
materials

Article
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Abstract: Carbon nanotubes were successfully functionalized for the first time in a free radical
phosphonylation reaction. Three synthetic protocols were proposed. Carbon nanotubes and di-
ethylphosphite reacted in the presence of known radical initiator, such as azobisisobutyronitrile,
single electron oxidant—Mn(OAc)3, or under UV radiation. The functionalized material was fully
characterized by means of spectroscopic methods, together with microscopic, surface area and
thermogravimetric analyses. UV-illumination was found to be the most effective approach for intro-
ducing phosphonates onto carbon nanotubes. X-ray photoelectron spectroscopy analysis showed 6%
phosphorus in this sample. Moreover, the method was performed at room temperature for only one
hour, using diethylphosphite as a reactant and as a solvent. The functionalized carbon nanotubes
showed an improved thermal stability, with a decomposition onset temperature increase of more
than 130 ◦C. This makes it very promising material for flame retarding applications.

Keywords: carbon nanotubes; chemical functionalization; phosphorus containing groups; phosphonates;
free-radical reactions

1. Introduction

Carbon nanotubes (CNTs) receive a great deal of attention due to their impressive
properties and variety of applications. Owing to their large specific surface area and high
electrical conductivity, CNTs are promising candidates for sensors [1,2], energy storage
materials [3,4], and catalyst supports [5,6]. A well-developed surface combined with good
chemical stability also makes them effective pollutant adsorbents [7,8] and excellent drug
and gene carriers [9,10]. However, in most cases, CNTs cannot be used in their pristine
form and their surface properties usually need to be tailored to specific application.

Surface functionalization is a powerful tool that allows to adjust the physical and
chemical properties of CNTs, and, as a consequence, increase their processability and
applicability. There are many approaches that have been applied for the functionalization
of CNTs, including covalent and noncovalent modifications using chemical and physical
methods (plasma treating, thermal annealing) [11–14]. One key area of research deals
with the introduction of different functional groups onto the surface of CNTs. The most
common are definitely oxygen functional groups (e.g., hydroxyl, carboxyl, carbonyl);
however, many examples of CNTs with nitrogen (e.g., amine, amide) and sulfur-containing
(e.g., thiol, sulfonic) functional groups can also be found in the literature [15–18]. Contrary
to the examples mentioned above, phosphorus-containing groups, especially those with a
phosphorus atom attached directly to the carbon skeleton, are rarely reported. At the same
time, organic compounds containing C-P bonds find a number of applications, such as
corrosion inhibitors [19,20], detergents [21], flame retardants [22,23], and others. It is also
well known that such compounds possess a high affinity towards various metal ions and
can be used in waste water treatment [24,25]. C–P bonds are also widely found in many
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biologically active compounds, with applications ranging from enzyme inhibitors to bone-
seeking pharmaceuticals [26,27]. The vast majority of literature reports include noncovalent
approaches, e.g., π–π stacking interactions between naphthalen-1-ylmethylphosphonic acid
and CNTs [28,29] or the attachment of phosphonates via linkage (e.g., amide or carbonyl
bonds [30–34]). Such connections are prone to hydrolysis and can suffer from insufficient
thermal stability. In the literature, there are only a few examples described in which
phosphorus-containing groups are directly connected to the carbon of nanotubes. Dehghani
and co-workers used chemical vapor deposition method to obtain multi-walled carbon
nanotubes functionalized with phosphonic acid [35,36]. The functionalization degree of
such a product was high (11.65%), but the synthesis protocol required a high temperature
(1300 ◦C) and a special system to guaranteed a controlled atmosphere and proper gas
flow. CNTs functionalized with triphenylphosphine have also been reported [37–39]. The
conversion of the carboxyl groups present in CNTs into phosphonic ones was proposed by
two groups to produce bis-phosphonic derivatives [40,41].

In the present work, we grafted phosphorus-containing groups directly to the carbon
skeleton in a free-radical phosphonylation reaction. It should be noted that the reaction
of phosphorus radicals with sp2 carbon to form C–P bond compounds is known from
classical organic chemistry [42]. However, studies on the reaction of phosphorus radicals
with carbonaceous nanostructures are rare. To the best of our knowledge, reported works
include only fullerenes [43,44]. Herein, we adopt this method for multi-walled carbon
nanotubes (MWCNTs). Moreover, we proposed two new protocols, in which the formation
of phosphorus-centred free radicals was thermally generated in the presence of an initiator
(azobisisobutyronitrile (AIBN)) or by means of UV-irradiation, respectively. The function-
alized MWCNTs were thoroughly characterized using spectroscopic (Fourier-Transform
Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) andEnergy Disper-
sive X-ray spectroscopy (EDX) and microscopic methods (Scanning Electron Microscopy
(SEM)). Furthermore, thermal stability and surface area (adsorption–desorption nitrogen
isotherms) analyses have been carried out.

2. Materials and Methods

Multi-walled carbon nanotubes (MWCNTs, average outer diameter: 8–15 nm, pu-
rity >95 wt%) were ordered from Cheaptubes Inc., Grafton, VT, USA. Diethyl phosphite
((C2H5O)2P(O)H), manganese (III) acetate dihydrate (Mn(OAc)3·2H2O), azobisisobutyroni-
trile (AIBN) and 1,2-dichlorobenzene, tetrahydrofuran (THF) and N,N-dimethylformamide
(DMF) were purchased from Acros Organics, Antwerp, Belgium. The chemicals were of
analytical grade and were used without further purification.

Multi-walled carbon nanotubes were functionalized through free-radical reactions. In
all syntheses, the same amount of carbon material (100 mg) and diethyl phosphite (3 mL),
which acted as a phosphate group source, were used. Reactions were carried out in the
presence of known radical initiators, such as Mn(OAc)3 and AIBN, or under UV radiation.
The UV-promoted reaction was carried out in a photoreactor prototype designed by Dariusz
Wysiecki MSc., Eng. and constructed in cooperation with the Enviklim Company (Gdańsk,
Poland). The reactor was equipped with 3 UVA diode arrays: 2xUV-D6565-4LED, 40 W
and 1xUV-D6565-15LED, 150 W (Enviklim Company, Gdańsk, Poland) with a 365–370 nm
wavelength [45,46]. Detailed conditions are summarized in Table 1. Afterwards, products
were washed with DMF and THF, and dried under reduced pressure. The obtained
functionalized MWCNTs were labelled as MWCNT–Phos–Mn and MWCNT–Phos–AIBN,
in the case of using Mn(OAc)3 and AIBN, respectively, and MWCNT–Phos–UV when
UV-irradiation was used.
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Table 1. Detailed conditions of the functionalization reactions.

Sample ID MWCNTs Radical
Initiator

Phosphate
Groups Source

Reaction
Medium Atm Temp.

(◦C)
Time

(h)

MWCNT-
Phos-Mn 100 mg 90 mg Mn(OAc)3

·2H2O
3 mL of

(C2H5O)2P(O)H
3 mL of

1,2-dichlorobenzene Ar 135 5

MWCNT-
Phos-AIBN 100 mg (150 mg + 150 mg) AIBN 3 mL of

(C2H5O)2P(O)H (C2H5O)2P(O)H Ar 65 5

MWCNT-
Phos-UV 100 mg UV

radiation (365–370 nm)
3 mL of

(C2H5O)2P(O)H (C2H5O)2P(O)H Air 25 1

Characterization

The morphologies of the samples were studied with a scanning electron microscope
(ESEM Quanta Feg 250, FEI, Waltham, MA, USA). Fourier transform infrared (FTIR) spec-
tra were collected on a Perkin Elmer Frontier spectrophotometer (Waltham, MA, USA)
in the range of 500–4000 cm−1. Measurements were made in transmittance mode and
the potassium bromide pellet method was used. X-ray diffraction patterns were collected
on a Bruker D2 Phaser 2nd generation diffractometer with CuKα radiation (λ = 1.5404 Å)
with2θ ranging from 5 to 70◦. The Raman spectra were obtained with an integrated confo-
cal micro-Raman system with a LabRamAramis (Horiba Jobin Yvon, Tokyo, Japan) 460-mm
spectrometer equipped with a confocal microscope. The excitation source was a diode
pumped solid state (DPSS) laser emitting light at 632.8 nm. The surface chemical com-
position was studied using an Omicron NanoTechnology spectrometer (ScientaOmicron,
Uppsala, Sweden) with Mg Kα as an excitation source. The binding energies were corrected
using the background C1s (285.0 eV) line as a reference. XPS spectra were analyzed with
Casa-XPS software (Casa Software Ltd., ver. 2.3.23., Devon, UK) using Shirley background
subtraction and Gaussian–Lorentzian curve as a fitting algorithm. Thermogravimetric
analysis (TGA) was performed with a Netzsch STA 449 F1 (Netzsch, Selb, Germany). Ex-
periments were carried out with a heating rate 10 ◦C/min from 40 ◦C to 900 ◦C under an
argon atmosphere and under synthetic air. The N2 adsorption–desorption isotherms were
measured on a NOVAtouch™ 2 surface area analyser (Quantachrome Instruments, Boynton
Beach, FL, USA) at 77 K. Prior to the measurements, samples were degassed under vacuum
at 40 ◦C for 12 h. Specific surface area was calculated from the Brunauer–Emmett–Teller
(BET) linear equation in the range of 0.1–0.3 relative pressure. The correlation coefficient of
the linear regression was not less than 0.999.

3. Results and Discussion

In the present work, we present three ways of bonding of phosphorus-containing
groups directly to the carbon skeleton of nanotubes by using phosphorus-centred radicals.
It should be noticed, that the reaction of phosphorus-centred radicals with sp2 carbon to
form C–P bonds compounds is known from classical organic chemistry [42]. Homolytic
cleavage of P–H bonds serves as a major approach for the generation of phosphorus-centred
radicals. Phosphonyl radicals are the most popular for use in the generation of C–P bonds
with alkenes, alkynes, arenes, and heteroarenes [47,48], and they can be generated from
corresponding phosphonates under appropriate radical initiation conditions [49–51]. Gen-
erally, phosphorus-centred radicals can be generated via thermolysis or photolysis, and/or
in the presence of well-known initiators, such as peroxides, azo compounds, or photo
radical initiators. The reactions with single electron oxidants, such as cerium ammonium
nitrate, Mn(OAc)2/O2 or Mn(OAc)3, and AgOAc/K2S2O6 have also been reported.

Interestingly, since the pioneering work of Jeffrey L. Bahr and James M. Tour [52],
carbon-centred radicals have been frequently used for carbon nanostructures function-
alization, while there is only one example in the literature describing the reaction of
phosphorus-centred radicals with carbon nanomaterials. Wang and co-workers reported
the Mn(OAc)3-promoted reaction of C60 with phosphonate esters or phosphine oxide.
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Depending on the reaction conditions (i.e., molar ratio of the substrates) they obtained
three different types of phosphorylated fullerenes, that is, singly bonded fullerene dimers,
hydrofullerenes, and acetoxylated fullerenes [43,44]. Based on knowledge from organic
chemistry and our experience in the free-radical functionalization of carbon nanotubes
using diazonium salts [39,53–57], we proposed three synthesis pathways for covalent
functionalization of MWCNTs using diethyl phosphite, which are presented in Figure 1.
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Figure 1. Three pathways leading to phosphonated MWCNTs.

The first synthesis was following the work of Wang; however, using carbon nanotubes
in the place of fullerenes. The reaction was performed under argon, in 1,2-dichlorobenzene
with Mn(OAc)3 as a single electron oxidant, promoting (EtO)2P(O)· formation from
(EtO)2P(O)H at an elevated temperature (135 ◦C). The functionalization was successful;
however, a detailed analysis of the obtained material revealed the presence of a by-product,
which was impossible to remove. Figure 2a,b shows SEM images of MWCNTs before
and after functionalization. It can be clearly seen that the carbon material is decorated
with particles, which were not present in the pristine nanotubes. XRD study proved our
assumption, that it was MnO2 formed as a by-product of Mn(OAc)3 decomposition. A
comparison of diffractograms recorded for pristine MWCNTs and the MWCNT–Phos–Mn
sample is presented in Figure 2c. Typical (002) and (100) reflexes of MWCNT are present
at 26◦ and 43◦ in both diffractograms; however, additional reflexes are visible only for
the functionalized sample. The reflexes marked with asterisks refer to an α-MnO2 crystal
structure (Joint Committee on Powder Diffraction Standards (JCPDS)44-0141). Spectro-
scopic and thermal analyses revealed other differences and they will be discussed later in
comparison to the material obtained using the two other proposed synthesis pathways.
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As the obtained material, although interesting, was not what we expected, another
synthetic protocol was proposed. In a second approach, thermal decomposition of azo-
bisisobutyronitrile (AIBN) served as a free radical reaction initiator to further produce
phosphonyl radicals from diethyl phosphite. The sample was heated for 5 h under argon at
65 ◦C in diethylphosphite, which served as a reagent and a solvent. The obtained sample
was denoted as MWCNT–Phos–AIBN. The final method was based on photo-induced
generation of phosphonyl radicals from diethyl phosphite in a solvent-less reaction carried
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out for 1 h at RT under UV light illumination (P = 230 W; λ = 365–370 nm). The sample was
labelled as MWCNT–Phos–UV.

Similar to the MWCNT–Phos–Mn sample, the other two were also observed under
SEM. The obtained images can be seen in Figure 3. No significant structural changes were
visible for the studied samples in reference to the pristine nanotubes. However, large area
imaging presented a higher purity of functionalized samples in terms of a lower presence
of amorphous carbon. It is frequently reported, that nanotubes are purified during a
functionalization reaction and washing after synthesis [58,59].
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Pristine and functionalized MWCNTs were characterized using Raman, FTIR, and
XPS spectroscopy. Raman spectra of MWCNTs samples recorded at a633 nm excitation
wavelength are presented in Figure 4. Raman spectra of the pristine nanotubes are in
accordance with reported data for this type of material and excitation energy [60–62].
Typical D and G bands were recorded for all samples. A comparison of Raman mode
positions, full width at half maximum (FWHM), and ID/IG ratio are presented in Table 2.
The decrease inthe ID/IG ratio was ascribed to the removal of amorphous carbon and
the most defective MWCNTs during washing after functionalization [63,64]. Both the D
band and G band of functionalized MWCNTs are widened, indicating the introduction of
functional groups into the nanotube structures [65]. Moreover, the G bands of MWCNT–
Phos–AIBN and MWCNT–Phos–UV are shifted to a lower wavenumber. Similar results
were obtained by Sunet al. [66] and described as evidence of the formation of C-P bonds.
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Table 2. Raman mode positions, linewidths (FWHM), and ID/IG ratios for MWCNT, MWCNT–Phos–
Mn, MWCNT–Phos–AIBN, and MWCNT–Phos–UV.

D Band G Band

Position
(cm−1)

FWHM
(cm−1)

Position
(cm−1)

FWHM
(cm−1) ID/IG

MWCNT 1337 57 1596 69 1.88

MWCNT–Phos–Mn 1340 62 1597 77 1.53

MWCNT–Phos–AIBN 1334 65 1593 81 1.64

MWCNT–Phos–UV 1333 63 1593 72 1.49

After functionalization, a new band at 877 cm−1 appeared in the spectra of function-
alized samples, being most evident for MWCNT–Phos–AIBN and MWCNT–Phos–UV.
This can be ascribed to a superposition of bands, referring to C–O–P, C–P and C–C–O
stretching. The 662 cm−1 band, visible only in the MWCNT–Phos–Mn spectrum is addi-
tional evidence of the presence of MnO2 in this sample. According to the literature, the
spectrum of α-MnO2 exhibits peaks in the region of 400–800 cm−1, which are ascribed to
the stretching mode of the MnO6 octahedra. The highest band present in standard α-MnO2
around 650 cm−1 could be attributed to the symmetric stretching vibration (Mn–O) of
the MnO6 groups. In MWCNT–Phos–Mn the band is observed at 662 cm−1 and its shift
to higher wavenumbers may be due to the presence of carbon material in the sample. A
similar behaviour was observed for MnO2/graphene composites by Liu et al. [67].

The presence of functional groups was evidenced by FTIR and XPS spectroscopy.
The FTIR spectra of functionalized nanotubes in comparison to pristine MWCNTs are
presented in Figure 5a. In the spectrum of pristine MWCNTs, a small band originating
from carbon–carbon bond vibrations is visible, next to well-pronounced water infrared
bands at 3490 and 1630 cm−1 [68]. For all functionalized samples, bands at 2914 and
2854 cm−1 referring to C–H stretching in the ethoxy group of phosphonate are clearly
visible. In the lower frequency region, C–P, P–O and P=O bands are present at 1450, 1180
and 1040 cm−1, respectively [69,70]. In the MWCNT–Phos–Mn sample, multiple bands
in the range of 900–600 cm−1, resulting from Mn–O–Mn stretching are observed. This is
additional evidence of the presence of MnO2 by-product in this sample [71].
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The functionalization of carbonaceous material with phosphonates was additionally
proved using X-ray photoelectron spectroscopy (XPS). The survey spectra of all samples
are presented in Figure 5b. It can be seen, that the C to O ratio decreased in the func-
tionalized samples and was lowest in the case of MWCNT–Phos–UV. This indicates, that
oxygen content increased due to the introduction of −P(O)(OEt)2 groups and the highest
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functionalization was obtained in the UV-promoted reaction. The inset in Figure 6 shows
magnified P 2s and P 2p energy regions. Again, the highest signals were obtained for the
MWCNT–Phos–UV sample, while pristine MWCNT did not contain phosphorus. More-
over, grafting of phosphorous-containing groups onto the MWCNT surface was confirmed
by the deconvolution of high resolution C 1s spectra and analysis of carbon binding states
(Figure 6). Pristine MWCNTs revealed four components C=C (284.3 eV), C–C (285.3 eV),
C–O (287.7 eV), and π–π* (290.3 eV), indicating the presence of amorphous carbon and a
small amount of oxygen contamination in the sample [72,73]. After functionalization, a new
peak appeared at 286.4 eV, which can be assigned to the C–P [32] and is evidence of direct
bonding between the carbon skeleton and the functional group. In addition, an increase in
C–O peak was observed due to the presence of C–O–P bonds from the introduced group.
The highest phosphorus content, ca. 6% at. was recorded for MWCNT–Phos–UV sample,
which is in agreement with data obtained in other studies.
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served in the thermogravimetric (TG) curve, together with the corresponding minima 
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Thermogravimetric analysis conducted in an argon environment revealed differences
in the thermal stabilities of the studied samples (Figure 7a). The highest mass loss in
the studied temperature range was observed for the MWCNT–Phos–Mn sample. The
characteristic steps for the decomposition cascade: MnO2 → Mn2O3 → Mn3O4 were
observed in the thermogravimetric (TG) curve, together with the corresponding minima
(520, 788 ◦C) in the derivative thermogravimetric (DTG) curve [74]. Unfortunately, because
of the presence of MnO2 in this functionalized MWCNT sample, it was not possible to
determine the number of functional groups introduced during synthesis. The TG curves for
the two other samples were similar, showing, however, a higher functionalization degree
for MWCNT–Phos–UV. The lowest contamination of the MWCNT–Phos–UV sample with
amorphous carbon was also proved by this study. The comparison of the observed mass
loss for all samples is given in Table 3. The obtained mass loss for the MWCNT–Phos–UV,
due to the decomposition of the functional groups, slightly exceeded 3%. This quite-low
mass loss can be justified by the flame-retarding properties reported for carbon materials
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with phosphorus-containing groups [59,75,76]. When phosphonated, carbon nanotubes are
heated and a char layer is formed on the surface, which shields the material, preventing
the formation of volatile moieties. Therefore, the recorded mass loss during TG analysis
cannot be directly connected with the number of phosphonic groups attached to the carbon
skeleton. To further prove this assumption, MWCNT–Phos–UV and MWCNT–Phos–AIBN
were also studied under oxidative conditions. TG curves recorded in air are presented in
Figure 7b. Compared to the pristine MWCNTs, functionalized samples show better thermal
stability and higher char yield. It is worth noting, that the experiments were conducted in
partial oxygen to be closer to environmental conditions. Therefore, incomplete combustion
of CNTs and functionalized CNTs can be read out of the TG curves (Figure 7b). A similar
behavior was observed by Mahajan et al. [77]. They observed ca. 50%-mass loss of CNTs
heated under partial oxygen with a heating rate of 5 ◦C/min, which is in line with our
observations. Incorporation of phosphorus-containing groups results in an increase in the
decomposition onset temperature, from 527 ◦C for MWCNTs to 639 ◦C and 652 ◦C for
MWCNT–Phos–AIBN and MWCNT–Phos–UV, respectively. In addition, the first derivative
of the TG curves (DTG, Figure 7b) revealed that the decomposition rate is almost two times
slower for functionalized MWCNTs. The above results indicate that even a low percentage
of functionalization significantly improves the thermal properties of MWCNTs and makes
them promising materials as flame retarding additives.
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Table 3. Comparison of the mass loss and differential thermal analysis of studied samples.

Sample Name

Temperature Range (◦C)

40–450 450–600 600–850

Mass Loss in % (DTG Peak Position (◦C))

MWCNT 0.87 (100, 270) 0.43 (-) 0.75 (-)

MWCNT–Phos–Mn 3.33 (166, 317) 0.97 (520) 1.63 (780)

MWCNT–Phos–AIBN 2.51 (148, 272) 0.34 (-) 1.20 (710)

MWCNT–Phos–UV 2.93 (158, 220) 0.29 (-) 1.43 (740)

The surface area of the MWCNTs and functionalized MWCNTs were evaluated by N2
isothermal adsorption (Figure 8).
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The adsorption–desorption isotherms represent a type IV isotherm, typical for multi-
walled carbon nanotubes [78,79]. The observed hysteresis loop (0.8–0.99 p/p0) is associated
with the mesoporous structure and corresponds well to the diameter of the used MWCNTs.
After modification, the Brunauer–Emmett–Teller (BET) surface area of the MWCNT samples
decreased from 188 to 132 m2/g for MWCNT–Phos–UV. A smaller decrease was observed
for the two other samples, namely MWCNT–Phos–Mn and MWCNT–Phos–AIBN, of which
thesurface areas were equal to 151 and 156 m2/g, respectively. The results obtained by
all methods described above confirmed the highest functionalization level of MWCNT–
Phos–UV sample, and the presence of contaminant in theform of MnO2 in the MWCNT–
Phos–Mn sample. Therefore, the surface area of MWCNT–Phos–Mn cannot be compared
with pristine MWCNTs or other samples as it resulted from an addition of two different
materials. For the MWCNT–Phos–UV sample, Raman spectroscopy and TG analysis results
demonstrated the most effective removal of amorphous carbon and probably the shortest
and most defective MWCNTs, which caused a decrease in surface area.

4. Conclusions

Multiwalled carbon nanotubes were successfully functionalized in a free-radical
phosphonylation reaction. Thermolysis of the P–H bond in diethyl phosphite was enhanced
by two promoters: azo compound and single electron oxidant Mn(OAc)3. Photolysis of
diethyl phosphite without any promoters also succeeded in homolytic cleavage of P–H
bonds. It should be noted, that usage of Mn(OAc)3 was not suitable for the reactions
of carbon nanotube functionalization, as the product of its decomposition contaminated
the functionalized carbon material. Two other methods resulted in phosphonated carbon
nanotubes, with a higher functionalization degree for the MWCNT–Phos–UV sample. UV
illumination was found to be the most effective method for free-radical functionalization of
the carbon nanotubes. Moreover, as compared to the other two protocols, the reaction time
was substantially shorter and the temperature of the reaction medium did not exceed 40 ◦C.
Therefore, this method can be used for temperature-sensitive materials. Functionalization
with phosphonates significantly improve the thermal properties of MWCNTs and makes
them promising materials as flame retardants additives.
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The novel approach described here complements existing protocols for carbon nano-
material functionalization. Moreover, it opens new possibilities for surface functionaliza-
tion and the application of carbon nanotubes and other carbon nanostructures.
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