seconds. The low-fidelity model Rc has 

~100,000 cells with the simulation time of 60 seconds.  

 

EM solver

Low-fidelity 
model

High-fidelity 
model

Reference designs

Design of experiments 
(domain sampling)

Acquire low-
fidelity data

Acquire high-
fidelity data

Variable-fidelity model 
construction (co-kriging)

Surrogate model

Determine model domain 
(nested kriging)

 

Fig. 2. Flowchart of variable-fidelity modeling using nested co-kriging. 
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                                                     (a)                                                                  (b) 
Fig. 3. CMRC-based impedance transformer: (a) topology of a three-section structure, (b) 
compact cell (CMRC). 
 

3.2. Modeling Problem and Setup 

  The goal of the modeling process is construction of the surrogate that covers the 

operating bands [f1 f2] for 1.5 GHz ≤ f1 ≤ 3.5 GHz, and 4.5 GHz ≤ f2 ≤ 6.5 GHz. The first-

level model is obtained using nine reference designs, optimized for all combinations of f1 

 {1.5, 2.5, 3.5} GHz and f2  {4.5, 5.5, 6.5} GHz. The lower and upper bounds for 

design variables, l = [2.0 0.15 0.65 0.35 0.30 2.70 0.15 0.44 0.15 0.30 3.2 0.15 0.30 0.15 

0.30]T, and u = [3.4 0.50 0.80 0.55 1.90 4.00 0.50 0.67 0.50 1.55 4.5 0.26 0.46 0.27 

1.75]T, are based on the reference points. It should be noted that modeling the three-

section transformer is a challenging problem because of a large number of variables and 

wide ranges of the geometry parameters: the average ratio of the upper and lower bounds 

is around four.  

 Table 1 reports the numerical results obtained for various combinations of the high- 

and low-fidelity samples Nf and Nc, specifically: Nf = 20 and Nc = 400, Nf = 20 and Nc = 

800, Nf = 50 and Nc = 400, as well as Nf = 50 and Nc = 800. The results are compared to 

conventional surrogates as well as the nested kriging model [48]. It can be observed that 

the model predictive power is slightly better than the nested kriging model obtained for 

400 or 800 samples. Clearly, the benefit of using co-kriging is lower computational cost 

which is less around 200 equivalent high-fidelity evaluations for Nc = 400, and less than 
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400 equivalent high-fidelity evaluations for Nc = 800. Thus, the approach yields 

significant CPU savings despite the fact that the time evaluation ratio between Rf and Rc 

models is only 2.5. Figure 4 shows the transformer responses for the selected test designs, 

obtained for the model with 50 high-fidelity and 400 low-fidelity samples. A good visual 

alignment between the surrogate and the EM-simulated characteristics can be observed.  

 In order to demonstrate the nested co-kriging surrogate model utility, the circuit of 

Fig. 3(a) has been optimized for several operating bandwidths. Table 2 gathers the 

numerical results, whereas Figure 5 shows the transformer characteristics at the initial 

and the optimized designs. It can be observed that the initial design produced by the first-

level surrogate is good in all considered design scenarios. At the same time, agreement 

between the surrogate and the EM simulated transformer response is reasonably good 

when evaluated at the surrogate-optimized design.  

 

 

|S
11

| [
dB

]

 

Fig. 4. Responses of the transformer of Fig. 3(a) at the selected test designs: EM model (—), 
nested co-kriging surrogate with Nf = 20 and Nc = 800 (o). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Responses of the two-section transformer optimized with the nested co-kriging surrogate 
(generated for Nf = 50 and Nc = 400) for various target operating bands: (a) f1 = 1.8 GHz, f2 = 5.2 
GHz, (b) f1 = 2.2 GHz, f2 = 5.1 GHz, (c) f1 = 2.4 GHz, f2 = 6.0 GHz, (d) f1 = 3.0 GHz, f2 = 6.5 
GHz. Shown are: initial design (- - -), nested co-kriging surrogate (o), EM-simulated response at 
the optimized design ().  
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Table 1. Modeling results for the three-section impedance transformer 

Number of    
training 
samples 

Relative RMS Error Relative RMS Error 

Conventional Models Nested 
Kriging 
Model 

Performance-driven modeling with nested co-
kriging [this work]* 

Kriging RBF 
Nf = 20 

Nc = 400 

Nf = 20 

Nc = 800 

Nf = 50 

Nc = 400 

Nf = 50 

Nc = 800 

50 49.1 % 56.2 % 17.3 % 

6.8 % 
[180#] 

5.4 % 
[340#] 

5.7 % 
[210#] 

4.9 % 
[370#] 

100 31.1 % 33.0 % 13.9 % 

200 25.9 % 27.5 % 10.3 % 

400 20.4 % 23.1 % 7.4 % 

800 15.7 % 16.8 % 6.1 % 
* Nf and Nc stand for the number of high- and low-fidelity samples, respectively. 
# The number is brackets is the total equivalent number of Rf samples used to set up the surrogate (calculated as Nf + 
Nc/m where m is the time evaluation ratio between Rf and Rc). 
 

 
Table 2. Optimization results for the three-section impedance transformer 

Target           
operating 

band 
Geometry parameter values [mm] 

f1 
[GHz]

f2 
[GHz]

l1.1 l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 l3.1 l3.2 w3.1 w3.2 w3.0 

1.8 5.2 3.13 0.19 0.77 0.44 0.68 3.76 0.25 0.56 0.20 0.46 4.05 0.16 0.34 0.17 1.24 

2.2 5.1 2.90 0.22 0.78 0.52 0.95 3.78 0.23 0.58 0.22 0.64 4.00 0.16 0.34 0.17 1.00 

2.4 6.0 2.16 0.31 0.77 0.46 0.93 3.23 0.16 0.68 0.14 0.50 3.37 0.16 0.38 0.15 0.33 

3.0 6.5 2.23 0.32 0.79 0.51 0.97 3.21 0.16 0.66 0.14 0.55 3.35 0.15 0.36 0.15 0.34 

 

 
4. Conclusion 

The paper introduced a methodology for low-cost and reliable surrogate modeling 

of miniaturized microwave components. The two keystones of the approach are the 

nested kriging modeling framework and the employment of variable-fidelity 

electromagnetic simulations, incorporated into the surrogate by means of co-kriging. 

Consequently, our methodology combines the benefits that arise from confining the 

domain of the surrogate with further computational savings coming due to acquisition of 
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most of the training data samples at the low-fidelity simulation level. The presented 

technique has been thoroughly validated using a miniaturized impedance matching 

transformer described by fifteen geometry parameters. The obtained results demonstrate 

that accurate models can be constructed over wide ranges of operating conditions using 

small training data sets. The predictive power of the nested co-kriging surrogates is 

comparable or better than that of the nested kriging using single-fidelity simulations yet 

achieved at a fraction of the CPU cost required by the latter. At the same time, the 

practical utility of our approach has been validated through application case studies 

(transformer optimization). The presented modeling technique may be useful for handling 

problems featuring highly-dimensional parameter spaces and nonlinear characteristics, 

especially when the surrogate is to be valid over broad ranges of the system parameters 

and operating conditions, i.e., the cases which are beyond the reach of conventional 

methods. 
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