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a b s t r a c t

The paper considers a team of robots which has to explore a graph G, where some nodes
can be harmful. Robots are initially located at the so-called home base node. The dangerous
nodes are the so-called black hole nodes, and once a robot enters in one of them, it is
destroyed. The goal is to find a strategy in order to explore G in such a way that minimum
number of robots is wasted. The exploration ends if there is at least one surviving robot
which knows all the edges leading to the black holes. As many variations of the problem
have been considered so far, the solution and its measure heavily depend on the initial
knowledge and the capabilities of the robots. In this paper, we assume that G is a directed
graph, the robots are associated with unique identifiers, they know the number of nodes n
of G (or at least an upper bound on n), and they know the number of edges1 leading to the
black holes. Each node is associated with a whiteboard where robots can read and write
information in a mutual exclusive way.

A recently posed question [J. Czyzowicz, S. Dobrev, R. Kralovic, S. Miklik, D. Pardubska,
Black hole search in directed graphs, in: Proc. of 16th International Colloquium on
Structural Information and Communication Complexity, SIROCCO, LNCS, vol. 5869, 2009,
pp. 182–194.] is whether some number of robots, expressed as a function of parameter
1 only, is sufficient to detect black holes in directed graphs of arbitrarily large order n.
We give a positive answer to this question for the synchronous case, i.e., when the robots
share a common clock, showing that O(1 · 21) robots are sufficient to solve the problem.
This bound is nearly tight, since it is known that at least 21 robots are required for some
instances. Quite surprisingly, we also show that unlike in the case of undirected graphs, for
the directed version of the problem, synchronization can sometimesmake a difference: for
1 = 2, in the synchronous case 4 robots are always sufficient,whereas in the asynchronous
case at least 5 robots are sometimes required.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The subject of exploring an unknown graph by means of mobile entities has been widely considered in recent years. The
increasing interest to the problem comes from the variety of applications that it meets. In robotics, it might be very useful to
let a robot or a team of robots explore dangerous or impervious zones. In networking, software agents might automatically
discover nodes of a network and perform updates and/or refuse their connections. In this paper, we are interested in the
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exploration of a graph with faulty nodes, i.e., nodes that destroy any entering entity. Such nodes are called black holes, and
the exploration of a graph in such kind of networks is usually referred as black hole search. In what follows, we refer to the
mobile entities as robots. According to the assumed initial settings of the network, and the knowledge and the capabilities
of the robots, many results have been provided. Pure exploration strategies, without dealing with black holes, have been
widely addressed, see for instance [9,12] and references therein. In this case, the requirement is usually to perform the
exploration as fast as possible. When black holes are considered, along with the time (or equivalently the number of edge
traversals) required for a full exploration, the main goal resides in minimizing the number of robots that may fall into some
black hole. Wewill say that a team of robots solves the black hole search problem if, at the end of the exploration, all the edges
which do not lead into a black hole are marked as safe edges, and at least one robot from the team survives.

1.1. Related work

Undirected graphs. The literature dealingwith black hole search problemsmainly refer to undirected graphs. In this context,
a further distinction is made between synchronous and asynchronous systems.

Concerning asynchronous systems, the most general results for undirected graphs can be found in [6] where the black
hole search problem was considered in the presence of a single black hole without any limitation on the network topology.
The authors showed that 1 + 1 robots are sufficient to complete the exploration and require Θ(n2) steps, with 1 being the
degree of the black hole, and n the size of the network.

In [7], the attention was devoted to rings. The authors showed that 2 robots are enough in order to detect one black hole
and they provided an algorithm which requires O(n log n) moves, where n is the dimension of the ring. This approach was
generalized to arbitrary graphs in [6], where it is shown that with complete topological knowledge of the input graph, only
two robots suffice and require Θ(n log n) steps to locate the black hole.

The variant inwhich the robot entering the node cannot learn the link bywhich it has arrivedwas studied in [10]. For this
scenario, a bound of 12

+1

2 + 1 on the number of required robots was established and shown to be tight for some instances
of the problem.

Other restrictions have also been considered, like the knowledge of amap in [8]where the authors provided a strategy for
locating one black hole by means of 2 robots in O(n + d log d) moves, where n is the size of the network and d its diameter.
In [5], one black hole is optimally located by 2 robots in O(n) moves in the case when the input graph has size n and its
topology is among hypercubes, cube-connected cycles, star graphs, wrapped butterflies, chordal rings, multidimensional
meshes or tori of restricted diameter. Time optimal algorithms for black hole search on ring networks have been recently
provided in [1].

Concerning synchronous systems, in [3], the exploration subject was restricted to black holes in tree topologies. The
authors showed that 2 robots are enough to perform the exploration when only one black hole exists. They provided a
5
3 -approximation algorithmwith respect to the required number of edge traversals. In [11], the authors assume that themap
is known and then show that the problem of locating one black hole by means of 2 synchronous robots is not polynomial
time approximable within any constant factor less than 389

388 , and provide a 6-approximation algorithm. A slightly different
problemwas considered in [2] where the network admits many black holes and if a robot gets destroyed into one, then such
a black hole disappears but not the underlying node.

Directed graphs. The additional property of having directed edges can only increase the difficulty of the problem as a robot
which has traversed an edge, cannot in general comeback directly by reversing itsmove. The first results concerning directed
graphs have been recently published in [4]. The authors considered a setting where robots are associated with unique
identifiers (IDs), they know the number of nodes n of the input directed graph G = (V , A), and they know the number 1 of
edges belonging to G leading to the black holes. If BH ⊂ V is the set of black holes in G, the induced subgraph G[V \ BH] is
assumed to be strongly connected. Each node v ∈ V is associated with a so-calledwhiteboardwhich is an available bounded
memory (with size polynomial in n) accessible in a mutually exclusive way by the robots located at node v. The obtained
results show a general case lower bound on the number of robots required in order to accomplish the black hole search.

Theorem 1.1 ([4]). In both the asynchronous and synchronous models, 21 robots are sometimes required to solve the directed
black hole search problem, for all 1 ≥ 1.

Such a worst-case example is obtained, e.g., by considering a directed cycle on n − 1 vertices (including the home base),
and connecting 1 of these nodes by outgoing links to a single black hole vertex. Using a combination-lock argument, by
induction it was shown [4] that in this graph any team of less than 21 robots may sometimes perish in the black hole,
without any of the robots traversing the last link of the cycle which leads back to the home base.

In [4] it is also shown that 21+1 robots are enough for solving the problem on planar graphswith the planar embedding
known by the robots, and 21 robots are needed in the worst case.

1.2. Our results

In this paper, we extend the results on directed graphs by also separately considering the synchronous and the
asynchronous cases, i.e. when the robots share or not a common clock. Under the same settings of [4], for the synchronous
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casewe provide a general strategywhich requiresO(1·21) robots. This answers themain question posed in [4], i.e. whether
some number of robots, expressed as a function of parameter 1 only, is sufficient to detect black holes in directed graphs of
arbitrarily large order n. We also provide a strategy for 1 = 1 and 1 = 2 which requires 2 and 4 robots, respectively. For
the asynchronous case, we show that 2 robots are still sufficient when 1 = 1, but for 1 = 2 at least 5 robots are sometimes
required.

The paper is organized as follows. In Section 2 we recall the most important assumptions regarding the directed black
hole search problem, and introduce some further notation. In Section 3 we state the main positive results of the paper for
synchronous robots, proving thatO(1 ·21) robots suffice to explore any graph, and 4 robots suffice when1 = 2. The results
for asynchronous robots for 1 = 1 and 1 = 2 are given in Section 4. Section 5 contains some concluding remarks.

2. The model

We assume the same scenario as that introduced in [4]. The explored digraph G = (V , A) contains a distinguished node
called the home base (hb) fromwhich all the robots start the exploration, and a distinguished set of black holes BH ⊆ V \{hb}.
We remark that from the perspective of this work, setting the number of black holes equal to |BH| = 1 does not affect any
of the stated results. It is assumed that the induced subgraph G[V \ BH] is strongly connected. The set of arcs leading into
some black hole, BA = A ∩ ((V \ BH) × BH), is known as the set of black hole arcs. All robots know two parameters of
the graph: its order n = |V |, and the total number of black hole arcs, 1 = |BA|. We remark that this assumption of the
model comes from [4]; the algorithm which we propose in Section 3 only makes use of these parameters to determine the
number of released robots and the waiting time between two successive robots are released, and hence knowledge of an
upper bound on n and 1 is sufficient. A robot located at a node v has access to its own built-in memory, the whiteboard
associated with the node, a global timer counting the steps of the algorithm, and a local labeling of the arcs leaving node v
(called an assignment of port numbers), which can be used to select the next arc in the robot’s traversal. Note that nodes do
not have unique identifiers, although such identifiers can potentially be created by the robots exploring the graph.

For a node v of a directed (multi)graph H , the number of arcs entering v is denoted by indegH(v), and the number of arcs
exiting v is denoted by outdegH(v).

3. Algorithm for the synchronous model

In this section we propose a strategy for solving the directed black hole search problem using O(1 · 21) synchronous
robots. The robots are released from the home base hb one-by-one, at regular intervals of n4 time steps. The strategy is
formulated in such a way as to guarantee that within n4 steps, i.e., before the next robot is released, the currently active
robot is destroyed in some black hole.

Throughout the algorithm, each node v maintains a label f (v) stored in its whiteboard. Let the subgraphHf (v) of G consist
of all nodes u ∈ V \ BH having f (u) = f (v), and all arcs (u1, u2) ∈ A such that f (u1) = f (u2) = f (v) and (u1, u2)
has been visited by at least one robot. The procedure is defined in such a way that initially f (v) is unique for all visited
nodes (the definition of f (v) for unvisited nodes is irrelevant), whereas throughout the computation each of the graphs
Hf (v) remains strongly connected. Moreover, for each node v, the structure of the graph Hf (v) and its embedding in the ports
of G is encoded on the whiteboard of v.

The procedure is divided into 1 phases. The p-th phase, 1 ≤ p ≤ 1 consists of (1 + 2) · Sp robot releases, where
Sp = ⌈21

· (
√
3/2) p−1

⌉. The phase is divided into the following three parts, involving robots with essentially different
behavior:

• First part: Sp searching robots are released.
• Second part: in each of 1 iterations, Sp cycle detection robots are released, following along a slight modification of the

paths used by the searching robots from the first part of the phase.
• Third part: Sp cycle contraction robots are released.

After the 1 phases have been completed, all nodes (apart from black holes) belong to the same strongly connected
component Hf (hb), which is encoded on the whiteboards of all these nodes, thus describing all the safe links of the graph.
The procedures followed by the searching, cycle detection, and cycle contraction robots are discussed in detail below.

Procedure for the first part of the phase. The procedure for each searching robot r is defined as follows. Directly before and
directly after traversing an arc, the robot writes this information on the whiteboards of the starting node and of the end
node of the arc, respectively, together with its unique ID and the number of the move in the robot’s move sequence. The
robot proceeds to make its next move as follows:

1. Let the robot be located at an arbitrary node of some graph Hi. Then, the robot explores all nodes of Hi, identifying all
arcs of G which leave or enter these nodes and do not belong to Hi. If there exists an outgoing arc (u1, v1) which was
used by some robot r ′ at time t1, and an incoming arc (v2, u2) which was used by the same robot r ′ at some later time t2,
where u1, u2 ∈ V (Hi) and v1, v2 ∉ V (Hi), then robot r proceeds to extend component Hi by including in it all the nodes
on the route (v1, . . . , v2) used by the robot r ′ between times t1 and t2. (Robot r ′ was either a previously released robot,
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Fig. 1. (a) A schematic representation of the paths followed by three consecutive searching robots r1 , r2 , r3 . The strongly connected components Hα , Hβ ,
Hγ associated with respective black hole arcs are assumed to remain unchanged during the phase. (b) The corresponding graph of the precedence relation
(≺) on Hα , Hβ , Hγ .

or r ′
= r .) More precisely, robot r visits all the nodes of all the graphs Hf (v), with v ∈ (v1, . . . , v2), setting their labels to

f (v) := i, and updating the stored graphs Hf (v) accordingly.
2. When the extension from Step 1 can no longer be applied, the robot performs the next move as follows.

• If there exists an arc leaving Hi which has never been visited by any robot, then the robot proceeds along this arc.
• Otherwise, the robot proceeds along the arc leaving Hi which has not been used by any robot for the longest time.

Note that the actions performed in Step 1 will never lead the robot into a black hole, and do not lead it out of the current
explored strongly connected component, whereas either of the actions performed in Step 2 can potentially destroy the robot
or lead it into a node which does not belong to component Hi.

The number of steps performed by a searching robot can be upper-bounded by n4. Indeed, the graph has less than n2

arcs, and the discovery of each new arc by an agent may require a complete exploration of the current strongly connected
component Hi, which can be performed in at most n2/2 steps.

Procedure for the second and third parts of the phase. To avoid confusion, we will write f (2) and H(2)
i to denote the value of

labels f and graphs Hi throughout the second part of the phase (the cycle detection robots do not update the labels), and
likewise f (3) andH(3)

i to denote these labels and graphs at the end of thewhole phase (after releasing all the cycle contraction
robots).

Looking at the labels f (2) and graphs H(2), which are defined at the time of the destruction of the last searching robot,
observe that each searching robot r can be seen as performing a traversal of some sequence of graphs (H(2)

f1
, . . . ,H(2)

fk
), where

a graphH(2)
fi

appears in the sequence if at least one of its nodes has been visited by robot r . This implies a natural precedence

relation (≺) between graphsH(2)
fi

andH(2)
fj

, that is, wewill writeH(2)
fi

≺ H(2)
fj

if for some searching robot r , graphH(2)
fi

appears

before graph H(2)
fj

in the robot’s sequence of visits; see Fig. 1 for an illustration.
Relation ≺ does not have to be acyclic. The goal of the cycle detection robots is to detect cycles of length at most 1 in the

graph of relation ≺. To do this, we release the robots in such a way that after the l-th of the 1 iterations in this phase, each
node of graph H(2)

fj
stores a list of all fi such that H(2)

fi
≺

l H(2)
fj

, where (≺l) is the l-th power of relation (≺). With each graph

H(2)
fi

, we associate a precedence set Pfi whose copies are stored in the whiteboards of all of the nodes of H(2)
fi

, and initially
Pfi = ∅. In the l-th iteration, for each searching robot r , exactly one cycle detection robot r ′ will retrace the route of r . Robot r ′

is defined so as to visit all nodes of all graphs in the same order (H(2)
f1

, . . . ,H(2)
fk

) as robot r , with transitions between adjacent

graphs H(2)
fi

performed using the same arcs as those visited by robot r (this can be achieved since robot r may be assumed
to store the information about its next move on the whiteboards of the nodes it is passing through). Additionally, for each
H(2)

fj
, robot r ′ now appends to the contents of set Pfj the contents of all sets Pfi , for all i < j, and also adds to Pfj the element

fi, for all i < j; all the copies of set Pfj stored in the nodes of H(2)
fj

are updated accordingly. Clearly, we have H(2)
fi

≺
l H(2)

fj
if

and only if fi ∈ Pfj . For easier manipulation of data in the next part of the phase, the precedence sets should store additional
information about the ID of the searching robots r inducing the respective precedence relations.

Finally, the goal of the cycle contraction robots is to contract into a single connected component all graphs H(2)
fi

forming
cycles of length at most 1 in the precedence graph induced by relation (≺). The cycle contraction once again retraces the
route of corresponding searching robots from r . Upon detecting a cycle of length at most 1 in the precedence relation, i.e.,
fi ∈ Pfi for some graphH(2)

fi
, they follow the arcs of the directed cycle of Gwhich induces this relation (the identifiers of these

arcs should be stored in set Pfi as auxiliary information). For all the nodes v of all the graphs H(2)
fj

encountered in this cycle,

the robots then update their labels, setting the new value f (3)(v) = fi and constructing the new contracted component H(3)
fi

accordingly. These labels and components are then used by the searching robots in the next phase of the algorithm.
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We remark that in all three phases of the algorithm, the number of steps performed by a robot before it is destroyed in
a black hole or it returns to the home base, can be upper-bounded by n4 steps, hence the release times of successive robots
can be scheduled in intervals of n4 steps.

Theorem 3.1. The proposed strategy solves the directed black hole search problem using O(1 · 21) synchronous robots.

Proof. The number of robots used by the algorithm can indeed be bounded as follows:
∑1

p=1(1+2)Sp = (1+2)
∑1

p=1⌈2
1
·

(
√
3/2) p−1

⌉ ∈ O(1 · 21). We now show that our strategy solves all instances of the black hole search problem.
Let {v1, . . . , vD}, where D ≤ 1, be the set of vertices from which it is possible to exit by a black hole arc. At any given

time step, consider the set of labels {f (v1), . . . , f (vD)} = {f1, f2, . . . , fd}, with 1 ≤ d ≤ D, and let δi denote the number
of black hole arcs exiting from nodes of Hfi , with

∑
1≤i≤d δi = 1. As in the case of the other parameters, we will use the

notation d(2), d(3), f (2)
i , f (3)

i , and δ
(2)
i , δ(3)

i to denote the respective values during the second part and at the end of the third
part of the phase.

First, we will prove by induction that at the end of the p-th phase, 1 ≤ p < 1, we have d(3)
≤ 1 − p. The claim is

clearly true for p = 0; we will show that in each subsequent phase, either the black hole search problem has already been
successfully solved (i.e., d(2)

= 1 andH(2)
f1

= G[V \BH]), or the value of d(3) decreases by at least 1 (i.e., some two components
Hfi and Hfj are contracted into each other during the phase). Consider for a moment the situation during the second part of
the phase, and define the directed multigraph (H, R), where the set of nodes is H = {s,H(2)

f1
,H(2)

f2
, . . . ,H(2)

fd
}, with s being

a special source node, while arcs are defined as follows. For each searching robot r released in the current phase, we add
one arc from node H(2)

fi
to H(2)

fj
if and only if robot r visited at least one node of H(2)

fi
before visiting a node of H(2)

fj
, and did

not visit any node of any other graph from H \ {H(2)
fi

,H(2)
fj

} in between these two visits. For each robot r , we also add an arc

from the special source node s to the first of the graphs H(2)
fi

visited by the robots, containing the homebase hb. Note that
indeg(H,R)(s) = 0, and outdeg(H,R)(s) = Sp.

We consider the following cases.

(a) Multigraph (H, R) contains a directed cycle. Then, since the relation R restricted to nodes fromH \{s} is a sub-relation of
precedence relation (≺), and |F | ≤ 1, the graph of relation (≺) also contains a cycle of length at most 1 on the connected
components from H . Since all such components are contracted into one in the cycle contraction phase, we immediately
obtain that the value of d(3) is smaller than that of d(2) for the current phase, hence d(3) decreaseswith respect to the previous
phase.

(b) Multigraph (H, R) is acyclic, and no contractions are performed (d(2)
= d(3)); we can then extend R to a linear order,

simply writing f1 < f2 < · · · < fd; each searching robot of the current phase visits some subsequence of graphs H(2)
fi

in

ascending orders of labels. For each fi, consider the set of black hole arcs exiting the component H(2)
fi

. If at the start of the
current phase some of these arcs exited different strongly connected components Ha, Hb (which were contracted into one
by some searching robot), then the inductive claim holds, since for the current phase the value of d(2) is less than that of
d(3) at the end of the previous phase. Thus, w.l.o.g. we can assume that H(2)

fi
is obtained from some component Hfi , which is

perhaps enlarged by searching robots, but has the same set of exiting black hole arcs as H(2)
fi

, throughout the phase. With
this assumption, we now proceed to show the following auxiliary lemma.

Lemma 3.1. If multigraph (H, R) is acyclic, then we either have d = 1 and H(2)
f1

= G[V \ BH], or for all i, 1 ≤ i ≤ d(2), the
following condition holds:

outdeg(H,R)H
(2)
fi

≥


indeg(H,R)H

(2)
fi

δi + 1


.

Proof of Lemma. Let i be arbitrarily chosen, and consider an arbitrary sequence of δi + 1 searching robots r1, . . . , rδi+1

which consecutively went through H(2)
fi

, ordered by increasing release times. We will show that at least one of the robots

did not use a black hole arc to leave H(2)
fi

. Let Hfi(rj) denote component Hfi directly after the destruction of robot rj; recall

that we haveHfi(r1) ⊆ Hfi(r2) ⊆ · · · ⊆ Hfi(rδi+1) ⊆ H(2)
fi

, and eachHfi(rj) has the same set of black hole arcs asH(2)
fi

. Suppose

now, to the contrary, that each of the robots rj left H
(2)
fi

by a black hole arc; this means that each of these robots also left
Hfi(rj) by a black hole arc; moreover, since preference is given to arcs which were not used for a longer time, each of the
robots r1, . . . , rδi will be destroyed by a different black hole arc. Consider now the robot rδi+1. By the strong connectivity
property of graph G[V \ BH], unless Hfi(rδi+1) = G[V \ BH], there exists at least one arc e outgoing from Hfi(rδi+1) which is
not a black hole arc. This arc could not have been visited by any robot r released between r1 (inclusive) and rδi+1 (exclusive).
Indeed, r never returns to component Hfi(rδi+1) after leaving it by arc e (since otherwise arc e would have been included
into Hfi(rδi+1) by robot rδi+1), and since we have r ∈ {r1, . . . , rδi} (because r visits Hfi(rδi+1) ⊆ H(2)

fi
), one of the robots

{r1, . . . , rδi} would have not been destroyed by any black hole arc leading out of Hfi(rδi+1), a contradiction. Hence, robot
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rδi+1 finally leaves component Hfi(rδi+1) by an arc which is not a black hole arc, so it must contribute to the out-degree of
node H(2)

fi
in multigraph (H, R). Since the sequence of δi + 1 consecutive robots going through H(2)

fi
was arbitrarily chosen,

the claim follows directly. �

Now, we make a simple structural claim which relies only on properties of directed acyclic multigraphs.

Lemma 3.2. Let M be any directed acyclic multigraph having set of nodes {s, v1, v2, . . . , vd}, such that indeg(s) = 0, and for all
vi, 1 ≤ i ≤ d, we have: outdegM(vi) ≥


indegM (vi)

δi+1


. Then: outdegM(s) <

∏d
i=1(δi + 1).

Proof of Lemma. Without loss of generality, wemay assume that (s, v1, v2, . . . , vd) is a valid linear ordering of the vertices
of M obtained by topological sorting of the vertices. Let mi, 1 ≤ i ≤ d, be the cardinality of the set of arcs of M having their
starting point in a vertex from the set {s, v1, . . . , vi−1} and their endpoint in the set {vi, . . . , vd}. We also put md+1 = 0.
Observe that by assumption indegM(vi) ≤ (δi + 1) outdegM(vi) + δi, and for all i, 1 ≤ i ≤ d, we have mi+1 ≥ outdegM(vi).
Hence:

mi = mi+1 + indegM(vi) − outdegM(vi)

≤ mi+1 + (δi + 1) outdegM(vi) + δi − outdegM(vi)

= mi+1 + δi (outdegM(vi) + 1) ≤ mi+1 + δi(mi+1 + 1) = (δi + 1)(mi+1 + 1) − 1.

From the above inequalities, we obtain by induction starting from i = d the relation mi ≤
∏d

j=i(δj + 1) − 1. Hence,
outdegM(s) = m1 <

∏d
j=1(δj + 1). �

Lemma 3.3. Let δ1, . . . , δd be positive integers such that
∑d

i=1 δi = 1. Then
∏d

i=1(δi + 1) ≤ 21
· (

√
3/2)1−d.

Proof of Lemma. We will show a more general claim, namely, that for any sequence δ1, . . . , δt of positive integers
containing at most d elements equal to 1 and such that

∑t
i=1 δi = 1, we have

∏t
i=1(δi + 1) ≤ 21

· (
√
3/2)1−d. Assume

w.l.o.g. that δ1 ≤ · · · ≤ δt . First, we consider the case when δi ∈ {1, 2} for all 1 ≤ i ≤ t , that is, for some c ≤ d,
δ1 = · · · = δc = 1 and δc+1 = · · · = δt = 2. Then,

∏t
i=1(δi + 1) = 2c

· 3(1−c)/2
=

√
3

1
(2/

√
3)c ≤

√
3

1
(2/

√
3)d =

21
· (

√
3/2)1−d, and the claim holds. Analogously we show that the claim holds when δi ∈ {1, 2} for all 1 ≤ i ≤ t − 1 and

δt = 3. Finally, for any sequence δ1, . . . , δt which does not belong to one of the two considered classes it is immediate to
construct a sequence δ′

1, . . . , δ
′

t ′ containing the same number of elements equal to 1, having the same sum, and such that∏t
i=1(δi+1) ≤

∏t ′
i=1(δ

′

i +1). Indeed, if the sequence δ1, . . . , δt contains an element δi > 3 thenwe can replace this element
by some number of elements δ′

i1
, . . . , δ′

ik
∈ {2, 3} such that δ′

i1
+ · · · + δ′

ik
= δi, without affecting the sum and the number

of ones in the sequence, and increasing the considered product. Moreover, if the sequence δ1, . . . , δt contains some two
elements δi1 = δi2 = 3, then we similarly replace them by three elements δ′

i1
= δ′

i2
= δ′

i3
= 2, retaining all the desired

properties. This completes the proof of the lemma. �

Now, recall that the number of searching robots released in the current p-th phase is chosen as Sp = ⌈21
· (

√
3/2) p−1

⌉.
Since by the inductive claim from phase p − 1, we have that d ≤ 1 − p + 1, we obtain from the preceding lemma:
outdeg(H,R)(s) = Sp ≥ 21

· (
√
3/2)1−d

≥
∏d

i=1(δi + 1). This means that the claim of Lemma 3.2 does not hold, and so the

assumption outdeg(H,R)H
(2)
fi

≥


indeg(H,R)H

(2)
fi

δi+1


is violated for some component H(2)

fi
. From Lemma 3.1 we thus immediately

conclude that d = 1 and H(2)
f1

= G[V \ BH], hence in this case the black hole search problem has been successfully solved.
This completes the inductive proof that at the end of the p-th phase, d(3)

≤ 1 − p. Thus, after phase p = 1 − 1, we have
d(3)

≤ 1−p ≤ 1, and so at the start of phase 1, d = 1, and all the nodes belong to the same strongly connected component
Hf1 . The black hole search problem is thus solved in phase 1. �

Theorem 3.2. In the synchronous model, 4 robots are always sufficient and sometimes required to solve the directed black hole
search problem with 1 = 2.

Proof. The lower bound on the number of required robots is a direct consequence of Theorem 1.1. The upper bound is ob-
tained by a similar strategy as that used in the proof of Theorem 3.1, simply releasing 4 searching robots r1, r2, r3, r4 in a
single phase (without any cycle detection or cycle contraction robots). Let {e1, e2} = BA be the two black hole arcs, origi-
nating from nodes v1 and v2, respectively. Robot r1 may either successfully solve the black hole search instance, or may be
destroyed on one of the black hole arcs, say e1. In the latter case, robot r2 will either successfully solve the instance or be
destroyed in the other black hole arc e2 (recall that robots choose to use unvisited arcs, whenever possible, and the graph is
strongly connected). Suppose that robot r3 is also destroyed in some black hole; this is possible, e.g., in theworst-case exam-
ple from Theorem 1.1. Now, taking into account Lemma 3.2, we observe that at some point during the traversal performed
by robot r4, nodes v1 and v2 will necessarily belong to the same strongly connected component Hf (f (v1) = f (v2) = f ).
Once robot r4 has reached this component, it will always exit it by unvisited arcs. Since both arc e1 and e2 have already been
used (by robots r1 and r2, respectively), robot r4 will never enter a black hole and will proceed to enlarge component Hf ,
until the whole of the graph has been explored, Hf = G[V \ BH], and will thus successfully complete the task. �
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Fig. 2. The possible ways that an adversary has to defeat any strategy which aims to solve the directed black hole search problem when using less than 5
robots.

4. Results for the asynchronous model

Theorem 4.1. In both the asynchronous and synchronous models, 2 robots are always sufficient and sometimes required to solve
the directed black hole search problem with 1 = 1.

Proof. The lower bound on the number of required robots is a direct consequence of Theorem 1.1. The upper bound
(which we obviously need to show for the asynchronous model, only) is obtained by simultaneously releasing two robots,
each of which applies a strategy identical to that used by searching robots in the proof of Theorem 3.1. It is easy to observe
that, throughout the process, each robot is either traversing arcs of an already identified strongly connected subgraph Hf of
G[V \ BH], or is exiting such a subgraph by some outgoing arc e. Arc e has either never been visited before by any robot, or is
the unique arc exiting Hf , which, due to the strong connectivity property of G[V \ BH], has to lead to some node of V \ BH .
Thus, a robot may potentially enter a black hole only when using an arc which has been never visited before by any robot.
Since 1 = 1, this means that the black hole may destroy at most one robot, since the remaining robot will not traverse the
unique black hole arc at any later time. The surviving robot(s) perform a search of the graph, exploring unvisited arcs, until
the whole of the strongly connected component G[V \ BH] has been discovered and the search is complete. �

Theorem 4.2. In the asynchronousmodel, at least 5 robots are sometimes required to solve the directed black hole search problem
with 1 = 2.

Proof. The proof considers some possible cases that must be solved by any strategy A for the black hole search problem
with 1 = 2. We first assume that 4 robots are sufficient for solving the problem and then we obtain the claim by showing
how an adversary can defeat all the robots. As usual, all the 4 robots start from hb which has two outgoing arcs. All of the
examples we consider are such that the only arc of the graph returning to the homebase (marked in Fig. 2 with a dashed
line) will in some cases never be traversed by a robot. Consequently, we confine ourselves to an analysis of strategies in
which all the robots leave the homebase without waiting for any robots to return.

According to A, there are three possible cases for the first move of each robot and three corresponding strategies of the
adversary (see Fig. 2 for a visualization): (i) all of them follow one direction; (ii) one goes through one direction and the
remaining three to the other; (iii and iii’) the four robots are equally distributed among the two directions.

If (i), then the adversary can locate one black hole on the reached node, and all the robots get destroyed. If (ii), then the
adversary can locate one black hole on the node reached by the majority of the robots, hence destroying three of them. The
surviving robot reaches a safe node admitting another branching off. One of the two options leads to the black hole, while
the other one to hb. As the robot has no further knowledge to distinguish between the two options, the branch it chooses
will be set by the adversary as the one leading to the black hole, and again all the robots get destroyed. If (iii), by referring
to Fig. 2 we have that after the first move, two robots are on node u and two robots are on node v. From the point of view of
the pair of robots located at u (respectively, v), this situation is indistinguishable from that of the pair of robots located at w
in graph (iii’), where allowing any robot to wait could lead to an infinite deadlock, since all other robots may be destroyed.
Hence, all the four robots at u and v in (iii) must move, without waiting for any other robot. The pair of robots on u (resp.
v) cannot choose to move along the same arc because they may both be destroyed by the adversary. So, they have to move
on distinct arcs. This implies that one robot from u and one from v get destroyed. The snapshot of the network now gives
a robot on v and another on z. From v, both outgoing arcs have been already traversed and hence the robot has no further
knowledge to distinguish among the two options apart from the identifiers of the robots that have been passing through
such arcs. However, these IDs can be exchanged by the adversary by swapping the labels of ports exiting v, thus making this
information useless. The robot is thus forced either to wait at v, or enters the black hole. The other robot, which is on z, has
again two unexplored options, one leading to hb, and the other to u. The adversary forces the robot to reach u, from there it
is analogously forced either to wait or to enter the black hole. Thus, all the robots are either destroyed or deadlocked, and
the claim holds. �
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5. Conclusions

In this paper, we have considered the black hole search in directed graphs under both the synchronous and the
asynchronous settings. The obtained results reflect the difficulty of the problem on directed graphs as well as the difference
between the synchronous and the asynchronous settings. It is worth noting how the behavior of the robots must change
even for small values of 1, such as 2. This was not the case for undirected graphs. This makes the study of the problem on
directed graphs evenmore intriguing. One major remaining open problem concerns the possibility of bounding the number
of required robots in terms of 1 in the asynchronous case.

Many variations of the problem still deserve investigation. Changing the assumptions to the initial knowledge of the
robots, for instance by (partially) revealing the graph to the robots or providing topological information about the location
of the nodes and ordering of the edges, could lead to completely different results.
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