
Review Article
Survey of Methodologies, Approaches, and Challenges in Parallel
Programming Using High-Performance Computing Systems

Paweł Czarnul ,1 Jerzy Proficz,2 and Krzysztof Drypczewski 2

1Dept. of Computer Architecture, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,
Gdańsk, Poland
2Centre of Informatics–Tricity Academic Supercomputer & Network (CI TASK), Gdansk University of Technology,
Gdańsk, Poland

Correspondence should be addressed to Paweł Czarnul; pczarnul@eti.pg.edu.pl

Received 11 October 2019; Accepted 30 December 2019; Published 29 January 2020

Guest Editor: Pedro Valero-Lara

Copyright © 2020 Paweł Czarnul et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,is paper provides a review of contemporary methodologies and APIs for parallel programming, with representative tech-
nologies selected in terms of target system type (shared memory, distributed, and hybrid), communication patterns (one-sided
and two-sided), and programming abstraction level. We analyze representatives in terms of many aspects including programming
model, languages, supported platforms, license, optimization goals, ease of programming, debugging, deployment, portability,
level of parallelism, constructs enabling parallelism and synchronization, features introduced in recent versions indicating trends,
support for hybridity in parallel execution, and disadvantages. Such detailed analysis has led us to the identification of trends in
high-performance computing and of the challenges to be addressed in the near future. It can help to shape future versions of
programming standards, select technologies best matching programmers’ needs, and avoid potential difficulties while using high-
performance computing systems.

1. Introduction

In today’s high-performance computing (HPC) landscape,
there are a variety of approaches to parallel computing that
enable reaching the best out of available hardware systems.
Multithreaded and multiprocess programming is necessary
in order to make use of the growing computational power of
such systems that is available mainly through the increase of
the number of cores, cache memories, and interconnects
such as Infiniband or NVLink [1]. However, existing ap-
proaches allow programming at various levels of abstraction
that affects ease of programming, also through either one-
sided or two-sided communication and synchronization
modes, targeting shared or distributed memory HPC sys-
tems. In this work, we discuss state-of-the-art methodologies
and approaches that are representative of these aspects. It
should be noted that we describe and distinguish the ap-
proaches by programming methods, supported languages,
supported platforms, license, ease of programming,

deployment, debugging, goals, parallelism levels, and con-
structs including synchronization. ,en, based on detailed
analysis, we present current trends and challenges for de-
velopment of future solutions in contemporary HPC
systems.

Section 2 motivates this paper and characterizes the
considered APIs in terms of the aforementioned aspects.
Subsequent sections present detailed discussion of APIs that
belong to particular groups, i.e., multithreaded processing in
Section 3, message passing in Section 4, Partitioned Global
Address Space in Section 5, agent-based parallel processing
in Section 6 and MapReduce in Section 7. Section 8 provides
detailed classification of approaches. Section 9 discusses
trends in the development of the APIs including latest
updates and changes that correspond to development di-
rections as well as support for hybrid processing, very
common in contemporary systems. Based on our extensive
analysis, we formulate challenges in the field in Section 10.
Section 11 presents existing comparisons, especially

Hindawi
Scientific Programming
Volume 2020, Article ID 4176794, 19 pages
https://doi.org/10.1155/2020/4176794

mailto:pczarnul@eti.pg.edu.pl
https://orcid.org/0000-0002-4918-9196
https://orcid.org/0000-0002-4919-2168
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4176794


performance oriented, of subsets of the considered APIs for
selected practical applications. Finally, summary and
planned future work are included in Section 12.

2. Motivation

In this paper, we aim at identifying key processing para-
digms and their representatives for high-performance
computing and investigation of trends as well as challenges
in this field for the near future. Specifically, we distinguish
the approaches by the types of systems they target, i.e.,
shared memory, distributed memory, and hybrid ones. ,is
aspect typically refers to workstation/server, clusters, and
systems incorporating various types of compute devices,
respectively.

Communication paradigms are request-response/two-
sided vs one-sided communication models. ,is aspect
defines the type of a parallel programming API.

Abstraction level in terms of detailed level of commu-
nication and synchronization routines invoked by compo-
nents is executed in parallel. ,is aspect is related to potential
performance vs ease of programming of a given solution, i.e.,
high performance at the cost of more difficult programming
for low level vs lower performance with easier programming
using high-level constructs. Specifically, this approach dis-
tinguishes the following groups: low-level communication
(just basic communication API), APIs with interthread,
interprocess synchronization routines (MPI, OpenMP, etc.)
that still requires much knowledge and awareness of the
environment as well as framework-level programming. ,e
authors realize that the presented assessment of ease of
programming is subjective; nevertheless, it is clear that aspects
like the number of lines of code to achieve parallelization are
correlated with technology abstraction level.

,e considered approaches and technologies have been
superimposed on a relevant diagram and shown in Figure 1.
We realize that this is our subjective selection, with many
other available technologies like C++11 thread.h library [2]
or,reading Building Blocks [3] (TBBs), High Performance
ParalleX [4] (HPX), and others. However, we believe that the
above collection consists of representative technologies/
APIs and can be used as a strong base for the further analysis.
Moreover, selection of these solutions is justified by the
existence of comparisons of subsets of these solutions
presented in Section 11 and discussed in other studies.

Data visualization is an important part of any HPC
system, and GPGPU technologies such as OpenGL and
DirectX received a lot of attention in recent years [5]. Even
though they can be used for general purpose computations
[6], the authors do not perceive those approaches to become
the main track of the HPC technology.

3. Multithreaded Processing

In the current landscape of popular parallel programming
APIs aimed at multicore and many-core CPUs, accelerators
such as GPUs, and hybrid systems, there are several popular
solutions [1] and descriptions of the most important ones in
the following.

3.1. OpenMP. OpenMP [7] allows development and exe-
cution of multithreaded applications that can exploit mul-
ticore and many-core CPUs within a node. Latest OpenMP
versions also allow offloading fragments of code to accel-
erators including GPUs. OpenMP allows relatively easy
extension of sequential applications into a parallel appli-
cation using two types of constructs: library functions that
allow determination of the number of threads executing a
region in parallel or thread ids and directives that instruct
how to parallelize or synchronize execution of regions or
lines of code. Mostly used directives include #pragma omp
parallel spawning threads working in parallel in a given
region as well as #pragma omp for allowing assignment of
loop iterations to threads in a region for parallel processing.
Various scheduling modes including static and dynamic
with predefined chunk sizes with a guided mode with a
decreasing chunk size are also available. It is also possible to
find out the number of threads and unique thread ids in a
region for fine-grained assignment of computations.
OpenMP allows for synchronization through constructs
such as critical sections, barrier, and atomic and reduction
clauses. Latest versions of OpenMP support a task model in
which a thread working in a parallel region can spawn tasks
which are automatically assigned to available threads for
parallel processing. A wait-directive imposing synchroni-
zation is also available [1].

3.2.CUDA. CUDA [8] allows development and execution of
parallel applications running on 1 or more NVIDIA GPUs.
Computations are launched as kernels that operate on and
produce data. Synchronization of kernels and GPUs is
performed through the host side. Parallel processing is
executed by launching a grid of threads which are grouped
into potentially many thread blocks. ,reads within a block
can be synchronized and can use faster albeit much smaller
shared memory, compared to the global memory of a GPU.
Shared memory can be used as a cache for intermediate
storage of data as can be registers. When operating on data
chunks, data can be fetched from global memory to registers

Communication

One sided

Sh
ar

ed

M
em

or
y

D
ist

rib
ut

ed

Two sided

OpenACC Pthreads

OpenMP CUDA
UNIX sockets
and pipelines

TCP/IP

MPI

Spark Hadoop

EMAS

OpenCL

PGAS

MPI 
one-sided

RDMA

U
CX

Figure 1: Abstraction level marked with colors: high, green;
middle, yellow; low, red.

2 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


and from registers to shared memory to allow data pre-
fetching. Similarly, RAM to GPU memory communication,
computations within a kernel and GPU memory to RAM
communication can be overlapped when operations are
launched to separate CUDA streams. On the other hand,
selection of the number of threads in a block can have an
impact on performance as it affects the total block re-
quirements for the number of registers and shared memory
and considering limits on the numbers of registers and
amount of shared memory per Streaming Multiprocessor
(SM), it can affect the number of resident blocks and level of
parallelization. Modern cards with high compute capability
along with new CUDA toolkit versions allow for dynamic
parallelism allowing launching a kernel from within a kernel
as well as Unified Memory between the host and the GPU.
CPU+GPU parallelization, similar to OpenCL, requires
cooperation with another multithreading CPU API such as
OpenMP or Pthreads. Multi-GPU systems can be handled
with the API which allows to set a given active GPU which
allows to do it from either one or many host threads to
handle such systems. NVIDIA provides CUDA MPS for
automatic overlapping and scheduling calls to even a single
GPU from many host processes using e.g. MPI for inter-
process communication.

3.3. OpenCL. OpenCL [9] allows development and execu-
tion of multithreaded applications that can exploit several
compute devices within a computing platform such as a
server with multiple multicore and many-core CPUs as well
as GPUs. Computations are launched as kernels that operate
on and produce data, within a so-called context defined for
one or more compute devices.Work items within potentially
many work groups execute the kernel in parallel. Memory
objects are used to manage data within computations.
OpenCL uses an analogous structure of an application to
CUDA where work items correspond to threads and work
groups to thread blocks. Similarly to CUDA, work items
within a group can be synchronized. Since OpenCL extends
the idea of running kernels on many and various (such as
CPUs and GPUs) devices, it typically requires many more
lines of device management code than a CUDA program.
Similarly to CUDA streams, OpenCL uses the concept of
command queues, into which commands such as data copy
or kernel launches can be inserted. Many command queues
can be used and execution can be synchronized by referring
to events that are associated with commands. Additionally,
the so-called local memory (similarly to what is called shared
memory in CUDA) can be shared among work items within
a single work group for fast access as cache-type memory.
Shared virtual memory allows us to share complex data
structures by the host and device sides.

3.4. Pthreads. Pthreads [1] allows development and execu-
tion of multithreaded applications on multicore and many-
core CPUs. Pthreads allows a master thread to call a function
that launches threads that execute code of a given function in
parallel and then join the execution of the threads. ,e
Pthreads API offers a wide array of functions, especially

related to synchronization. Specifically, mutexes are mutual
exclusion variables that can control access to a critical
section in the case of several threads. Furthermore, the so-
called condition variables along with mutexes allow a thread
to wait on a condition variable if a condition is not met.
Another thread that has changed the condition can wake up
a thread or several threads waiting for the condition. ,is
scheme allows implementation of, e.g., the producer-con-
sumer pattern without busy waiting. In this respect, Pthreads
allows expression of more complex synchronization patterns
than, e.g., OpenMP.

3.5. OpenACC. OpenACC [10] allows development and
execution of multithreaded applications that can exploit
GPUs. OpenACC can be seen as similar to OpenMP [11] in
terms of abstraction level but focused on parallelization on
GPUs through directives instructing parallelization of
specified regions of code, scoping of data, and synchroni-
zation as well as library function calls.,e basic #pragma acc
parallel directive specifies execution of the following block
by one or more gangs, each of which may run one or more
workers. Another level of parallelism includes vector lanes
within a worker. A region can be marked as one that can be
executed by a sequence of kernels done with #pragma acc
kernels while parallel execution of loop iterations can be
specified with #pragma acc loop. Directives such as #pragma
acc data can be used for data management with specification
of allocation copy and freeing space on a device. Reference
counters to data are used. An atomic #pragma acc directive
can be used for accessing data.

3.6. Java and Scala. Java [12] and Scala [13] are Java Virtual
Machine- (JVM-) [14] based languages; both are translated
into JVM byte codes and interpreted or further compiled into
a specific hardware instruction set.,us, it is natural that they
share common mechanisms for supporting the concurrent
program execution.,ey provide two abstraction levels of the
concurrency, the lower one which is related directly to op-
erating system/hardware-based threads of control and the
higher one, where the parallelism is hidden by the executor
classes, which are used to schedule and run user-defined tasks.

A Java thread can be used when direct control of the
concurrency is necessary. Its life cycle is strictly controlled by
the programmer; he or she can create and provide its
content: the list instructions to be executed concurrently,
monitor, interrupt, and finish. Additionally, API is provided
that supports thread interactions, including synchronization
and in-memory data exchange.

,e higher level concurrency objects support parallel
code execution in more complex applications, where the fine
level of thread control is not necessary, but parallelization
can be easily provided for larger groups of compute tasks.
Concurrent collections can be used for parallel access to in-
memory data, lock classes enable nonblocking access to
synchronized code, atomic variables help to minimize
synchronization and avoid consistency issues, and the ex-
ecutor classes manage thread pools for queuing and
scheduling of compute tasks.

Scientific Programming 3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4. Message Passing Processing

4.1. Low-Level Communication Mechanisms. ,e low-level
communication mechanisms are used by HPC frameworks
and libraries to enable data transmission and synchroni-
zation control. From the network point of view, the typical
approach is to provide a network stack, with the layers
corresponding to different levels of abstraction. TCP/IP is a
classical stack provided in the most modern systems, not
only in HPC. Usually, its main goal is to provide means to
exchange data with external systems, i.e., Internet access;
however, it can be also used to support computations di-
rectly as a medium of data exchange.

Nowadays, TCP/IP [15] can be perceived as a reference
network stack, although the ISO-OSI is still reminded to be
used for this purpose [16]. Figure 2(a) presents the TCP/IP
layer structure: link—the lowest one is responsible for han-
dling hardware, IP—the second one provides simple routed
transmission of the packages, transport—the third one is
usually used by the communication frameworks or directly by
the applications for either connection-based protocol:
Transmission Control Protocol (TCP) or for connection-less
datagram transmission: User Datagram Protocol (UDP).

,e other, quite often application/framework API used in
HPC, is Remote Direct Memory Access (RDMA) [17].
Similarly to the TCP/IP, its stack has layered structure and its
lowest layer link is responsible for handling the hardware.
Currently, two main hardware solutions are used: Infiniband,
the intraconnecting network characterized by multicast
support, high bandwidth, low latency, and an extended
version of Ethernet, with RDMA over Converged Ethernet v1
(RoCEv1) protocol [18], where multicast transmission is
supported in a local network (see Figure 2(b)).,e test results
presented in [19] showed performance advantages of a pure
Infiniband solution; however, introduction of RoCE enabled
great latency reduction in comparison with classical Ethernet.

Figure 2(c) presents RDMA over Converged Ethernet v2
(RoCEv2) [20], where RDMA is deployed over plain IP
stack, on top of the UDP protocol. In this case, some ad-
ditional requirements over the protocol implementation are
introduced: ordering of the transmitted messages and some
congestion control mechanism. Usage of UDP packets,
which are routable, implies that the communication is not
limited to one local network, and that is why RoCEv2 is
sometimes called Routable RoCE (RRoCE).

,e Unified Communication X (UCX) [21] is a network
stack providing a collection of APIs dedicated to support
different middleware frameworks: Message Passing Interface
(MPI) implementations, Partitioned Global Address Space
(PGAS) languages, task-based paradigms, and I/O bound
applications. ,is initiative is a combined effort of the US
national laboratories, industry, and academia. Figure 2(d)
presents its architecture with link layer split into hardware
and driver parts, where the former is responsible for physical
connection and the latter provides vendor-specific func-
tionality used by the higher layer, which is represented by
two APIs: UC-T supporting low level hardware-transport
functionality and UC-S with common utilities. Finally, the
highest layer provides UC-P collections of protocols, where

specific platforms or even applications can find the proper
communication and/or synchronization mechanisms.

,e UCX reference implementation presented promis-
ing results in performed benchmarks, showing the mea-
surements being very close to the underlying driver
capabilities, as well as providing the highest publicly known
bandwidth for a given hardware. ,e above results were
confirmed by benchmarks executed on OpenSHMEM [22]
PGAS platform, where, on the Cray XK, in most test cases,
UCX implementation outperformed the one provided by the
vendor [23]. In [24], comparison of performance of UC-P
and UC-T on InfiniBand is presented. Even though UC-T
was more efficient, optimizations proposed by Papado-
poulou et al. suggest that there is a room to improve per-
formance of higher level UC-P.

Finally, for the sake of completeness, we need to mention
UNIX sockets and pipeline mechanisms [25], which are
quite similar to TCP/IP ones; however, they work locally
within a boundary of a single server/workstation, managed
by the UNIX-based operating system. Usually, the sockets
support stream and datagrammessaging, similar to the TCP/
IP approach, but since they work on the local machine, the
data transfer is reliable and properly sequenced. ,e pipe-
lines provide a convenient method for data tunneling be-
tween the local processes and usually correspond to the
standard output and input streams.

4.2. MPI. ,e Message Passing Interface (MPI) [26] stan-
dard was created for enabling development and running
parallel applications spanning several nodes of a cluster, a
local network, or even distributed nodes in grid-aware MPI
versions. MPI allows communication among processes or
threads of an MPI application primarily by exchanging
messages—message passing. MPI is a standard, and there are
several popular implementations of the standard, examples
of which are MPICH [27] and OpenMPI [28].

Key components of the standard, in the latest 3.1 version,
define and include the following:

(1) Communication routines: point-to-point as well as
collective (group) calls

(2) Process groups and topologies
(3) Data types including calls for definition of custom

data types
(4) Communication contexts, intracommunicators, and

intercommunicators for communication within a
group or among groups of processes

(5) Creation of processes and management
(6) One-sided communication using memory windows
(7) Parallel I/O for parallel reading and writing from/to

files by processes of a parallel application
(8) Bindings for C and Fortran

5. Partitioned Global Address Space

Partitioned Global Address Space (PGAS) is an approach to
perform parallel computations using a system with

4 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


potentially distributed memory. ,e access to the shared
variables is possible by a special API, supported by a
middleware implementing data transmission, synchroniza-
tion, and possible optimization, e.g., data prefetch. Such a
way of communication, when the data used by many pro-
cesses are updated only by one, without activities taken by
the other is called one-sided communication.

,e classical example of PGAS realization is Open-
SHMEM [22] specification, which provides a C/Fortran API
for data exchange and process synchronization with dis-
tributed shared memory. Each process, potentially assigned
to a different node, can read and modify a common pool of
the variables as well as use a set of synchronization functions,
e.g., invoking barrier before data access. ,is initiative is
supported by a number of organizations including CRAY,
HPE, Intel, Mellanox, US Department of Defense, and Stony
Brook University. ,e latter one is responsible for an
OpenSHMEM reference implementation.

Another notable PGAS implementation is Parallel
Computing in Java [29] (PCJ), providing a library of
functions and dedicated annotations for distributed memory
access over an HPC cluster. ,e proposed solution uses Java
language constructs like classes, interfaces, and annotations
for storing and exchanging common data between the
cooperating processes, potentially placed in different Java
Virtual Machines on separated cluster nodes.,ere are other
typical PGAS mechanisms like barrier synchronization or
binomial tree-based vector reduction. ,e executed tests
showed good performance of the proposed solution in
comparison with an MPI counterpart.

In our opinion, the above selection consists of repre-
sentative examples of PGAS frameworks; however, there are
many more implementations of this paradigm, e.g., Chapel
[30] and X10 [31] parallel programming languages, Unified
Parallel C [32] (UPC), or C++ Standard Template Adaptive
Parallel Library [33] (STAPL).

6. Agent-Based Parallel Processing

Soft computing is a computing paradigm that allows solving
problems with an approach similar to the way a humanmind
reasons and provides good enough approximations instead
of precise answers. Soft computing includes many com-
puting techniques including machine learning, fuzzy logic,

Bayesian networks, and genetic and evolutionary algorithms.
A multiagent system (MAS) is a soft computing system that
consists of an environment and a set of agents. Agents
communicate, negotiate, and cooperate with each other and
act in way that can change their own state or the state of the
environment. MAS aims to provide solutions acquired from
knowledge base acquired from evolutionary process. Kisiel-
Dorohinicki et al. [34] distinguished the following com-
plexity-based MAS types: (1) traditional model based of
fuzzy logic in which evolution occurs on the agent level, (2)
evolutionary multiagent systems (EMAS) in which evolution
occurs on population level of homogeneous agents, and (3)
MAS with heterogeneous agents that use different types of
soft computingmethods. Kisiel-Dorohinicki [35] proposed a
decentralized EMAS model based on an M-Agent archi-
tecture. Agents have profiles that inform about actions
taken. Profiles consist of knowledge about environment,
acquired resources, goals, and strategies to be achieved. In
EMAS, similarly to organic evolution, agents can reproduce
(create new, sometimes changed agents) and die according
to agent fitness and changes in the environment. Selection
for reproduction and death is a nontrivial problem, since
agents have their autonomy and there is no global knowl-
edge. Agents obtain nonrenewable resource called life en-
ergy that is obtained as a reward or lost as a penalty. Energy
level specifies actions that agents can perform.

Several general purpose agent modeling frameworks were
proposed. Repast [36] is an open-source toolkit for agent
simulation. It provides functionality for data analysis with
special focus on agent storage, display, and behavior. Repast
scheduler is responsible for running user-defined “actions,”
i.e., agent actions. ,e scheduler orders actions in tree
structures that describe execution flow. ,is allows for dy-
namic scheduling during model tick, i.e., an action performed
by an agent generates a new action in response [37]. Repast
HPC aims to provide Repast functionality in an HPC envi-
ronment. It uses a scheduler that sorts agent actions (timeline
and relation between agent relations) and MPI to parallelize
computations. Each process typically handles one or more
agents and is responsible for executing local actions.,en, the
scheduler aggregates information for the current tick and
enables communication between related agents [38]. EUR-
ACE is an agent-based system project that tries to model
European Economy [39]. Agents communicate between each

Application/
framework

TCP/UDP
transport

IP

Link

(a)

Application/
framework

IB

IB transport

Link

(b)

Application/
framework

UDP

IP

IB transport

Link

(c)

Application/
framework

UC-P

UC-T/UC-S

Drivers

Hardware

(d)

Figure 2: Main network stacks used in HPC: (a) TCP/IP, (b) RDMA over Infiniband/RoCEv1, (c) RDMA over RoCEv2, and (d) UCX.

Scientific Programming 5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


other by sending messages. To reduce the amount of data
exchanged between agents, it groups them into local groups. It
leverages the idea that agents will typically communicate with
a small number of other agents that should be processed as
closely as possible (i.e., different processes on the same
machine instead of different cluster nodes).

7. MapReduce Processing

7.1.ApacheHadoop. Apache Hadoop is a programming tool
and framework allowing distributed data processing. It is an
open source implementation of Google’s MapReduce [40].
,e Hadoop MapReduce programming model is dedicated
for processing large amounts of data. Computation is split
into small tasks that are executed in parallel in the machines
of the cluster. Each task is responsible for processing only
small part of data and thus reducing resource requirements.
,is approach is very scalable and can be used both on high
end and commodity hardware. Hadoop handles all typical
problems connected with data processing like fault tolerance
(repeating computation that failed), data locality, schedul-
ing, and resource management.

First Hadoop versions were designed and tailored for
handling web crawler processing pipelines which provided
some challenges for adoption of MapReduce for wider types
of problems. Vavilapalli et al. [41] describe design and ca-
pabilities of Yet Another Resource Negotiator (YARN) that
aims to disjoin resource management and programming
model and provide extended scheduling settings. YARN
moves from original architecture to match modern chal-
lenges such as better scalability, multiuser support (“mul-
titenancy”), serviceability (ability to perform a “rolling
upgrade”), locality awareness (moving computation to data),
reliability, and security. YARN [42] also includes several
types of basic mechanisms for handling resource requests:
FAIR, FIFO, and capacity schedulers.

Apache Hadoop was deployed by Yahoo in early 2010s
and achieved high utilization on a large cluster. Nevertheless,
energy efficiency was not satisfactory, especially when heavy
loads were not present. Leverich and Kozyrakis [43] pointed
out that (due to its replication mechanism) Hadoop Dis-
tributed Files System (HDFS) precluded scaling down
clusters. ,e authors proposed a solution in which a cluster
subset must contain blocks of all required data, thus allowing
processing only on this subset of nodes. ,en, additional
nodes can be added if needed and removed when load is
reduced. ,is approach allowed for reducing power con-
sumption even up to 50% but the achieved energy efficiency
was accompanied with diminished performance.

Advancements in high-resolution imaging and decrease
in cost of computing power and IoT sensors lead to sub-
stantial growth in the amount of generated spatial data. Aji
et al. [44] presented Hadoop-based geographical informa-
tion system (GIS) for warehousing large-scale spatial
datasets that focuses on expressive and scalable querying.
,e proposed framework parallelizes spatial queries and
maps them to MapReduce jobs. Hadoop GIS includes
mechanism for boundary handling especially in context of
data partitioning.

In recent years, several algorithms extending capabilities
of Hadoop MapReduce were proposed [45]. Hadoop
schedulers do not allow setting time constraints for job
execution. Kc and Anyanwu [46] present a scheduling al-
gorithm for meeting deadlines that ensures that only jobs
that can finish in user-defined time frame are scheduled.,e
algorithm takes into consideration the number of available
map and reduces task slots for a job that has to process the
set amount of data and estimates if the deadline can be kept
on the cluster of a predefined size. Ghodsi et al. [47] pro-
posed the Domain Resource Fairness (DRF) allocation al-
gorithm for providing fair share in a system with
heterogeneous resources (e.g., two jobs may require similar
memory, but different amount of CPU time). DRF aims to
provide dominant share, i.e., demands weight which mostly
depends onmax-min fairness of dominant resource. Longest
Approximate Time to End (LATE) [48] scheduling policy
aims to offer better performance for heterogeneous clusters.
LATE does not assume that that tasks progress linearly or
that each machine in cluster has the same performance
(which is important in virtualized environments). In case of
tasks that perform slower than expected (“stragglers”),
Hadoop runs duplicate (“speculative”) task on different
nodes to speed up processing. LATE improves the heuristics
that recognize stragglers by taking into consideration not
only the current progress of the task but also the progress
rate.

7.2. Apache Spark. Hadoop MapReduce became a very
popular platform for distributed data processing of large
datasets. Even though its programming model is not suitable
for several types of applications. An example of those would
be interactive operations on data sets such as data mining or
fast custom querying and iterative algorithms. In the first
case, intermediate processing results could be saved in
memory instead of being recomputed, thus improving
performance. In the second case of input data, iterative map
tasks read input data for each iteration, thus requiring re-
petitive, costly disk operations.

Apache Spark is a cluster computing framework
designed to solve the aforementioned issues and allow
MapReduce style operations on streams. It was proposed in
2010 [49] by AMPLab and later became Apache Foundation
project. Similarly to MapReduce, the Spark programming
model allows the user to provide directed acyclic graph of
tasks which are executed on the machines of the cluster.

,e most important part of Spark is the concept of a
Resilient Distributed Dataset (RDD) [50], which represents
an abstraction for a data collection that is distributed among
cluster nodes. RDD provides strong typing and ability to use
lazily evaluated lambda functions on the elements of the
dataset.

,e Apache Spark model is versatile enough to allow us
to run diverse types of applications and many big data
processing platforms run heterogeneous computing hard-
ware. Despite that, most big data oriented schedulers expect
to run in an homogeneous environment both in context of
applications and hardware. Heterogeneity-Aware Task

6 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Scheduler RUPAM [51] takes into consideration not only
standard parameters like CPU, RAM, and data locality but
also include parameters like disk type (HDD/SDD), avail-
ability of GPU or accelerator, and access to remote storage
devices. RUPAM reduced execution time up to 3.4 times in
the tested cluster.

Spark allows multiple tasks to be run on a machine in the
cluster. To improve performance, the colocation strategymust
take into account characteristics of task’s resource require-
ments. For example, if a task receives more RAM that it
requires, the cluster throughput is reduced. If a task does not
receive enough memory, it will not be able to finish, thus also
affecting total performance. Due to this, developers often
overestimate their requirements from schedulers.,e strategy
used by typical colocation managers to overcome these
problems requires detailed resource usage data for each task
type provided in situ or gathered from statistical or analytical
models. Marco et al. [52] suggest a different approach using
memory aware task colocation. Using machine learning, the
authors created an extensivemodel for different types of tasks.
,e model is used during task execution to estimate its be-
havior and future resource requirements. ,e proposed so-
lution increases average system throughput over 8x.

Similarly to Hadoop MapReduce, Spark recognizes tasks
for which execution times are longer that expected. To
improve performance, Spark uses speculative task execution
to launch duplicates of slower tasks so that job can finish in a
timely manner. ,is algorithm does not recognize sluggers,
i.e., machines that run slower than other nodes in the cluster.
To solve this problem, Data-Based Multiple Phases Time
Estimation [53] was proposed. It provides Spark with in-
formation about estimated time of tasks which allows
speculative execution to avoid slower nodes and increase of
execution time up to 10.5%.

8. Classification of Approaches

In order to structure the knowledge about the approaches
and exemplary APIs representing the approaches, we pro-
vide classifications in three groups, by

(1) Abstraction level, programming model, language,
supported platforms and license in Table 1—we can
see that approaches at a lower level of abstraction
support mainly C and Fortran, sometimes C++ while
at a higher level distributed ones, Java/Scala

(2) Goals (performance, energy, etc.), ease of pro-
gramming, debugging, and deployment as well as
portability in Table 2—we can see that ease of
programming, debugging, and deployment increase
with the level of abstraction

(3) Level of parallelism, constructs expressing parallel-
ism, and synchronization in Table 3—the latter ones
are easily identified and are supported for all the
presented approaches

We note that classification of the approaches and APIs in
terms of target system types, distributed and shared memory
systems, is shown in Figure 1. ,e APIs targeting

accelerators are intentionally regarded as shared memory
referring to the device memory.

9. Trends in Scientific Parallel Programming

,ere are several sources that observe changes in the HPC
arena and discuss potential problems to be solved in the near
future. In this section, we collect these observations and
then, along with observations, build towards formulation of
challenges for the future in the next section.

Jack Dongarra underlines the progress in HPC hardware
that is expected to reach the EFlop/s barrier in 2020-2021
[56]. It can be observed that most of the computational
power in today’s systems is grouped in accelerators. At the
same time, old benchmarks do not fully represent current
loads. Furthermore, benchmarks such as HPCG obtain only
a small fraction of peak performance of powerful HPC
systems today.

HPC can now be accessed relatively easily in a cloud and
GPUs and specialized processors like tensor processing units
(TPU) addressing artificial intelligence (AI) applications have
become the focus with edge computing, i.e., the need for
processing nearmobile users being important for the future [57].

Energy-aware HPC is one of the current trends that can
be observed in both hardware development as well as
software solutions, both at the scheduling and application
levels [58]. When investigating performance vs energy
consumption tradeoffs, it is possible to find nonobvious (i.e.,
nondefault) configurations using power capping (i.e., other
than the default power limit) for both multicore CPUs [59]
as well as GPUs [60]. However, optimal configurations can
be very different, depending on both the CPU/GPU types as
well as application profiles.

A high potential impact of nonvolatile RAM (NVRAM)
on high-performance computing has been confirmed in
several works. ,e evaluation in [61] shows its potential
support for highly concurrent data-intensive applications
that exhibit big memory footprints. Work [62] shows a
potential for up to 27% savings in energy consumption. It
has also been shown that parallel applications can benefit
from NVRAM used as an underlying layer of MPI I/O and
serving as a distributed cache memory, specifically for ap-
plications such as multiagent large-scale crowd simulations
[63], parallel image processing [64], computing powers of
matrices [65], or checkpointing [66].

Trends in high-performance computing in terms of
software can also be observed by following recent changes to
the considered APIs. Table 4 summarizes these changes for
the key APIs along with version numbers and references to
the literature where these updates are described.

In the network technologies, we can see strong com-
petition in performance factors, where especially the
bandwidth is always a hot topic. New hardware and stan-
dards for Ethernet speeds beats subsequent barriers: 100,
400, . . . GBps as well as the InfiniBand with its 100, 200, . . .

GBps. ,us, this rapid development gives the programmers
opportunities to introducemore andmore parallel solutions,
which are well scalable even for large sizes of the problems.
On the other hand, such race does not have a great impact on

Scientific Programming 7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 1: Target/model classification of technologies.

Technology/
API

Abstraction
level/group Programming model Programming

language
Supported platforms/target

parallel system License/standard

OpenMP Library Multithreaded application C/C++/Fortran

Heterogeneous system with
CPU(s), accelerators including
GPU(s) [54], supported by,

e.g., gcc

OpenMP is a standard
[7]

CUDA Library

CUDA model,
computations launched as

kernels executed by
multiple threads grouped
into blocks, global, and
shared memory on the
GPU as well as host
memory for data
management

C Server or workstation with
1 +NVIDIA GPU(s)

Proprietary NVIDIA
solution, NVIDIA

EULA [8]1

OpenCL Library

OpenCL model,
computations launched as

kernels executed by
multiple work items

grouped into work groups
and memory objects for

data management

C/C++

Heterogeneous platform
including CPUs, GPUs from
various vendors, FPGAs, etc.,

supported by, e.g., gcc

OpenCL is a standard
[9]

Pthreads Library

Multithreaded application,
provides thread

management routines,
synchronization

mechanisms including
mutexes, conditional

variables

C
Widely available in UNIX
platforms, implementations,

e.g., NPTL

Part of the POSIX
standard

Open ACC Library Multithreaded application C/C++/Fortran

Heterogeneous architectures,
e.g., a server or workstation
with x86/POWER+NVIDIA
GPUs, support for compilers
such as PGI, gcc, accULL, etc.

OpenACC is a standard
[10]

Java
Concurrency

JVM [14]
specific Multithreaded application Java, scala Server, workstation, mobile

device Open standards: [12, 13]

TCP/IP Network
stack Multi-process C, Fortran, C++,

Java, and others
Cluster, server, workstation,
mobile device, and others

TCP/IP [15] is a
standard broadly

implemented by OS
developers

RDMA Network
stack Multiprocess C Cluster

RDMA [17] is a
standard implemented
by over InfiniBand and
converged Ethernet

protocols

UCX Network
stack

Multiprocess,
multithreaded C, Java, Python Cluster, server, workstation

UCX [21] is a set of
network APIs with a

reference
implementation

MPI Library
Multiprocess, also
multithreaded if

implementation supports
C/Fortran Cluster, server, workstation

MPI is a standard [26],
several implementations
available, e.g., OpenMPI

and MPICH

OpenSHMEM Library Multiprocess application C, Fortran Cluster
Open standard with

reference
implementation

PCJ Java library Multiprocess application Java Cluster Open source Java library
[29]

8 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 1: Continued.

Technology/
API

Abstraction
level/group Programming model Programming

language
Supported platforms/target

parallel system License/standard

Apache
Hadoop

Set of
applications

YARN managed resource
negotiation, multiprocess
MapReduce tasks [41]

Core functionality
in JAVA, also C,
BASH, and others

Cluster, server, workstation

Open source
implementation of

Google’s MapReduce
[40], Apache software

license-ASL 2.0

Apache Spark Set of
applications

Resource negotiation based
on the selected resource
manager (YARN, Spark

Standalone, etc.), executors
run workers in threads [49]

Scala Cluster, server, workstation Apache software
license-ASL 2.0 [55]

1https://docs.nvidia.com/cuda/eula/index.html

Table 2: Technologies and goals.

Technology/
API

Goals
(performance,
energy, etc.)

Ease of programming Ease of assessment,
e.g., performance

Ease of deployment/
(auto) tuning

Portability (between
hardware, for new
hardware, etc.)

OpenMP Performance,
parallelization

Relatively easy,
parallelization of a

sequential program by
addition of directives for
parallelization of regions
and optionally library calls
for thread management,
difficulty of implementing

certain schemes, e.g.,
similar to those with
Pthread’s condition

variables [1]

Execution times can
be benchmarked
easily, debugging
relatively easy

Easy, thread number
can be set using an
environment variable,
at the level of region

or clause

Available for all major
shared memory

environments, e.g., in
gcc

CUDA Performance

Proprietary API, easy-to-
use in a basic version for a
default card, more difficult

for optimized codes
(requires stream handling,
memory optimizations

including shared
memory–avoiding bank
conflicts, global memory

coalescing)

Can be performed
using cuda-gdb or
very powerful nvvp
(NVIDIA visual

Profiler) or text-based
nvprof

Easy, requires CUDA
drivers and software

Limited to NVIDIA
cards, support for

various features depends
on hardware version-
card’s CUDA compute
capability and software

version

OpenCL Performance

More difficult than CUDA
or OpenMP since it

requires much device and
kernel management code,

optimized code may
require specialized kernels
which somehow defies the

idea of portability

Can be benchmarked
at the level of kernels,
queue management
functions can be used

for fencing
benchmarked

sections

Easy, requires proper
drivers in the system

Portable across hybrid
parallel systems,

especially CPU+GPU

Pthreads Performance

More difficult than
OpenMP, flexibility to
implement several

multithreaded schemes,
involving wait-notify,

using condition variables
for, e.g., producer-

consumer

Easy, thread’s code in
designated functions,

and can be
benchmarked there

Easy, thread’s code
executed in

designated functions

Available for all major
shared memory
environments

Scientific Programming 9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://docs.nvidia.com/cuda/eula/index.html
http://mostwiedzy.pl


the APIs, protocols, and features provided to the pro-
grammers, so the legacy software based on the lowest layer
services does not need to be updated often.

We can observe that the frameworks and libraries are
continuously extended and updated. We can see that some
converging tendencies have already been present for a long

Table 2: Continued.

Technology/
API

Goals
(performance,
energy, etc.)

Ease of programming Ease of assessment,
e.g., performance

Ease of deployment/
(auto) tuning

Portability (between
hardware, for new
hardware, etc.)

OpenACC Performance

Easy, similar to the
OpenMP’s directive-based
model, however requires
awareness of overheads
and corresponding needs
for optimization related
to, e.g., data placement,
copy overheads, etc.

Standard libraries can
be used for
performance

assessment, gprof can
be used

Requires a compiler
supporting

OpenACC, e.g., PGI’s
compiler, GCC, or

accULL

Portable across compute
devices supported by the

software

Java
Concurrency Parallelization Easy, two levels of

abstraction
Easy debugging and

profiling
Easy deployment for

many OS
Portable over majority of

hardware

TCP/IP Standard network
connectivity

Programming can be
difficult, requires

knowledge of low-level
network mechanisms

Debugging can be
difficult, available
tools for time
measurement

Usually already
deployed with the OS

Portable over majority of
hardware

RDMA Performance

Programming can be
difficult, requires

knowledge of low-level
network mechanisms

Debugging can be
difficult, available
tools for time
measurement

Deployment can be
difficult

Usually used with
clusters

UCX Performance
Programming can be

difficult, it is library for
frameworks

Debugging can be
difficult, it is quite a

new solution

Deployment can be
difficult

Usually used with
clusters

MPI Performance,
parallelization

Relatively easy, high-level,
message passing paradigm

Measurement of
execution time easy,
difficult debugging,
especially in a cluster

environment

Deployment can
require additional

tools, e.g., drivers for
advanced

interconnects such as
Infiniband or SLURM
for an HPC queue
system, tuning

typically based on
low-level profiling

Portable,
implementations

available on clusters,
servers, workstations,
typically used in Unix

environments

OpenSHMEM Performance,
parallelization

Easy, needs attention for
synchronized data access

No dedicated
debugging and
profiling tools

Fairly easy
deployment in many

environments

Portable,
implementations

available on clusters,
servers, workstations,
typically used in UNIX

environments

PCJ Performance,
parallelization

Easy, classes and
annotations used for
object distribution

No dedicated
debugging and
profiling tools

Easy deployment for
many OS

Portable over majority of
hardware

Apache
Hadoop

Performance,
large datasets

Relatively easy, high level
abstraction, requires good

understanding of
MapReduce programming

model

Easy to acquire job
performance

overview (web UI and
logs), moderately easy
debugging, central

logging can be used to
streamline the process

Moderately easy basic
deployment,
tweaking

performance, and
security for entire
hadoop ecosystem
can be very difficult

Used in clusters,
available for Unix and

windows

Apache Spark

Performance, low
disk, and high

RAM usage, large
datasets

Relatively easy, high-level
abstraction, based on

lambda functions on RDD
and dataFrames

Easy to acquire job
performance

overview (web UI and
logs), moderately easy
debugging, central

logging can be used to
streamline the process

Easy Spark
Standalone

deployment, Spark on
YARN deployment

requires a functioning
Hadoop ecosystem

Used in clusters,
available for Unix and

Windows

10 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


time, e.g., an introduction of offload for accelerator support
in OpenMP or multithreading support in OpenSHMEM or
MPI. ,e message to the users is that their favorite API will
finally support new features of the most popular hardware or
at least will give easy way to use it in collaboration with other
technologies (e.g., the case of complementing MPI and
OpenMP).

Hybrid parallelism has also become mainstream in high-
performance computing due to hardware developments and
heterogeneity in terms of various compute devices within a
node or a cluster (e.g., CPUs +GPUs). ,is forces pro-
grammers to use combinations of APIs for efficient parallel
programming, e.g., MPI +CUDA, MPI +OpenCL, or
MPI +OpenMP+CUDA [1]. Table 5 summarizes hybridity
present in various considered technologies including po-
tential shortcomings as well as disadvantages.

10. Challenges in Modern High-
Performance Computing

Similar to discussing trends, we mention selected works
discussing expected problems and issues in the HPC arena
for the nearest future. We then identify more points for an
even more complete picture, in terms of the aspects dis-
cussed in Section 2.

Dongarra mentions several problematic issues [56] such
as minimization of synchronization and communication of
algorithms, using mixed precision arithmetics for better
performance (low precision is already used in deep learning
[72], for instance), designing algorithms to survive failures,
and autotuning of software to a given environment.

According to [73], one of the upcoming challenges in
Exascale HPC era will be energy efficiency. Additionally,
software issues in HPC are denoted as open issues in this
context, e.g., memory overheads and scalability in MPI,
thread creation overhead in OpenMP, and copy overheads.
Fault tolerance and I/O overheads for large-scale processing
are listed as difficulties.

Both the need for autotuning and progress in software
for modern HPC systems have also been stated in [74], with
an emphasis on the need for looking for better suited lan-
guages for HPC than the currently used C/C++ and Fortran.

Finally, apart from the aforementioned challenges and
based on our analysis in this paper, we identify the following
challenges for the types of parallel processing considered in
this work:

(1) Difficulty of offering efficient APIs for hybrid parallel
systems includes difficulty of automatic load bal-
ancing in hybrid systems. Currently, combinations of
APIs with proper optimizations at various paralleli-
zation levels are required such as MPI +OpenMP and
MPI+OpenMP+CUDA. ,is stems directly from
Figure 1 where there is no single approach/API
covering all the configurations in the diagram.

(2) Few programming environments oriented on several
criteria apart from performance. Optimizations us-
ing performance and, e.g., energy consumption are
performed at the level of algorithms or scheduling

rather than embedded into programming environ-
ments or APIs. ,is suggests the lack of consider-
ation of energy usage in APIs, especially APIs
allowing us to obtain desired performance-energy
goals for particular classes of applications and
compute devices. ,is is shown in Table 3. ,is
requires automatic tools for determination of per-
formance vs energy profiles for various applications
and compute devices.

(3) Lack of knowledge (of researchers) to integrate
various APIs for hybrid systems; many researchers
know only single APIs and are not proficient in using
all options shown in Table 5.

(4) Need for benchmarking modern and representative
applications on various HPC systems with new
hardware features, e.g., latest features of new GPU
families such as independent thread scheduling in
NVIDIA Volta, memory oversubscription in NVI-
DIA Pascal + series cards, cooperative groups, etc.
,is stems from very fast developments in the APIs
which is shown in Table 4.

(5) Convergence of APIs that target similar environ-
ments, e.g., OpenMP and OpenCL. OpenMP now
allows offloading to GPUs, accelerators, etc., as
shown in Table 3 and some of their applications
overlap. ,is raises a question on whether both will
follow in the same direction or diverge more for
particular uses.

(6) Lack of automatic determination of application pa-
rameters run on complex parallel systems, especially
hybrid systems, i.e., numbers of threads and thread
affinity on CPUs, grid configurations on GPUs, load
balancing among compute devices, etc. Some works
[75] have attempted automation of this process but
this field of autotuning in such environments, as also
shown above, is relatively undeveloped yet.

(7) Difficulty in porting of specialized existing parallel
programming environments and libraries to modern
HPC systems when one wants to use the architec-
tural benefits of the latest hardware. ,is is also
related to the fast changes in the hardware archi-
tectures and APIs following these such as for the
latest GPU generations and CUDA versions, but also
for other APIs, as shown in Table 4.

(8) Problem of finding best hardware configuration for a
given problem and its implementation (CPU/GPU/
other accelerators/hybrid), considering relative
performance of CPUs, GPUs, interconnects, etc.
Certain environments such as MERPSYS [76] allow
for simulation of parallel application execution using
various hardwares including compute devices such
as CPUs and GPUs but the process requires prior
calibration on small systems and target applications.

(9) Lack of standardized APIs for new technologies such
as NVRAM in parallel computing. ,is is related to
the technology being very new and starting to be
used for HPC, as shown in Section 9.

Scientific Programming 11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 3: Technologies and parallelism.

Tech/API Level of parallelism Parallelism constructs Synchronization constructs

OpenMP ,read teams executing some
regions of an application

Directives that define that a certain
region is to be executed in parallel, such
as #pragma omp parallel, #pragma omp

sections, etc.

Several constructs that allow
synchronization such as #pragma omp
barrier, constructs that denote that a
part of code be executed by a certain
thread, e.g., #pragma omp master,
#pragma omp single, critical section
#pragma omp critical, directives for
data synchronization, e.g., #pragma

omp atomic

CUDA

,reads executing kernels in parallel,
threads are organized into a grid of
blocks each of which consists a

number of threads, both threads in a
block and blocks in a grid can be
organized in 1D, 2D, or 3D logical
structures, kernel execution, host to
device and device to host copying can
be overlapped if issued into various

CUDA streams

Invocation of a kernel function launches
parallel computations by a grid of

threads, possible execution on several
GPUs in parallel

Execution of all grid’s threads is
synchronized after the kernel has

completed; on the host side, execution
of individual threads in a block is

possible with a call to __syncthreads (),
atomic functions available for accessing

global memory

OpenCL

Work items executing kernels in
parallel, work items are organized
into an NDRange of work groups
each of which consists a number of
work items, both work items in a
work group and work groups in an
NDRange can be organized in 1D,
2D, or 3D logical structures, kernel
execution, host to device and device
to host copying can be overlapped if
issued into various command queues

Invocation of a kernel function launches
parallel computations by an NDRange of
work items, OpenCL allows parallel

execution of kernels on various compute
devices such as CPUs and GPUs

Execution of all NDRange’s work items
is synchronized after the kernel has

completed; on the host side, execution
of individual work items in a block is
possible with a call to barrier with
indication whether a local or global
memory variable that should be

synchronized, synchronization using
events is also possible, atomic

operations available for
synchronization of references to global

or local memory

Pthreads ,reads are launched explicitly for
execution of a particular function

a call to pthread_create () creates a
thread for execution of a specific

function for which a pointer is passed as
a parameter

,reads can be synchronized by the
thread that called pthread_create () by

calling pthread_join (), there are
mechanisms for synchronization of
threads such as mutexes, condition

variables with wait pthread_cond_wait
() and notify routines, e.g., pthread

_cond_signal (), barrier
pthread_barrier∗(), implicit memory
view synchronization among threads
upon invocation of selected functions

OpenACC

,ree levels of parallelism available:
execution of gangs, one or more

workers within a gang, vector lanes
within a worker

Parallel execution of code within a block
marked with #pragma acc parallel,
parallel execution of a loop can be
specified with #pragma acc loop

For #pragma acc parallel, an implicit
barrier is present at the end of the

following block, if async is not present,
atomic accesses possible with #pragma
acc atomic according to documentation
[10], the user should not attempt to
implement barrier synchronization,

critical sections or locks across any of
gang, worker, or vector parallelism

Java
Concurrency ,read inside the same JVM

,e main tread created during the JVM
start in main () method is a root of other

threads created dynamically using
explicit, e.g., new thread (), or implicit

constructs, e.g., thread pool

Typical shared memory mechanisms
like synchronized sections or guarded

blocks

TCP/IP ,e whole network nodes Managed manually by adding and
configuring hardware

Using IP addresses and ports for
distinguishing the connections/

destinations, no specific constructs

12 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


11. Comparisons of Existing Parallel
Programming Approaches for
Practical Applications

In order to extend our systematic review of the approaches
and APIs, in this section,we provide summary of selected
existing comparisons of at least some subsets of approaches
considered in this work for practical applications. ,is can

be seen as a review that allows us to gather insights which
APIs could be preferred in particular compute intensive
applications.

In [77], ten benchmarks are used to compare CUDA and
OpenACC performance. ,e authors measure execution
times and speed of GPU data transfer for 19 kernels with
different optimizations. Test results indicate that CUDA is
slightly faster thanOpenACC but requires more time to send

Table 3: Continued.

Tech/API Level of parallelism Parallelism constructs Synchronization constructs

RDMA ,e whole network nodes Managed manually by adding and
configuring hardware

Using remote access with the indicators
of the accessed memory

UCX ,e whole network nodes Managed manually by adding and
configuring hardware

Special APIs for message passing and
memory access

MPI

Processes (+threads combined with a
multithreaded API like OpenMP,
Pthreads if MPI implementation
supports required thread support

level)

Processes created with mpirun at
application launch + potentially

processes created dynamically with a call
to MPI_Comm_spawn or

MPI_Comm_spawn _multiple

MPI collective routines: barrier,
communication calls like MPI_Gather,

MPI_Scatter, etc.

OpenSHMEM Processes possibly on different
compute nodes

Processes created with oshrun at
application launch

OpenSHMEM synchronization and
collective routines; barrier, broadcast,

reduction, etc.

PCJ
,e so-called nodes placed in

possibly separated JVMs on different
compute nodes

,e node structure is created by a main
Manager node at application launch

PCJ synchronization and collective
routines; barrier, broadcast, etc.

Apache
Hadoop

Task is a single process running
inside a JVM API to formulate MapReduce functions

Synchronization managed by YARN,
API for data aggregation (reduce

operation)

Apache Spark Executors run worker threads RDD and DataFrame API for managing
distributed computations

Managed by built-in Spark Standalone
or by external cluster manager: YARN,

Mesos etc.

Table 4: Selected, important latest features and extensions in various technologies.

Tech/API Description of latest features Version Literature

OpenMP
Support for controlling offloading behavior (it is possible to offload to GPUs as well), extensions
regarding thread affinity information management (affinity added to the task construct), data
mapping clarifications and extensions, extended support for various C++ and Fortran versions

5.0 [7]

CUDA

Improved the scalability of cudaFree in multi-GPU environments, support for cooperative group
kernels with MPS, new cuBLASLt library has been added for general matrix GEMM operations,
cuBLASLt now has support for FP16 matrix multiplies using tensor cores on volta and turing GPUs,
improved performance of cuFFT on multi-GPU systems, some random generators in cuRAND

10.1 [8]

OpenCL

Minor changes in the latest 2.1 to 2.2 update, e.g., added calls to
clSetProgramSpecializationConstant and clSetProgramReleaseCallback, major changes in 1.2 to 2.0
update including shared virtual memory, device queues used to enqueue kernels on a device, added

the possibility for kernels enqueing kernels using a device queue

2.2 [9]

OpenACC Reduction clause on in a compute construct assumes a copy for each reduction variable, arrays and
composite variables are allowed in reduction clauses, local device defined 2.7 [10]

Java Conc. An interoperable publish-subscribe framework with flow class and various other improvements 9 [67]
MPI Introduction of nonblocking collective I/O routines, corrections in Fortran bindings 3.1 [26]

OpenSHMEM Multithreading support, extended type support, C11 type-generic interfaces for point-to-point
synchronization, additional functions and extensions to the existing ones 1.4 [68]

Apache
Hadoop

Support for opportunistic containers, i.e., containers that are scheduled even if there is not enough
resources to run them. Opportunistic containers wait for resource availability and since they have

low priority, they are preempted if higher priority jobs are scheduled
3.0.3 [69]

Apache Spark Built-in avro datasource, support for eager evaluation of DataFrames 2.4 [70]

Scientific Programming 13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


data to and from a GPU. Since both APIs are performed
similarly, the authors suggest using multiplatform Open-
ACC, especially because it provides an easier to use syntax.

,e EasyWave [78] system receives data from seismic
sensors and is used to predict characteristic (wave height,
water fluxes etc.) of a tsunami. To improve processing speed,
CUDA and OpenACC EasyWave implementations were
compared, each tested on two differently configured ma-
chines with NVIDIA Tesla and Fermi GPU, respectively.
CUDA single instruction multiple dispatch (SIMD) opti-
mizations for grid point updates (computing value for el-
ement of the grid) achieved 2.15 and 10.77 for the
aforementioned GPU. Parallel window extension with
atomic instruction synchronization allowed for 13% and
46% speed up.

Cardiac electrophysiological simulations allow study of
patient’s heart behavior. ,ose simulations provide com-
putationally heavy challenges since the nonlinear model
requires numerical solutions of differential equations. In
[79], the authors provide implementation of system solving
partial and ordinary differential equations with discretiza-
tion for high spatial resolutions. GPGPU solutions using
CUDA, OpenACC, and OpenGL are compared to test the
performance. Ordinary differential equations were best
solved with OpenGL which achieved a speedup of 446 while
parabolic partial equations where best solved using CUDA
with a speedup of 8.

SYCL is a cross-platform solution that provides func-
tionality similar to OpenCL and allows building parallel
application for heterogeneous hardware. It uses standard

C++, and its programming model allows providing kernel
and host code in one file (“single-source programming”). In
[80], the authors compare overall performance (number of
API calls, memory usage, processing time) and easy of use of
SYCL with OpenMP and OpenCL. Two benchmarks are
provided: Common Midpoint (CMP) used in seismic pro-
cessing and 27stencil which is one of the OpenACC
benchmarks and is similar to algorithms for solving partial
differential equations. ,e authors also compare results with
previously published benchmarking results. Generally, re-
sults indicate that non-SYCL implementations are about two
times faster (2.35 and 2.77 for OpenCL, 1.38 and 2.22 for
OpenMP) than SYCL implementation. ,e authors point
out that differences in processing time may be influenced by
small differences in used hardware and compiler used.
Comparisons with previous tests indicate that SYSCL is
catching up with other programming models in context of
performance.

In paper [81], the authors presented a comparison of the
OpenACC and OpenCL related to the ease of the tunability.
,ey distinguished four typical steps of the tuning process:
(i) avoiding redundant host-device data transfer, (ii) data
padding for 32, 64, 128 bytes segments read-write matching,
(iii) kernel execution parameter tuning, and (iv) use of on-
chip instead of global memory where possible. Furthermore,
the additional barrier operation was proposed for OpenACC
to introduce the possibility of explicit thread synchroniza-
tion. Finally, the authors performed evaluation, using a
nanopowder growth simulator as a benchmark, and
implemented each optimization step. ,e results showed

Table 5: Hybridity in various technologies.

Tech/API Support for hybridity (description) Potential disadvantages or shortcomings

OpenMP Allows to run threads on multicore/many-core CPUs as well as
offload and parallelize within devices, including GPUs Not easy to set up for offloading to GPUs

CUDA

CUDA’s API allows management of several GPUs, it is possible
to manage computations on several GPUs from a single CPU
thread, several streams may be used for sequences of commands

onto one or more GPUs

Requires combination with some multithreaded APIs
such as OpenMP or Pthreads for load balancing across
CPU+GPU systems, with MPI for clusters, many host
threads may be preferred for balancing among several

GPUs

OpenCL
A universal model based on kernels for execution on several,
potentially different, compute devices, command queues used for

several streams of computations

Requires many more lines of code when used with hybrid
CPU+GPU systems compared to, e.g.,

OpenMP+CUDA

OpenACC Allows to manage computations across several devices within a
node

While it is possible to balance computations among
devices using OpenACC functions (similarly to CUDA),
CPU threads (and correspondingly APIs allowing that)
might be preferred for more efficient balancing strategies

[71]

MPI

,e standard allows a hybrid multiprocess +multithreaded
model if implementation supports it (check with

MPI_init_thread (). An MPI implementation can be combined
with multithreaded APIs such as OpenMP or Pthreads, a CUDA-
aware MPI implementation allows using device pointers in MPI

calls

Requires combining with APIs such as OpenCL or, e.g.,
OpenMP/CUDA to use efficiently with hybrid multicore/
many-core CPUs and GPUs, such solutions are not

always fully supported by every MPI implementations,
e.g., CUDA features can be limited to some type of the

operations, e.g., point-to-point
Apache
Hadoop

Ability to manage computations with different processing
paradigms: MapReduce, Spark, HiveQL, Tez, etc.

Easy basic installation but requires a lot of effort to
provide production ready and secure cluster

Apache
Spark

Barrier execution mode makes integration with machine learning
pipelines much easier

Production ready solutions typically require external
cluster manager

14 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


similar speedups for both OpenCL and OpenACC imple-
mentations; however, the OpenACC one required fewer
modifications for the two first optimization steps.

An interesting evaluation of OpenMP regarding its new
features (ver. 4.5/5.0) was presented in [82]. ,e authors
tested four different implementations of miniMD (a mo-
lecular dynamics benchmark from the Mantevo benchmark
suite [83]): (i) orig: original, (ii) mxhMD: optimized for Intel
Xeon architecture, (iii) Kokkos: based on Kokkos portability
framework [84], and (iv) omp5: utilizing OpenMP 4.5 off-
load features. For the performance-portability assessment of
each implementation, a self-developed Φ metric was used
and the results showed the advantage of Kokkos for GPU
and mxhMD for CPU hardware; however, for the pro-
ductivity measured in SLOC, omp5 was on-par with Kokkos.
,e conclusion was that introduction of new features in
OpenMP provides improvements for the programming
process, but the portability frameworks (like Kokkos) are
still viable approaches.

,e paper [85] provides a survey of approaches and APIs
supporting parallel programming for multicore and many-
core high-performance systems, albeit already 7 years old.
Specifically, the authors classified parallel processing models
as pure (Pthreads, OpenMP, message passing), heteroge-
neous parallel programming models (CUDA, OpenCL,
DirectCompute, etc.), Partitioned Global Address Space and
hybrid programming (e.g., Pthreads +MPI, OpenMP+MPI,
CUDA+Pthreads and CUDA+OpenMP, CUDA+MPI).
,e work presents support for parallelism within Java, HPF,
Cilk, Erlang, etc., as well as summarizes distributed com-
puting approaches such as grids, CORBA, DCOM, Web
Services, etc.

,outi and Sathe [86] present a comparison of OpenMP
and OpenCL, also 7 years old already.,e authors developed
four benchmarking algorithms (matrix multiplication,
N-Queens problem, image convolution, and string reversal)
and describe achieved speedup. In general, OpenCL per-
formed better when input data size increased. OpenMP
performed better in the image convolution problem
(speedup of 10) while (due to overhead work of kernel
creation) OpenCL provided no improvement. ,e best
speedup was achieved in the matrix multiplication solution
(8 for OpenMP and 598 for OpenCL).

In [87], Memeti et al. explore performance of OpenMP,
OpenCL, OpenACC, and CUDA. Programming produc-
tivity is measured subjectively (number of lines of code
needed to achieve parallelization) while energy usage and
processing speed are tested objectively. ,e authors used
SPEC Accel suite and Rodinia for benchmarking afore-
mentioned technologies in heterogeneous environments
(two single-node configurations with 48 and 244 threads). In
context of programming productivity, OpenCL was judged
to be the least effective since it requires more effort than
OpenACC (6.7x more) and CUDA (2x more effort).
OpenMP requires less effort than CUDA (3.6x) and OpenCL
(3.1x). CUDA and OpenCL had similar, application de-
pendent, energy efficiency. In the context of processing
speed, CUDA and OpenCL performed better than OpenMP
and OpenCL was found to be faster than OpenACC.

Heat conduction problem solution, a mini-app called
TeaLeaf, is used to showcase [88] code portability and
compare performance of moderately new frameworks:
Kokkos and RAJA with OpenACC, OpenMP 4.0, CUDA,
and OpenCL. In general, RAJA and Kokkos provide satis-
factory performance. Kokos was only 10% and 5% slower
than OpenMP and CUDA while RAJA was found to be 20%
slower than OpenMP. Results for OpenCL varied and did
not allow for reliable comparison. Device tailored solutions
were found performing better than platform-independent
code. Nevertheless, Kokkos and RAJA provide rich lambda
expressions, good performance and easy portability which
means that if they reach maturity, they can become valuable
frameworks.

In [89], Kang et al. presented a practical comparison
between the shared memory (OpenMP), message-passing
(MPI–MPICH), and MapReduce (Apache Hadoop) ap-
proaches. ,ey selected two fairly simple problems (the all-
pairs-shortest path in a graph, as a computational-intensive
benchmark and two sources-data join as a data-intensive
one).,e results showed the advantage of the shared memory
for computations and MapReduce for data-intensive pro-
cessing. We can note that the experiments were performed
only for two problems and only using one hardware setup (a
set of workstations connected by 1Gbps Ethernet).

Another MapReduce vs message-passing/shared mem-
ory comparison was presented in [90] showing that even for
a typical big data problem (counting words in a text, with
roughly 2GB of data), the in-memory implementation can
be much faster than a big-data solution. ,e experiments
were executed in a typical cloud environment (Amazon
AWS) using Apache Spark (which is usually faster than a
typical Hadoop framework) in comparison with MPI/
OpenMP implementation. ,e Spark results were an order
of magnitude slower than OpenMP/MPI ones.

Asaadi et al. in [91] presented yet another MapReduce/
message-passing/shared memory comparison using the
following frameworks: Apache Hadoop and Apache Spark,
with two versions: IP-over-Infiniband and RDMA directly
(for shuffling only), OpenMPI with RDMA support, and
OpenMP, using an unified hardware platform based on a
typical HPC cluster with an InfiniBand interconnect. ,e
following benchmarks were executed: sum reduction of
vector of numbers (a computation performance micro-
benchmark), parallel file reading from local file system (an I/
O performance micro-benchmark), calculating average
answer count for available questions using data from
StackExchange website, and executing PageRank algorithm
over a graph with 1,000,000 vertices. ,e discussion covered
several quality factors: maintainability (where OpenMP was
the leader), support for execution control flow (where MPI
has the most fine-grained access), performance and scal-
ability (where MPI showed the best results even for I/O-
intensive processing), and fault tolerance (where Spark
seems to be the best choice, however containing one single
point of failure—a driver component).

In [92], Lu et al. proposed extension to a typical MPI
implementation to provide Big Data related functionality:
DataMPI. ,ey proposed four supported processing modes:

Scientific Programming 15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Common, MapReduce, Iteration, and Streaming, corre-
sponding to the typical data processing models. ,e pro-
posed system was implemented in Java and provided an
appropriate task scheduler, supporting data-computation
locality and fault tolerance. ,e comparison to Apache
Hadoop showed an advantage of the proposed solution in
efficiency (31%–41% better performance), fault tolerance
(21% improvement), and flexibility (more processing
modes), as well as similar results in scalability (linear in both
cases) and productivity (comparable coding complexity).

,e evaluation of Apache Spark versus OpenMPI/
OpenMP was presented in [93]. ,e authors performed tests
using two machine learning algorithms: K-Nearest Neigh-
bors (KNN) and Pegasus Support Vector Machines (SVM),
for data related to physical particles’ experiments (HIGGS
Data Set [94]) with the size 11 of 28-dimension records, i.e.,
about 7GB of disk space, thus they fit in the memory of a
single compute node.,e benchmarks were executed using a
typical cloud environment (Google Cloud Platform), with
different numbers of compute nodes and algorithm pa-
rameters. For this setup, with such a small data size, the
performance results, i.e., execution times, showed that
OpenMPI/OpenMP outperformed Spark by more than one
order of magnitude; however, the authors clearly marked
distinction in possible fault-tolerance and other aspects
which are additionally supported by Spark.

,e paper [95] provides performance comparison of
OpenACC and CUDA languages used for programming an
NVIDIA accelerator (Tesla K40c). ,e authors tried to
evaluate data size sensitivity of both solutions, namely, their
methodology uses Performance Ratio of Data Sensitivity
(PRoDS) to check how the change of data size influences the
performance of a given algorithm. ,e tests covering 10
benchmarks with 19 different kernels showed the advantage
of CUDA in the case of optimized code; however, for
implementation without the optimization, OpenACC is less
sensitive to data changes. ,e overall conclusion was that
OpenACC seems to be a good approach for nonexperienced
developers.

12. Conclusions and Future Work

In this paper, we presented detailed analysis of state-of-the-
art methodologies and solutions supporting development of
parallel applications for modern high-performance com-
puting systems. We distinguished shared vs distributed
memory systems, one-sided or two-sided communication
and synchronization APIs, and various programming ab-
straction levels. We discussed solutions using multithreaded
programming, message passing, Partitioned Global Address
Space, agent-based parallel processing, and MapReduce
processing. For APIs, we presented, among others, sup-
ported programming languages, target environments, ease
of programming, debugging and deployment, latest features,
constructs allowing parallelism as well as synchronization,
and hybrid processing. We identified current trends and
challenges in parallel programming for HPC. Awareness of
these can help standard committees shape new versions of
parallel programming APIs.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] P. Czarnul, Parallel Programming for Modern High Perfor-
mance Computing Systems, Chapman and Hall/CRC Press,
Boca Raton, FL, USA, 2018.

[2] C++ v.11 thread support library, 2019.
[3] Intel threading building blocks, 2019.
[4] High Performance paralleX (HPX), 2019.
[5] J. Nonaka, M. Matsuda, T. Shimizu et al., “A study on open

source software for large-scale data visualization on sparc64fx
based hpc systems,” in Proceedings of the International
Conference on High Performance Computing in Asia-Pacific
Region, pp. 278–288, ACM, Chiyoda, Tokyo, Japan, January
2018.

[6] M. U. Ashraf and F. E. Eassa, “Opengl based testing tool ar-
chitecture for exascale computing,” International Journal of
Computer Science and Security (IJCSS), vol. 9, no. 5, p. 238, 2015.

[7] OpenMP Architecture Review Board, OpenMP Application
Programming Interface, 2018.

[8] NVIDIA: CUDA toolkit documentation v10.1.243, 2019.
[9] Khronos OpenCL Working Group, “,e openCL specifica-

tion,” 2019.
[10] OpenACC-Standard.org, 9e OpenACC Application Pro-

gramming Interface, 2018.
[11] S. Wienke, C. Terboven, J. C. Beyer, and M. S. Müller, “A

pattern-based comparison of openacc and openmp for ac-
celerator computing,” in European Conference on Parallel
Processing, pp. 812–823, Springer, Berlin, Germany, 2014.

[12] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and
D. Smith, “,e Java language specification,” 2019.

[13] M. Odersky, P. Altherr, V. Cremet et al., “Scala language
specification,” 2019.

[14] T. Lindholm, F. Yellin, G. Bracha, A. Buckley, and D. Smith,
“,e Java virtual machine specification,” 2019.

[15] TCP/IP standard, 2019.
[16] A. L. Russell, “,e internet that wasn’t,” IEEE Spectrum,

vol. 50, no. 8, pp. 39–43, 2013.
[17] RDMA consortium, 2019.
[18] InfiniBand architecture specification release 1.2.1 Annex A16:

RoCE, 2010.
[19] M. Beck and M. Kagan, “Performance evaluation of the

RDMA over ethernet (RoCE) standard in enterprise data
centers infrastructure,” in Proceedings of the 3rd Workshop on
Data Center–Converged and Virtual Ethernet Switching,
Berkeley, CA, USA, September 2011.

[20] InfiniBand architecture specification release 1.2.1 Annex A17:
RoCEv2, 2010.

[21] P. Shamis, M. G. Venkata, M. G. Lopez et al., “UCX: an open
source framework for HPC network APIs and beyond,” in
Proceedings of the 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, pp. 40–43, IEEE, Santa
Clara, CA, USA, August 2015.

[22] B. Chapman, T. Curtis, S. Pophale et al., “Introducing
openshmem: shmem for the pgas community,” in Proceedings
of the Fourth Conference on Partitioned Global Address Space
Programming Model, PGAS ’10, pp. 2.1–2.3, ACM, New York,
NY, USA, October 2010.

[23] M. Baker, F. Aderholdt, M. G. Venkata, and P. Shamis,
“OpenSHMEM-UCX: evaluation of UCX for implementing

16 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


OpenSHMEM programming model,” in OpenSHMEM and
Related Technologies. Enhancing OpenSHMEM for Hybrid
Environments, pp. 114–130, Springer International Publish-
ing, Berlin, Germany, 2016.

[24] N. Papadopoulou, L. Oden, and P. Balaji, “A performance
study of ucx over infiniband,” in Proceedings of the 17th IEEE/
ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid ’17, pp. 345–354, IEEE Press, Piscataway,
NJ, USA, May 2017.

[25] R. Love, Linux System Programming: Talking Directly to the
Kernel and C Library, O’Reilly Media, Inc., Newton. MA,
USA, 2007.

[26] Message passing interface forum MPI: a message-passing
interface standard, 2015.

[27] MPICH–a portable implementation of MPI, 2019.
[28] ,e Open MPI Project, “Open Mpi: open source high per-

formance computing. A high performance message passing
library,” 2019.

[29] M. Nowicki and P. Bala, “Parallel computations in Java with
PCJ library,” in Proceedings of the 2012 International Con-
ference on High Performance Computing & Simulation
(HPCS), pp. 381–387, IEEE, Madrid, Spain, July 2012.

[30] ,e chapel parallel programming language, 2019.
[31] ,e X10 parallel programming language, 2019.
[32] Berkeley UPC—unified parallel C, 2019.
[33] A. A. Buss and H. Papadopoulos, “STAPL: standard template

adaptive parallel library,” SYSTOR ’10, vol. 10, 2010.
[34] M. Kisiel-Dorohinicki, G. Dobrowolski, and E. Nawarecki,

“Agent populations as computational intelligence,” in Neural
Networks and Soft Computing, L. Rutkowski and J. Kacprzyk,
Eds., pp. 608–613, Physica-Verlag HD, Heidelberg, Germany,
2003.

[35] M. Kisiel-Dorohinicki, “Agent-oriented model of simulated
evolution,” 2002.

[36] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos, “,e
repast simphony runtime system,” in Proceedings of the Agent
2005 Conference on Generative Social Processes, Models, and
Mechanisms, vol. 10, pp. 13–15, Citeseer, Chicago, IL, USA,
October 2005.

[37] N. Collier, “Repast: an extensible framework for agent sim-
ulation,” 9e University of Chicago’s Social Science Research,
vol. 36, p. 2003, 2003.

[38] N. Collier and M. North, “Repast hpc: a platform for large-
scale agent-based modeling,” Large-Scale Computing, vol. 10,
pp. 81–109, 2012.

[39] S. Cincotti, M. Raberto, and A. Teglio, “Credit money and
macroeconomic instability in the agent-based model and
simulator eurace. Economics: the open-access,” Open-As-
sessment E-Journal, vol. 4, 2010.

[40] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” in Proceedings of the OSDI’04:
Sixth Symposium on Operating System Design and Imple-
mentation, pp. 137–150, San Francisco, CA, USA, December
2004.

[41] V. Kumar Vavilapalli, A. Murthy, C. Douglas et al., “Apache
hadoop yarn: yet another resource negotiator,” 2013.

[42] T. White, Hadoop: 9e Definitive Guide, O’Reilly Media, Inc.,
Newton, MA, USA, 4th edition, 2015.

[43] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency of
hadoop clusters,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 1, pp. 61–65, 2010.

[44] A. Aji, F.Wang, H. Vo et al., “Hadoop-gis: a high performance
spatial data warehousing system over mapreduce,”

Proceedings of the VLDB Endowment International Conference
on Very Large Data Bases, vol. 6, 2013.

[45] J. Alwidian and A. A. A. AlAhmad, “Hadoop mapreduce job
scheduling algorithms survey and use cases,”Modern Applied
Science, vol. 13, 2019.

[46] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet
deadlines,” in Proceedings of the 2010 IEEE Second Interna-
tional Conference on Cloud Computing Technology and Sci-
ence, CLOUDCOM ’10, pp. 388–392, IEEE Computer Society,
Washington, DC, USA, November 2010.

[47] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness: fair
allocation of multiple resource types,” in Proceedings of the 8th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’11, pp. 323–336, USENIX Association,
Berkeley, CA, USA, June 2011.

[48] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous en-
vironments,” in Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08,
pp. 29–42, USENIX Association, Berkeley, CA, USA, De-
cember 2008.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, HotCloud’10, USENIX Association, Ber-
keley, CA, USA, June 2010.

[50] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient dis-
tributed datasets: a fault-tolerant abstraction for in-memory
cluster computing,” in Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation,
NSDI’12, USENIX Association, Berkeley, CA, USA, April
2012.

[51] L. Xu, R. Butt, A., S. H. Lim, and R. Kannan, “A heterogeneity-
aware task scheduler for spark,” 2018.

[52] V. S. Marco, B. Taylor, B. Porter, and Z. Wang, “Improving
spark application throughput via memory aware task co-
location: a mixture of experts approach,” in Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference, Mid-
dleware ’17, pp. 95–108, ACM, New York, NY, USA, De-
cember 2017.

[53] P. Zhang and Z. Guo, “An improved speculative strategy for
heterogeneous spark cluster,” 2018.

[54] S. McIntosh-Smith, M. Martineau, A. Poenaru, and
P. Atkinson, Programming Your Gpu with Openmp, Uni-
versity of Bristol, Bristol, UK, 2018.

[55] H. Karau and R. Warren, High Performance Spark: Best
Practices for Scaling and Optimizing Apache Spark, O’Reilly
Media, Inc., Sebastopol, CA, USA, 1st edition, 2017.

[56] J. Dongarra, “Current trends in high performance computing
and challenges for the future,” 2017.

[57] B. Trevino, “Five trends to watch in high performance
computing,” 2018.

[58] P. Czarnul, J. Proficz, and A. Krzywaniak, “Energy-aware
high-performance computing: survey of state-of-the-art tools,
techniques, and environments,” Scientific Programming,
vol. 2019, Article ID 8348791, 19 pages, 2019.

[59] A. Krzywaniak, J. Proficz, and P. Czarnul, “Analyzing energy/
performance trade-offs with power capping for parallel ap-
plications on modern multi and many core processors,” in
Proceedings of the 2018 Federated Conference on Computer
Science and Information Systems (FedCSIS), pp. 339–346,
Poznań, Poland, September 2018.

Scientific Programming 17

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


[60] A. Krzywaniak and P. Czarnul, “Performance/energy aware
optimization of parallel applications on gpus under power
capping,” Parallel Processing and Applied Mathematics, 2019.

[61] B. Van Essen, R. Pearce, S. Ames, and M. Gokhale, “On the
role of nvram in data-intensive architectures: an evaluation,”
in Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, pp. 703–714, Shanghai,
China, May 2012.

[62] D. Li, J. S. Vetter, G. Marin et al., “Identifying opportunities
for byte-addressable non-volatile memory in extreme-scale
scientific applications,” in Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium,
pp. 945–956, Kolkata, India, May 2012.

[63] A. Malinowski and P. Czarnul, “Multi-agent large-scale
parallel crowd simulation with nvram-based distributed
cache,” Journal of Computational Science, vol. 33, pp. 83–94,
2019.

[64] A. Malinowski and P. Czarnul, “A solution to image pro-
cessing with parallel MPI I/O and distributed NVRAM
cache,” Scalable Computing: Practice and Experience, vol. 19,
no. 1, pp. 1–14, 2018.

[65] A. Malinowski and P. Czarnul, “Distributed NVRAM
cache–optimization and evaluation with power of adjacency
matrix,” in Computer Information Systems and Industrial
Management–16th IFIP TC8 International Conference, CISIM
2017, volume of 10244 of Lecture Notes in Computer Science,
K. Saeed, W. Homenda, and R. Chaki, Eds., pp. 15–26, Bia-
lystok, Poland, 2017.

[66] P. Dorożyński, P. Czarnul, A. Malinowski et al., “Check-
pointing of parallel mpi applications using mpi one-sided api
with support for byte-addressable non-volatile ram,” Procedia
Computer Science, vol. 80, pp. 30–40, 2016.

[67] D. Lea, “JEP 266: more concurrency updates,” 2019.
[68] Baker M. B., Boehm S., Bouteiller A., et al., Openshmem

specification 1.4, 2017.
[69] K. Karanasos, A. Suresh, and C. Douglas, Advancements in

YARN Resource Manager, Springer International Publishing,
Berlin, Germany, 2018.

[70] J. Laskowski, “,e internals of apache spark barrier execution
mode,” 2019.

[71] OpenACC-Standard.org, OpenACC Programming and Best
Practices Guide, 2015.

[72] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Pro-
ceedings of the 32nd International Conference on International
Conference on Machine Learning, ICML’15, vol. 37,
pp. 1737–1746, Lille, France, July 2015.

[73] C. A. Emerson, “Hpc architectures–past, present and
emerging trends,” 2017.

[74] M. B. Giles and I. Reguly, “Trends in high-performance
computing for engineering calculations,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 372, 2014.

[75] P. Czarnul and P. Rościszewski, “Expert knowledge-based
auto-tuning methodology for configuration and application
parameters of hybrid cpu + gpu parallel systems,” in Pro-
ceedings of the 2019 International Conference on High Per-
formance Computing & Simulation (HPCS 2019), Dublin,
Ireland, July 2019.

[76] P. Czarnul, J. Kuchta, M. Matuszek et al., “MERPSYS: an
environment for simulation of parallel application execution
on large scale HPC systems,” Simulation Modelling Practice
and 9eory, vol. 77, pp. 124–140, 2017.

[77] X. Li and P. C. Shih, “Performance comparison of cuda and
openacc based on optimizations,” in Proceedings of the 2018
2Nd High Performance Computing and Cluster Technologies
Conference, HPCCT 2018, pp. 53–57, ACM, New York, NY,
USA, June 2018.

[78] S. Christgau, J. Spazier, B. Schnor, M. Hammitzsch,
A. Babeyko, and J. Waechter, “A comparison of cuda and
openacc: accelerating the tsunami simulation easywave,” in
Proceedings of the 2014 Workshop Proceedings on Architecture
of Computing Systems (ARCS), pp. 1–5, Luebeck, Germany,
February 2014.

[79] R. Sachetto Oliveira, B. M. Rocha, R. M. Amorim et al.,
“Comparing cuda, opencl and opengl implementations of the
cardiac monodomain equations,” in Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Waśniewski, Eds., pp. 111–120, Springer
Berlin Heidelberg, Berlin, Germany, 2012.

[80] H. C. D. Silva, F. Pisani, and E. Borin, “A comparative study of
sycl, opencl, and openmp,” in Proceedings of the 2016 In-
ternational Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW), pp. 61–
66, New York, NY, USA, December 2016.

[81] M. Sugawara, S. Hirasawa, K. Komatsu, H. Takizawa, and
H. Kobayashi, “A comparison of performance tunabilities
between opencl and openacc,” in Proceedings of the 2013 IEEE
7th International Symposium on Embedded Multicore Socs,
pp. 147–152, Tokyo, Japan, September 2013.

[82] S. J. Pennycook, J. D. Sewall, and J. R. Hammond, “Evaluating
the impact of proposed openmp 5.0 features on performance,
portability and productivity,” in Proceedings of the 2018 IEEE/
ACM InternationalWorkshop on Performance, Portability and
Productivity in HPC (P3HPC), pp. 37–46, Dallas, TX, USA,
November 2018.

[83] M. A. Heroux, D. W. Doerfler, P. S. Crozier et al., “Improving
performance via mini-applications. Sandia national labora-
tories,” Technical Report SAND2009-5574 3, Sandia National
Laboratories, Livemore, CA, USA, 2009.

[84] H. C. Edwards, C. R. Trott, D. Sunderland, and Kokkos,
“Enabling manycore performance portability through poly-
morphic memory access patterns,” Journal of Parallel and
Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014.

[85] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel
programming models and tools in the multi and many-core
era,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 8, pp. 1369–1386, 2012.

[86] K. ,outi and S. R. Sathe, “Comparison of openmp & opencl
parallel processing technologies,” International Journal of
Advanced Computer Science and Applications, vol. 3, no. 4,
2012.

[87] S. Memeti, L. Li, S. Pllana, J. Kolodziej, and C. Kessler,
“Benchmarking opencl, openacc, openmp, and cuda: pro-
gramming productivity, performance, and energy con-
sumption,” in Proceedings of the 2017 Workshop on Adaptive
Resource Management and Scheduling for Cloud Computing,
ARMS-CC ’17, pp. 1–6, ACM, New York, NY, USA, July 2017.

[88] M. Martineau, S. McIntosh-Smith, M. Boulton, and
W. Gaudin, “An evaluation of emerging many-core parallel
programming models,” in Proceedings of the 7th International
Workshop on Programming Models and Applications for
Multicores and Manycores, PMAM’16, pp. 1–10, ACM, New
York, NY, USA, May 2016.

[89] S. J. Kang, S. Y. Lee, and K. M. Lee, “Performance comparison
of openmp, mpi, and mapreduce in practical problems,”
Advances in Multimedia, vol. 2015, 2015.

18 Scientific Programming

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


[90] J. Li, “Comparing spark vs mpi/openmp on word count
mapreduce,” 2018.

[91] H. Asaadi, D. Khaldi, and B. Chapman, “A comparative
survey of the hpc and big data paradigms: analysis and ex-
periments,” in Proceedings of the 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 423–432,
Taipei, Taiwan, September 2016.

[92] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu, “Datampi:
extending mpi to hadoop-like big data computing,” in Pro-
ceedings of the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pp. 829–838, Minneapolis,
MN, USA, May 2014.

[93] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics
in the cloud: spark on hadoop vs mpi/openmp on beowulf,”
Procedia Computer Science, vol. 53, pp. 121–130, 2015.

[94] Whiteson, D.: HIGGS data set, 2019.
[95] X. Li and P. C. Shih, “An early performance comparison of

cuda and openacc,” in Proceedings of the MATEC Web of
Conferences, ICMIE, vol. 208, Lille, France, July 2018.

Scientific Programming 19

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

