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We study in detail the decoherence process of a quantum register, coupled to a composite environment. We use
recently developed methods of information transfer study in open quantum systems to analyze information flow
between the register and its environment. We show that there are regimes when not only the register decoheres
effectively to a classical bit string, but this bit string is redundantly encoded in the environment, making it
available to multiple observers. This process is more subtle and in general qualitatively different than in the case
of a single qubit due to the presence of various protected subspaces: decoherence-free subspaces and so-called
orthogonalization-free subspaces. We show that this leads to a rich structure of coherence loss or protection in
the asymptotic state of the register and a part of its environment. We formulate a series of examples illustrating
these structures.
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I. INTRODUCTION

In our previous paper [1] we investigated the process of
formation of the so-called spectrum broadcasting structure
(SBS)1 in the spin-spin model [2–5]. Our main result was the
description of how the interaction of such a form leads to the
objectivization of the information about the central system. The
aim of this paper is to develop the ideas sketched previously:
generalize them and apply them in particular to a quantum
register. The latter, leads to qualitatively different results with
respect to the previous study [1] due to the presence of various
protected spaces, e.g., decoherence-free subspaces. We also
consider more explicit examples of the objectivization process.

The problem of how knowledge, being a classical (not
quantum) resource, is protruding out of the quantum regime
has been deeply investigated by Żurek et al. in a series of
works [2,3,6–11] (see [12,13] for an overview), leading to the
concept of quantum Darwinism [14,15]. The essence of quan-
tum Darwinism is the statement that this information about
a measured system, which is being efficiently proliferated
into different parts of the environment and in consequence
redundantly imprinted and stored in them, becomes objective.
Each part contains almost complete classical information about
the system. This redundancy is crucial for the objectivity
[14–20], as parts may be accessed independently by many ob-
servers gaining the same or similar knowledge. See Refs. [21]
and [22] for experimental demonstrations of the effects of
quantum Darwinism.

*piotr.mironowicz@gmail.com
†pawel@mif.pg.gda.pl
1See Eq. (6) below for the definition.

The problem of how some information is being distributed
in many copies by an intrinsically quantum mechanism is
highly nontrivial due to the no-cloning theorem [23,24] for-
bidding the direct copying of a state. Even a weaker form of
copying of quantum states, the so-called state broadcasting, is
not always possible [25,26].

Nonetheless, the broadcast information becomes accessi-
ble to many independent perceiving persons, or observers.
Note that although the term objectivity is widely used in
this context, the word intersubjectivity, in the meaning of
Ajdukiewicz [27,28], is more precise.

It has been shown recently [19,29] that the emergence of the
classical and objective properties in this spirit is due to a form
of information broadcasting (similar to the so-called spectrum
broadcasting [30]) leading to the creation of a specific quantum
state structure between the system and a part of its environment,
viz., the mentioned SBS. The SBS ensures different observers
a perfect access to some property of the observed system. This
intersubjectivization is an interplay between the decoherence
and orthogonalization process, as explained below.

Throughout this paper we consider in particular how the
intersubjectivity of the state of the central system emerges
in a model of a quantum register [31,32] interacting with a
spin bath. Quantum registers are collections of qubits and
are analogous to registers of CPUs of classical computers.
They constitute a basic building block for quantum comput-
ers [33,34]. Using the quantum measurement limit we get
a rigorous description of decoherence and orthogonalization
within this scenario.

One of the major problems in development of quantum
computers is how to deal with errors caused by the decoher-
ence induced by the environment, e.g., using error correcting
codes [35,36]. On the other hand, in order to be able to store
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and process information, quantum registers should be able to
distinguish between their states requiring some form of their
orthogonality. This emphasizes the importance of a careful
study of the two parts of intersubjectivization.

The paper is organized as follows. In Sec. II we introduce
basic terms and overview the framework of SBS. Then, in
Sec. III we analyze the role of coarse-graining of the envi-
ronment, consisting of a large number of subsystems grouped
into macroscopic parts to form composite systems, the main
topic of the paper. Using the weak law of large numbers (LLN),
this toolbox allows us to investigate the asymptotic behavior
of the orthogonalization and decoherence processes in such
models. In Sec. IV we generalize the results of [1] to the case
of quantum registers using the tools developed in Sec. III.
We define and calculate the so-called orthogonalization and
decoherence factors for this model. We develop some tools
which are useful for the analysis of the quasiperiodic functions
often occurring in similar models [1,3,6,32,37]. In Sec. V we
consider possible types of interaction of a quantum register
within a spin environment. Finally, in Sec. VI, we give exam-
ples of orthogonalization-free and decoherence-free setups.

II. FRAMEWORK OF SPECTRUM BROADCAST
STRUCTURES

We briefly describe the formalism of SBS for completeness
and to set the notation. Let us consider a central system S

interacting with M-partite environment. We assume the quan-
tum measurement limit, meaning that the central interaction
Hamiltonian dominates the dynamics. The assumption that
the environmental subsystem does not interact simplifies the
analysis significantly and is a common practice. Thus the
evolution is governed by a Hamiltonian of the generalized von
Neumann measurement form:

Hint =
K∑

k=1

(
Xk ⊗

M∑
m=1

Ykm

)
, (1)

where {Xk} commute and diagonalize in a basis {| ε〉}. The
resulting evolution is given by the unitary operator:

U (t ) ≡ exp (−iHintt ) =
∑

ε

| ε〉〈ε | ⊗
M⊗

m=1

U (m)
ε (t ), (2)

where U
(m)
ε (t ) ≡ exp (−i

∑
k〈ε |Xk| ε〉Ykmt ). We refer to a

possible value of ε, i.e., observed (or broadcast) value of the
state, as qualitas.2

Within the context of the quantum measurement limit we
assume that the initial state of the central system together
with the environment is in a product form �(0) = �S (0) ⊗⊗M

m=1 �(m)(0). The evolved state is �(t ) = U (t )�(0)U †(t ).
Assume that the first f M parts are under observation, f ∈

(0, 1), and the rest of them remain unobserved. The latter can
be modeled [38] by a partial trace operation, leading to the

2The word qualitas is a Latin transcription by Cicero of the Greek
word πoιoτης introduced in a similar context by Socrates in Plato’s
dialogue Theaetetus. In philosophy it means a quality, i.e., a qualitative
property. This notion is deeply analyzed by phenomenology.

following reduced density matrix:

�(f M )(t ) ≡ Tr(1−f )M�(t ) =
∑

ε

σε | ε〉〈ε | ⊗
f M⊗
m=1

�(m)
ε (t )

+
∑
ε �=ε′

⎡
⎣σεε′

M∏
m=f M+1

γ
(m)
εε′ (t )

⎤
⎦

× | ε〉〈ε′ | ⊗
f M⊗
m=1

�
(m)
εε′ (t ), (3)

with σεε′ ≡ 〈ε |�(0)| ε′〉, σε ≡ σεε ,

�
(m)
εε′ (t ) ≡ U (m)

ε (t )�(m)(0)U (m)†
ε′ (t ), (4a)

�(m)
ε (t ) ≡ �(m)

εε (t ), (4b)

and γ
(m)
εε′ (t ) ≡ Tr (�(m)

εε′ (t )). One often defines products called
the decoherence factors:

γεε′ (t ) ≡
M∏

m=f M+1

γ
(m)
εε′ (t ). (5)

We say that the joint state of S and f M parts of the environ-
ment (3) constitutes an SBS if it is of the form

∑
ε

pε | ε〉〈ε | ⊗
f M⊗
m=1

�(m)
ε (t ), (6)

with �
(m)
ε (t ) and �

(m)
ε′ (t ) for ε �= ε′ having orthogonal sup-

ports (meaning perfect distinguishability with a single mea-
surement). By measuring the state �

(m)
ε (t ), any of the local

observers extracts the same information about qualitas, i.e.,
the index ε, without disturbing it (after forgetting the results).

A convenient measure of orthogonality of a pair of states,
�ε and �ε′ , is the so-called generalized fidelity, or overlap [39],
B(�ε, �ε′ ) ≡ Tr

√√
�ε�ε′

√
�ε . This function is multiplicative

with respect to the tensor product. It can be shown [39] that
B(�ε, �ε′ ) = 1 if and only if (iff) �ε = �ε′ . Let

B
(m)
εε′ (t ) ≡ B

(
�(m)

ε (t ), �(m)
ε′ (t )

)
. (7)

From (2) and (4) we see that B
(m)
εε′ (t ) = 1 for all t iff

�
(m)
εε′ ≡

∑
k

(〈ε |Xk| ε〉 − 〈ε′ |Xk| ε′〉)Ykm = 0, (8)

with 0 being a zero operator. What is more, if (8) holds for all
unobserved ms, then γεε′ (t ) = 1.

Note that (8) does not mean that the eigenvalue of the
Hamiltonian (1) is degenerated. Still, this property is clearly
similar to the notion of degeneracy. For this reason we say
that a set Q of qualitas is nondegenerate iff for any ε, ε′ ∈
Q, ε �= ε′, the value of ||�m

εε′ ||1 averaged over ms is positive:
〈||�m

εε′ ||1 〉
m

> 0. This means that the nondegenerate qualitas
can be distinguished by a statistically significant part of
observers and environment. The qualitas contained in Q are
called nondegenerate and other qualitas are called degenerate.

More particularly, qualitas ε is degenerated for the observer
m iff there exist ε′, ε �= ε′ such that (8) holds. Similarly, the
qualitas is degenerated for the environment if (8) holds for all
unobserved ms.
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The importance of decoherence and overlap factors stems
from the following crucial result [1]: The optimal trace-norm
distance εSBS of the actual partially traced state (3) to an ideal
SBS is bounded by

εSBS �
∑
ε �=ε′

[
|σεε′γεε′ (t ) | + √

σεσε′

f M∑
m=1

B
(m)
εε′ (t )

]
. (9)

III. COARSE GRAINING OF THE ENVIRONMENT

One of the crucial aspects of the quantum-to-classical tran-
sition is the question what does it mean to be macroscopic [40]
(see also [29]). In other words, if the intersubjectivization is
an effect of influence of environment large enough on large
enough observers, the natural question about the meaning
of “enough” arises. While we do not provide an explicit
answer to the question, we try to deepen its understanding
in Proposition 1.

Let us consider an N -partite Hamiltonian (1), N 	 M ,
and the initial state in a product form �(0) = �S (0) ⊗⊗N

j=1 ρ (j )(0). We divide the N environmental subsystems
into M arbitrary disjoint parts, mac1, . . . , macM . The mth
part is identified with a subset of indices macm ⊆ {1, . . . , N}
and is called a macrofraction if N (m)

mac ≡ |macm | scales with
N [29], thus introducing an environmental coarse-graining.
Without loss of generality we assume that the macrofractions
contain consecutive indices, with the first f M macrofractions
being observed, and denote Obs ≡ ⋃f M

m=1 macm, Ndis ≡ N −
|Obs |. We can relate Ykm in (1) with

∑
j∈macm

Zkj for some
Zkj .

ρ
(j )
εε′ (t ) and ρ

(j )
ε (t ) are defined analogously as in (4). For a

particular mth macrofraction, macm, and for a given qualitas
ε we define the macrofraction states, cf. (4):

�(m)
ε (t ) ≡

⊗
j∈macm

ρ (j )
ε (t ). (10)

We now assume that the macrofractions are large enough so
that we can use the law of large numbers (LLN) [41], stating
that a sample average converges to the expected value.3

Let us denote B (m)(t ) ≡ maxε,ε′∈Q B
(m)
εε′ (t ) and γ (t ) ≡

maxε,ε′∈Q γεε′ (t ), where the maxima are taken over nonde-
generate qualitas. We show in Appendix A that if the size
of macrofractions is large enough, then with high probability
B (m)(t ) and γεε′ (t ) are small, viz.:

Proposition 1. For a given observer m, any δ, t > 0 and for
N (m)

mac and Ndis large enough with probability at least 1 − δ we
have B (m)(t ) � δ and |γ (t ) |2 � δ.

Thus from (9) the partially traced state (3) approaches in
the trace norm the SBS form. We illustrate this with examples
for quantum registers in Appendix C.

3Compare this approach with [3], where the central limit theorem
was used in the analysis of the decoherence factors, owing to the fact
that the latter can be represented as a Fourier transform of a probability
measure on sums of independent random variables.

IV. SPECTRUM BROADCAST STRUCTURES
IN QUANTUM REGISTERS

Interaction (1) has been only briefly analyzed from the point
of view of information transfer in terms of SBS [1]. We provide
such an analysis for a K-qubit register:

Hint = 1

2

K∑
k=1

⎛
⎝σ̃ (k)

z

⊗ N∑
j=1

gkjσ
(j )
z

⎞
⎠, (11)

where we use σ̃ (k)
z to denote the σz matrix acting on the

kth register and σ
(j )
z acts on j th of the environmental spins.

The interaction strength is controlled by the coupling matrix
G = [gkj ]. For K = 1 we get the spin-spin model, one of
the canonical models of decoherence [2–4,6,42]. The inter-
action (11) can be rewritten in the following way:

1

2

(
K∑

k=1

σ̃ (k)
z

)
⊗

⎡
⎣ f M∑

m=1

⎛
⎝ ∑

j∈macm

gkj σ̃
(j )
z

⎞
⎠ +

∑
j /∈Obs

gkjσ
(j )
z

⎤
⎦.

(12)

Derivation of the evolution operator, cf. (2), from (11) is
straightforward. Now | ε〉 ≡ | ε1, . . . , εK〉 is a product of
| ±〉 states of qubits of length K, ε ∈ {±1}K , and U

(j )
ε (t ) =

exp [− i
2 tg

(j )
ε σ

(j )
z ], where g

(j )
ε ≡ ∑K

k=1 εkgkj .
Calculation of the partially traced state �S:f M (t ), cf. (3),

gives

�S:f M (t ) =
∑

ε

σε | ε〉〈ε | ⊗
⊗

j∈Obs

ρ (j )
ε (t )

+
∑
ε �=ε′

σεε′γεε′ (t )| ε〉〈ε′ | ⊗
⊗

j∈Obs

ρ
(j )
εε′ (t ). (13)

The notation ε �= ε′ means that there exists at least one index
k such that εk �= ε′

k . As one sees from (13), the candidate for
the pointer basis is now the product basis {| ε〉}, describing a
classical K-bit register.

A. Decoherence and overlap factors

Further we use the SU(2) Euler angles parametrization [43]
ρ (j )(0) = R(j )D(j )R(j )† for the j th qubit, where

D(j ) ≡ diag(λ(j ), 1 − λ(j ) ), (14a)

R(j ) ≡ exp

(
i
α(j )

2
σz

)
exp

(
i
β (j )

2
σy

)
exp

(
i
γ (j )

2
σz

)

=
⎡
⎣ e

i
2 (α(j )+γ (j ) ) cos β (j )

2 e
i
2 (α(j )−γ (j ) ) sin β (j )

2

−e
− i

2 (α(j )−γ (j ) ) sin β (j )

2 e
− i

2 (α(j )+γ (j ) ) cos β (j )

2

⎤
⎦.

(14b)

For a particular qubit j let

ϑ (j ) ≡ − 1
2 (2λ(j ) − 1) sin β (j ), (15a)

ζ (j ) ≡ (2λ(j ) − 1) cos β (j ). (15b)
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Let us introduce the following frequency for a j th qubit:

ω
(j )
εε′ ≡ 1

2

K∑
k=1

(εk − ε′
k )gkj= g

(j )
ε − g

(j )
ε′

2
, (16)

cf. (8) for a macrofraction.4 From (4) we have

ρ
(j )
εε′ (t ) = 1

2

⎡
⎣(1 + ζ (j ) )e−itω

(j )
εε′ ϑ (j )e

− it
2

(
g

(j )
ε +g

(j )
ε′

)

ϑ (j )∗e
it
2

(
g

(j )
ε +g

(j )
ε′

)
(1 − ζ (j ) )eitω

(j )
εε′

⎤
⎦,(17a)

ρ (j )
ε (t ) = 1

2

[
1 + ζ (j ) e−ig

(j )
ε tϑ (j )

eig
(j )
ε tϑ (j )∗ 1 − ζ (j )

]
. (17b)

The decoherence factor, cf. (5), for K = 1 is well known [3]
and has the form

γ−+(t ) =
∏

j /∈Obs

[cos(gj t ) + iζ (j ) sin(gj t )]. (18)

In general, decoherence factors are given by

γεε′ (t ) =
∏

j /∈Obs

[
cos

(
ω

(j )
εε′ t

) − iζ (j ) sin
(
ω

(j )
εε′ t

)]
. (19)

In Appendix B we calculate the overlap functions for the mth
macrofraction

B
(m)
εε′ (t ) =

∏
j∈macm

√
1 − 4ϑ (j )2 sin2

(
ω

(j )
εε′ t

)
. (20)

The functions within products in (19) and (20) are periodic in
time with the frequency ω

(j )
εε′ . The coarse-graining of the envi-

ronment into macrofractions together with random couplings
turns the above functions into quasiperiodic ones. We give a
more involved analysis of such functions in Appendix D.

Note that the decay of the factors at a specific moment of
time by no means guarantees that the functions cannot revive.
In a finite-dimensional setting they will in fact revive, but by
increasing the environment size one can make the revivals
highly unlikely as per Proposition 1.

B. Asymptotic behavior of B(t ) and γ (t )

Above we considered formulas for orthogonalization and
decoherence factors for sufficiently large environments at a
given moment of time. In contrast, we can also ask about long
time averages of B (m)(t ) and γ (t ) for a given finite size of
the environment, as investigated in Proposition 2 below (see
Appendix D for the proof):

Proposition 2. If the coupling constants {gkj } are indepen-
dent and continuously distributed, then for a given m the long
time averages,

lim
T →∞

1

T

∫ T

0
|γεε′ (t ) |2dt and (21a)

lim
T →∞

1

T

∫ T

0
B

(m)
εε′ (t )2dt, (21b)

4For the Hamiltonian (11) we have �
(m)
εε′ = ω

(j )
εε′σ (j )

z .

do not depend on ε and ε′ and are given by the formulas

|γ |2 ≡
∏

j /∈Obs

1 + ζ (j )2

2
and (22a)

B (m)2 ≡
∏

j∈macm

[1 − 2ϑ (j )], (22b)

respectively.
From Proposition 2 it follows directly that the long time

averages of B (m)2(t ) and |γ (t ) |2 do not depend on the distri-
butions of the coupling constants. Another consequence is that
under the stated assumptions all possible qualitas are being
“seen” with the same accuracy.

In order to get some intuition about Proposition 2, let us note
that the time average of a product of periodic functions in (19)
and (20), all with different periods, almost surely (assuming a
nondegenerate distribution of the coupling constants) is equal
to the product of time averages of each function, if the time
is long enough. On the other hand, for a particular term in the
product the value of the coupling constant influences only the
period, not the average value.

V. THE INTERSUBJECTIVIZATION PROCESS
OF A QUANTUM REGISTER

Comparing (8) with (16), we see that ε and ε′ are degenerate
for the mth macrofraction if ω

(j )
εε′ = 0 for all j ∈ macm. In this

section we discuss situations when this can occur.
As shown, e.g., in [32], the quantum register model ex-

hibits a dynamical structure with the existence of so-called
decoherence-free subspaces (DFS). We also introduce and
investigate here the notion of orthogonalization-free subspaces
(OFS). The former means the degeneracy of some qualitas ε

and ε′ for the environment and the latter the degeneracy for all
observers.

We say that a subspace S ⊆ {±}K exhibits a strong DFS
property if

∀t∈R+∀ε,ε′∈Sγεε′ (t ) = 1 (23)

and a weak DFS if

∀t∈R+∀ε,ε′∈S |γεε′ (t ) | = 1. (24)

From (19) it is easy to see that the strong DFS holds iff

∀ε,ε′∈S∀j /∈Obsω
(j )
εε′ = 0, (25)

and the weak DFS occurs if we have

∀ε,ε′∈S∀j /∈Obs

[
ω

(j )
εε′ = 0 ∨ ζ (j ) = ±1

]
. (26)

The strong DFS means that the register state remains invariant
under time evolution rather than being unitarily rotated inside a
DFS. This is a much more desired property from an experimen-
talist point of view, as such rotation could lead to the system
being uncontrollable [32].

Similarly, we define OFS to occur in the case when

∀ε,ε′∈S∀m=1,···f MB
(m)
εε′ (t ) = 1, (27)

which by (20) holds if

∀ε,ε′∈S∀j∈Obs

[
ω

(j )
εε′ = 0 ∨ ϑ (j ) = 0

]
. (28)

022124-4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


SYSTEM INFORMATION PROPAGATION FOR COMPOSITE … PHYSICAL REVIEW A 98, 022124 (2018)

It is easy to see that a difference between the definitions of
the strong DFS (25) and OFS (28) includes the scope of one
of the universal quantificators, covering all spins outside or
inside the observed part, respectively. The coupling matrix can
be divided in the following way:

G =
⎡
⎣ g11 . . . g1,|Obs |

...
. . .

...
gK,1 . . . gK,|Obs |︸ ︷︷ ︸

observed

g1,|Obs |+1 . . . g1,N

...
. . .

...
gK,|Obs |+1 . . . gK,N︸ ︷︷ ︸

unobserved

⎤
⎦.

(29)

We see that the matrix G has a block structure G = [G1|G2],
where G1, G2 describes the interaction with the observed and
unobserved part of the environment, respectively. From (16) it
is obvious that (25) and (28) hold if ε − ε′ is in the kernel of
GT

2 and GT
1 , respectively. Now let us deal in more detail with

DFSs and OFSs.

A. Decoherence and orthogonalization

In order to have both decoherence and orthogonalization
we need ω

(j )
εε′ �= 0 to hold for all pairs ε and ε′ and for a

statistically significant part of js, meaning qualitas ε and ε′
are nondegenerate.

As given in Proposition 1, it is a usual situation that the
partially traced state approaches the SBS form, meaning that
the quantum register has decohered in the classical register
basis | ε〉 and the information about this register is redundantly
stored in the environment.

B. No decoherence and no orthogonalization

Now let us consider the situation when for some ε, ε′ and
all j we have ω

(j )
εε′ = 0. This means that the qualitas ε and ε′

are degenerate. We assume there are only two strings of bits
ε, ε′ with such a property; if there are more the analysis is
analogous. This is the OFS and strong DFS case.

From (19) one sees that the coherence between the states
| ε〉 and | ε′〉 is preserved by the evolution. From (16) we also
have, cf. (8),

U (j )
ε (t ) = U

(j )
ε′ (t ) (30)

for all environments j . Thus U (t ), cf. (2), is given by

�εε′ ⊗
N⊗

j=1

U (j )
ε (t ) +

∑
ε′′ �=ε,ε′

| ε′′〉〈ε′′ | ⊗
N⊗

j=1

U
(j )
ε′′ (t ), (31)

where �εε′ ≡ | ε〉〈ε | + | ε′〉〈ε′ | is the projector on the regis-
ter subspace spanned by {| ε〉, | ε′〉}. In particular, B

(m)
εε′ (t ) =

γεε′ (t ) = 1 for all m.
If there are no other DFSs and the conditions for formation

of the broadcast state are met apart from the pair ε, ε′,
i.e., all the decoherence and orthogonalization factors apart
from B

(m)
εε′ (t ) and γεε′ (t ) disappear, the partially traced state

approaches the following SBS:

�S:f M (t ) = �εε′�S (0)�εε′ ⊗
⊗

j∈Obs

ρ (j )
ε (t )

+
∑

ε′′ �=ε,ε′
σε′′ | ε′′〉〈ε′′ | ⊗

⊗
j∈Obs

ρ
(j )
ε′′ (t ). (32)

Information that leaked into the environment about the regis-
ter’s state | ε〉 is not complete, viz. it is impossible to tell if the
register is in the state | ε〉 or | ε′〉 by observing the environment,
and this holds no matter how big the macrofractions are. The
information is simply not in the environment. Moreover, the
| ε〉 and | ε′〉 block of the initial state �S (0) is fully preserved
by the dynamics in this case.

C. Decoherence without orthogonalization

Next we consider the case when for some ε, ε′ it holds that
ω

(j )
εε′ = 0 for all j ∈ Obs and ω

(j )
εε′ �= 0 for all j /∈ Obs. This

means that qualitas ε and ε′ are degenerate for all observers
but not for the environment.

From (19) and (20) it follows that the decoherence takes
place but the orthogonalization does not. This is a relatively
common situation in real life, when the environment is unable
to store faithfully information about the decohering system
(e.g., due to too high intrinsic noise as compared to the
interaction strength).

The property (30) holds again here for all j in all observed
macrofractions, which implies that ρ

(j )
ε (t ) = ρ

(j )
ε′ (t ). Thus the

resulting asymptotic state is similar to (32) but with destroyed
coherences:

�S:f M (t ) = (σε | ε〉〈ε | + σε′ | ε′〉〈ε′ |) ⊗
⊗

j∈Obs

ρ (j )
ε (t )

+
∑

ε′′ �=ε,ε′
σε′′ | ε′′〉〈ε′′ | ⊗

⊗
j∈Obs

ρ
(j )
ε′′ (t ). (33)

Observing the string of bits ε in the environment only tells us
that the system is with probability σε

σε+σε′
in the state | ε〉 and

with probability σε′
σε+σε′

in the state | ε′〉.

D. Orthogonalization without decoherence

The last possible situation is when for some ε, ε′ we have
ω

(j )
εε′ �= 0 for all j ∈ Obs and ω

(j )
εε′ = 0 for all j /∈ Obs. This

is a reversed situation to the one above: the decoherence does
not take place, but the orthogonalization does. The meaning is
that qualitas ε and ε′ are degenerate only for the environment.

This situation is quite peculiar and only possible because
orthogonalization and decoherence are driven by different
parts of the environment: the observed and the unobserved,
respectively. Otherwise, one can prove that for the same
portion of the environment it always holds5|γ (t ) | � B(t ). The
asymptotic state is in this case

�S:f M (t ) =
∑

ε̃

σε̃ | ε̃〉〈ε̃ | ⊗
⊗

j∈Obs

ρ (j )
ε (t )

+ σεε′γεε′ (t )| ε〉〈ε′ | ⊗
⊗

j∈Obs

ρ
(j )
εε′ (t ) + H.c., (34)

5Let γ (t ) = tr(�U
†
i Uj ) ≡ tr(

√
�V

√
�) ≡ trX, where we

introduced V ≡ U
†
i Uj and X ≡ √

�V
√

�. On the other hand,

B(t )=tr(
√

Ui

√
�U

†
i Uj�U

†
j Ui

√
�U

†
i ) = tr(

√√
�V

√
�
√

�V †√�)=tr√
XX†. It is now an easy consequence of the polar decomposition

that for any X, |trX| � tr
√

XX†, from which |γ (t )| � B(t ).
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where, for each j, �
(j )
ε̃ are fully distinguishable for all ε̃,

including �
(j )
ε and �

(j )
ε′ .

The state (34) possesses what one may call a genuine
multipartite coherence (which can include entanglement).
Indeed, let us trace out one, say mth, of the observed
macrofractions. This produces an extra decoherence factor,
γ

(m)
εε′ (t ) = ∏

j∈macm
Tr (U (j )

ε ρ (j )(0)U (j )†
ε′ ). By the quoted prop-

erty |γ (m)
εε′ (t ) | � B

(m)
εε′ (t ), so the assumed vanishing of the latter

implies destruction of the coherences. Thus, tracing out a
single macrofraction for the asymptotic state destroys all the
remaining coherences and brings the state to an SBS form:

Trmac �S:f M =
∑

ε̃

σε̃ | ε̃〉〈ε̃ | ⊗ �
(1)
ε̃ ⊗ · · ·���

��
(m)
ε̃ · · · ⊗ �

(f M )
ε̃ .

(35)

We postpone a further investigation of those states, especially
in a relation to cryptographic protocols, to a subsequent
publication.

We provide theoretical examples of setups in which the
above cases occur below in Sec. VI.

VI. EXAMPLES OF DECOHERENCE AND
ORTHOGONALIZATION FOR QUANTUM REGISTERS

Now, as an illustration, we consider several specific choices
of coupling constants gkj such that register spins interact
nontrivially with environmental ones.

A. Collective decoherence

Here the coefficients gkj are k independent, which leads
to an exceptionally rich family of DFSs. If the coupling
coefficients depend solely on the distance between the register
and environmental spin, then such a choice can be obtained
by placing the system as shown in Fig. 1. This setup can
be achieved, e.g., in crystalline solid with help of a scanning
tunneling microscope.

Obviously, by (16), if
∑K

k=1(εk − ε′
k ) = 0 (i.e., the number

of “+1” entries is the same for both �ε and �ε′), then no
broadcasting occurs, as no information about the system is
transferred into the environment whatsoever. Thus by (25)
and (28) both register states belong to the same DFS and OFS
for all j , and so ε and ε′ are degenerated.

B. Cylindrical symmetry

Let us now consider a generalization of the above example
with the register and environmental spins organized as shown
in Fig. 2. The register spins are located on a straight line and
the environment is composed of a collection of M = K circles,
each containing L spins. The geometry is chosen such that the
mth register spin is coplanar with the mth circle.

The locations of environmental spins are most easily ex-
pressed by the number of the circle to which it belongs and its
location on the circle. Due to the geometry of the composite
system, the coupling constants are independent of the latter. We
assume that they depend on the distance between kth register

FIG. 1. The geometry of the composite system leading to the
collective decoherence. The register spins (yellow) are placed on a
circle through the center of which passes a straight line on which
the environmental spins are located (blue). The position of the
environmental spins on the line is symmetrical with respect to the
circle.

spin and lth spin on the mth circle as

gklm = gkm = g0

r3
km

≈ g0

r3
0

[
1 − 3

2
(k − m)2 d2

0

r2
0

]
, (36)

d0

r0

FIG. 2. A different geometry with a linear register (yellow) and
a collection of environmental spins (blue) located on M circles of
L spins. The radius of each circle is r0, while the distance between
neighboring circles is d0.
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d0

r0

R

E

FIG. 3. The geometry of the extended register model. The envi-
ronment E now consists not only of the cylindrically placed spins
(blue) but also of additional spins placed randomly in the space (red).

where for the approximation we used the Taylor expansion
and assumed that r0 	 Md0. The meaning of the symbols is
explained conceptually in Fig. 2 (which is rescaled in width to
improve readability).

The frequencies ω̃
(m)
εε′ ≡ ω

(ml)
εε′ by (16) are

ω̃
(m)
εε′ = 1

2

K∑
k=1

(εk − ε′
k )gkm

= −3

4

g0d
2
0

r5
0

K∑
k=1

(εk − ε′
k )

[
−2

3

r2
0

d2
0

+ (k − m)2

]
. (37)

Now, as discussed before, the no-decoherence criterion de-
mands that for each m the frequency should be equal
to 0. Observe that ω̃

(m)
εε′ can be regarded as a quadratic

function of m of the form am2 + bm + c, where a =∑K
k=1(εk − ε′

k ), b = ∑K
k=1(εk − ε′

k )k, and c = ∑K
k=1(εk −

ε′
k )(k2 − 2

3 · r2
0

d2
0

). For (25) to be met one must have a =
b = c = 0, or equivalently,

∑K
k=1(εk − ε′

k ) = 0,
∑K

k=1(εk −
ε′
k )k = 0, and

∑K
k=1(εk − ε′

k )k2 = 0. Note that the difference
εk − ε′

k can take values of either 0 or ±2. One can see that there
exists an infinite number of systems of the above equations
with nontrivial solutions, i.e., there exist an infinite number of
setups of this kind with DFS or OFS.6 An example of pairs
of qualitas ε, ε′ is defined by sets {1, 5, 6} and {2, 3, 7} for
K = 7; these sets specify which elements of vectors �ε and �ε′,
respectively, have a +1 value, with −1 at other places.

6For a given K ∈ N+ let us denote [K] = {1, . . . , K}. The number
of possible sizes of subsets of [K] is K + 1, the number of possible
sums of their elements is at most of order K2, and the number of
possible sums of squares of their elements is at most of the order K3.
So, there is at most (K + 1)K2K3 = (K + 1)K5 different values of
the triple of size, sum of elements, and sum of squares of elements
for subsets of [K]. On the other hand, there exist 2K different subsets
of the set [K]. Thus, when 2K > (K + 1)K5, there must exist at least
two subsets with equal number of elements, their sum, and the sum
of squares.

E2

d0

r0

R

E2

E1

FIG. 4. A geometry that allows for case with decoherence but no
orthogonalization to occur. Frequencies ω

(m)
εε′ can vanish for spins in

E1 but are generally nonzero for the randomly located ones from E2.

C. Decoherence-free and orthogonalization-free processes

We apply the result of Sec. V to the extended linear
register model, with the geometry given in Fig. 3, and show
examples of setups leading to the cases with decoherence and
no orthogonalization (Sec. V C) and with orthogonalization
and no decoherence (Sec. V D).

The environment consists of two parts: the first contains
a collection of cylindrically placed spins (blue) as in the
original model, while the spins of the second part (red) are
randomly distributed in space. Let us now analyze the two
cases separately.

1. Decoherence but no orthogonalization

Let the observable environment macrofraction (E1) be the
“blue” spins (see Fig. 4) while we discard the “random” ones.
As it was shown before, within this model it is possible to
choose two qualitas, ε, ε′, for which the frequencies cor-
responding to E1 vanish and therefore no orthogonalization
occurs. The qualitas are thus degenerated for an observer
contained in the environment E1.

However, location of “red” spins means that G2 is a random
matrix, and thus the decoherence factor computed from it is a
quasiperiodic function with generally a very big recurrence
time so that the system is effectively a decohering one. Thus
the qualitas are nondegenerate for the environment E2.

2. Orthogonalization but no decoherence

This situation is actually the opposite to the previously
considered one with the roles of E1 and E2 exchanged (see
Fig. 5). Now, if the states | ε〉 and | ε′〉 are chosen properly, they
do not decohere, but the orthogonalization still takes place as
the frequencies pertaining to the observable macrofraction do
not vanish in general.

As mentioned, this degeneracy for the environment (E2)
but not for the observer (E1) is somehow peculiar, without a
clear philosophical meaning. It may be also interesting from
the point of view of data processing in quantum registers.
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E1

d0

r0

R

E1

E2

FIG. 5. A geometry that allows for case 4 to occur (orthogonaliza-
tion but no decoherence). Here the situation is reversed as compared
with Fig. 4.

D. Small overlap of interactions

Suppose that the coupling coefficients in G are given by the
following function:

gkj = fμk,σ (j ), (38)

where fμ,σ : R → R is a C0 function describing a normalized
“saw pulse” centered around μ and of width σ , given by

fμ,σ (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x ∈ (−∞, μ − σ
2 ),

2
σ
x + (1 − 2μ

σ
) for x ∈ [μ − σ

2 , μ),
− 2

σ
x + (1 + 2μ

σ
) for x ∈ [μ,μ + σ

2 ),
0 for x ∈ [μ + σ

2 ,∞).
(39)

Furthermore, we assume that

μk = N

K
(k − 1) + 1, k = 1, . . . , K. (40)

Such a choice states that entries of successive rows of G are
given by such “saw pulses” with equidistant maxima and the
same width (see Fig. 6).

Moreover, we assume that the overlap between any two
consecutive rows of G is small, i.e.,

σ

2
� N

K
, (41)

FIG. 6. The structure of the coupling matrix G with the values
chosen as in (38) with σ = 30. The vertical and horizontal axes
correspond to the row and column of G, respectively. The values
of the coupling coefficients are expressed using a coloring technique
(higher intensity represents higher value).

FIG. 7. An example of a coupling matrix G leading to the small
overlap case. Note that the overlap of an arbitrary kth row with
its neighboring rows is such that they vanish in the vicinity of its
maximum.

which simply means that the separation between the maxima of
two successive rows is greater than the width σ of the function
fμ,σ (see Fig. 7).

From (25) it follows that given such assumptions the strong
decoherence condition cannot be fulfilled. We see that the
coupling coefficient matrix G is of full rank, and therefore
the decoherence and orthogonalization occur. Indeed, consider
the kth row of G. If G was not of full rank, then it would be
possible to express this row as a linear combination of the
remaining ones. But due to assumption (41) this is impossible,
as in the region close to the peak of the kth row the entries of
all other ones are equal to zero.

The meaning of this setup is that the evolution of each spin
is governed mainly by a single spin from the register, and thus
the information it enquires is unambiguous. In consequence,
all qualitas of the register are nondegenerate.

VII. CONCLUSIONS

The results of this paper concern the cases when the
evolution of a quantum system composed of many subsystems
is dominated by interaction with a central element, which is
a model of an object being observed by its surroundings. For
such a model we were able to show that if the environment
is large then in a generic situation both of the intersub-
jectivization elements, orthogonalization and decoherence,
occur.

We studied in detail the decoherence process of a quantum
register, coupled to a spin environment through a ZZ interac-
tion. Our main interest was in the information transfer from the
quantum register to the environment. This required a departure
from the standard approach as not all of the environment could
be traced out.

Following our earlier research, the main object of the study
was the so-called partially traced state, obtained from the
full system-environment state by tracing out only a fraction
of the environment. In particular, we were interested if the
partially traced state approaches what we call a spectrum
broadcast structure. It implies a certain objectivization of a
(decohered) state of the register: a classical bit-string, labeling
decohered states of the register, is present in the environment
in many copies and can be read out without any disturbance
(on average).

Exploiting certain properties of quasiperiodic functions,
we formulated and studied conditions when SBSs are formed
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asymptotically. Due to the presence of decoherence-free sub-
spaces and what we call orthogonalization-free subspaces,
possible structures that can appear are much richer than in
the case of a single central spin. In particular, we reported a
new kind of SBS where some of the coherences are preserved
but still some information is objective. We also presented
a series of theoretical examples illustrating how different
forms of the coupling matrix can lead to different patters of
information proliferation. The next possible step would be to
design a concrete experimental proposal around the presented
examples.
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APPENDIX A: PROOF OF PROPOSITION 1

We now prove Proposition 1.
Let us recall that a sequence of random variables (XN )N

satisfies LLN if for SN ≡ X1 + · · · XN we have

1

N
SN −−−→ [N → ∞]

1

N
〈SN 〉, (A1)

where the convergence is in probability. One can show [41]
that LLN holds if7 (XN )N are independent and identically
distributed (i.i.d.) and 〈|X1 | 〉 < ∞. Then (A1) means

1

N
SN −−−→ [N → ∞]〈X1 〉 (A2)

in probability, i.e.,

∀δ1,δ2>0∃N0∀N�N0P

(∣∣∣∣SN

N
− 〈X1 〉

∣∣∣∣ � δ1

)
� 1 − δ2. (A3)

From (5), (7), and (10) it follows that

γεε′ (t ) =
∏

j /∈Obs

Tr ρ
(j )
εε′ (t ), (A4a)

B
(m)
εε′ (t ) =

∏
j∈macm

B
(
ρ (j )

ε (t ), ρ (j )
j (t )

)
. (A4b)

Now let us define

χ
(j )
εε′ (t ) ≡ 1 − [

Tr
(
ρ

(j )
εε′ (t )

)]2
, (A5a)

κ
(j )
εε′ (t ) ≡ 1 − [

B
(
ρ (j )

ε (t ), ρ (j )
ε′ (t )

)]2
. (A5b)

7In fact, the stated condition is sufficient even for the strong law of
large numbers to hold, where the convergence is almost sure.

Using the inequality log x � −(1 − x) we get

|γεε′ (t ) |2 � exp

⎡
⎣−

∑
j /∈Obs

χ
(j )
εε′ (t )

⎤
⎦, (A6a)

B
(m)
εε′ (t ) � exp

⎡
⎣−1

2

∑
j∈macm

κ
(j )
εε′ (t )

⎤
⎦. (A6b)

In order to avoid cumbersome notation, we concentrate on a
particular pair of qualitas ε and ε′ and omit their indices. In par-
ticular, we write B (m)(t ) = B

(m)
εε′ (t ); γ (t ) = γεε′ (t ); κ (j )(t ) =

κ
(j )
εε′ (t ); and χ (j )(t ) = χ

(j )
εε′ (t ).

From (A5) (and nondegeneracy of ε and ε′) it follows
that 〈|κ (j )(t ) | 〉 > 0 and 〈|χ (j )(t ) | 〉 > 0 are finite for any
probability distributions, and if we assume they are i.i.d., we
can apply LLN for the right-hand sides of (A6).

Let us fix some δ > 0 and t > 0. From LLN it follows that
there exist Nt

0,mac and Nt
0,dis such that for all N (m)

mac � Nt
0,mac

and Ndis � Nt
0,dis with probability at least 1 − δ,∣∣∣∣∣∣

⎛
⎝ ∑

j /∈Obs

χ (j )(t )

⎞
⎠ − Ndis〈χ (t )〉

∣∣∣∣∣∣ � δNdis〈χ (t )〉,

(A7a)∣∣∣∣∣∣
⎛
⎝ ∑

j∈macm

κ (j )(t )

⎞
⎠ − N (m)

mac〈κ (t )〉
∣∣∣∣∣∣ � δN (m)

mac〈κ (t )〉,

(A7b)

where we denote 〈κ (t )〉 = 〈κ (j0 )(t )〉 and 〈χ (t )〉 = 〈χ (j0 )(t )〉
for arbitrary j0 ∈ macm. To see this, in (A3) we take δ2 = δ,
and δ1 = δ〈κ (t )〉 for (A7b), and δ1 = δ〈χ (t )〉 for (A7a). Thus
from (A6) and (A7) we get

|γ (t )|2 � exp [−(1 − δ)Ndis〈χ (t )〉], (A8a)

B (m)(t ) � exp

[
−1 − δ

2
N (m)

mac〈κ (t )〉
]
. (A8b)

If we take N (m)
mac and Ndis satisfying the conditions

Ndis � max

[
Nt

0,dis,
log 1

δ

(1 − δ)〈χ (t )〉

]
, (A9a)

N (m)
mac � max

[
Nt

0,mac,
2 log 1

δ

(1 − δ)〈κ (t )〉

]
, (A9b)

we get the thesis of the proposition for the assumed qualitas ε

and ε′. In order to finish the proof for all qualitas we take the
maximal values of N (m)

mac and Ndis.

APPENDIX B: CALCULATION OF OVERLAP FACTORS

We now calculate the decoherence and overlap factors using
the notation of Sec. IV A. Let us define

M(j )
εε′ ≡

√
DR†U †

ε (t )Uε′ (t )RDR†U †
ε′ (t )Uε (t )R

√
D, (B1)
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MIRONOWICZ, NALEŻYTY, HORODECKI, AND KORBICZ PHYSICAL REVIEW A 98, 022124 (2018)

where we have omitted the upper indexes (j ) on the right-hand
side to improve readability. After pulling some of the unitary
operators out of the square roots and using the cyclic property
of the trace we use (B1) to write the formula

B
(
ρ (j )

ε (t ), ρ (j )
ε′ (t )

) = Tr
√

M(j )
εε′ . (B2)

For a 2 × 2 matrix M(j )
εε′ the eigenvalues M

(j )
εε′± satisfy

M
(j )
εε′± = 1

2

[
Tr M(j )

εε′ ±
√(

Tr M(j )
εε′

)2 − 4 det M(j )
εε′

]
. (B3)

Straightforward calculations show that for M(j )
εε′ given by (B1)

we have

Tr M(j )
εε′ = λ(j )2 + (1 − λ(j )2)

− (2λ(j ) − 1)2 sin2 β (j ) sin2
(
ω

(j )
εε′ t

)
, (B4)

and det M(j )
εε′ = λ(j )2(1 − λ(j )2). From (B3) it follows that

M
(j )
εε′+(t )M (j )

εε′−(t ) = det M(j )
εε′ , and thus

B
(
ρ (j )

ε (t ), ρ (j )
ε′ (t )

) = ∣∣√M
(j )
εε′+(t ) +

√
M

(j )
εε′−(t )

∣∣
=

(
M

(j )
εε′+(t ) + M

(j )
εε′−(t ) + 2

√
M

(j )
εε′+(t )M (j )

εε′−(t )
) 1

2

=
√

Tr M(j )
εε′ (t ) + 2

√
det M(j )

εε′ (t )

=
√

1 − (2λ(j ) − 1)2 sin2 β (j ) sin2
(
ω

(j )
εε′ t

)
. (B5)

Using iteratively the multiplicativity of the overlap, from (B5)
we obtain [1]

B
(m)
εε′ (t ) =

∏
j∈macm

√
1 − (2λ(j ) − 1)2 sin2 β (j ) sin2(ω(j )

εε′ t ).

(B6)

APPENDIX C: SHORT TIME BEHAVIOR OF SBS
FORMATION

We use here the results and notation of Sec. IV A.
From (A5), (19), and (20) we have

0 � χ
(j )
εε′ (t ) = sin2(ω(j )

εε′ t )[1 − (2λ(j ) − 1)2 cos2 β (j )],

(C1a)

0 � κ
(j )
εε′ (t ) = (2λ(j ) − 1)2 sin2 β (j ) sin2(ω(j )

εε′ t ). (C1b)

We choose the following probability distributions:
(i) The initial state eigenvalue λ(j ) (14a) is distributed

according to the eigenvalue part of the Hilbert-Schmidt mea-
sure [44]:

PHS (λ(j ) ) ≡ 3(2λ(j ) − 1)2. (C2)

(ii) The initial state Euler angles (α(j ), β (j ), γ (j ) ) (14b) are
distributed with the SU(2) Haar measure.

One can then easily calculate the following averages
over these distributions: 〈sin2 β (j )〉 = 2

3 , 〈cos2 β (j )〉 = 1
3 ,

〈(2λ(j ) − 1)
2〉 = 3

5 . From this for t > 0 we have〈
χ

(j )
εε′ (t )

〉 = (1 − 〈(2λ(j ) − 1)2〉〈cos2 β (j )〉)

×〈
sin2

(
ω

(j )
εε′ t

)〉 = 4

5

〈
sin2(ω(j )

εε′ t )
〉
> 0, (C3a)〈

κ
(j )
εε′ (t )

〉 = 〈(2λ(j ) − 1)2〉〈sin2 β (j )〉〈 sin2(ω(j )
εε′ t )

〉
= 2

5

〈
sin2(ω(j )

εε′ t )
〉
> 0. (C3b)

The following calculations are performed in the short time
regimes, ω

(j )
εε′ t � 1. We consider the case when the coupling

constants gkj are distributed with any continuous measure of a
nonzero and finite second moment, g2 ≡ 〈g2

kj 〉 > 0. Using the
Taylor expansion and (16) we get〈

sin2
(
ω

(j )
εε′ t

)〉 ≈ t2
〈(
ω

(j )
εε′

)2〉
= 1

2
t2

〈
K∑

k=1

(εk − ε′
k )gkj

〉
� t2

K∑
k=1

〈|gkj |〉. (C4)

From (C3) and (C4) we get

〈
χ

(j )
εε′ (t )

〉
� 4

5
t2Kg2, (C5a)

〈
κ

(j )
εε′ (t )

〉 = 2

5

〈
sin2 (

ω
(j )
εε′ t

)〉
� 2

5
t2Kg2. (C5b)

From (A9) we can infer that when we want to assure that
B(tB ) � δ we take8 at least

N (m)
mac �

5 log 1
δ

t2Kg2
, (C6)

and similarly for |γ (tD )|2 � δ we need at least

Ndis �
5 log 1

δ

4t2Kg2
. (C7)

APPENDIX D: PROOF OF PROPOSITION 2

Here we prove Proposition 2.
We say that a set of numbers {αi}Ni=1 ⊂ R is impartitionable

iff for any ς ∈ {±1}N we have
∑N

i=1 ςiαi �= 0. The quantity

δ�(ϑ ) ≡ min
ς∈{±1}N

∣∣∣∣∣
N∑

i=1

ςiαi

∣∣∣∣∣ (D1)

is called the minimal discrepancy [45], and the numbers in the
set ϑ are impartitionable iff δ�(ϑ ) > 0. In other words, a set of
real numbers ϑ is impartitionable iff one cannot find a partition
of the set ϑ into two subsets summing to the same value.

It is easy to see that if {αi}Ni=1 are independent and contin-
uously distributed random variables, then for any ς ∈ {±1}N

8We use here the Puiseux expansion log δ

1−δ
= log δ + δ log δ + O(δ2)

and limδ→0+ δ log δ = 0. This shows the importance of a careful
choice of the value of δ1 in (A3) in derivation of (A7).
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and t > 0 we have P (
∑N

i=1 ςiαit = 0) = 0, so the coupling
constants in Proposition 2 are impartitionable almost surely.

We start with the following:
Lemma 1. If real numbers {αi}Ni=1 are impartitionable, then

(1)

N∏
i=1

cos αi = 1

2N

∑
υ∈{±1}N

cos

(
N∑

i=1

υiαi

)
, (D2)

(2)

lim
T →∞

1

T

∫ T

0

[
N∏

i=1

cos(αit )

]
dt = 0. (D3)

Proof.
(1) For N = 1 we obviously have

cos α1 = 1

2

∑
υ∈{±}

cos(υα1). (D4)

Let us assume that (D2) holds for some N , and let {αi}N+1
i=1 be

impartitionable. Then

N+1∏
i=1

cos αi = 1

2N

∑
υ∈{±1}N

cos

(
N∑

i=1

υiαi

)
cos αN+1

= 1

2N

∑
υ∈{±1}N

1

2

[
cos

(
N∑

i=1

υiαi + αN+1

)

+ cos

(
N∑

i=1

υiαi − αN+1

)]

= 1

2N+1

∑
υ∈{±1}N+1

cos

(
N+1∑
i=1

υiαi

)
. (D5)

(2) First, let us note that for any α and T > 0,∫ T

0
cos(αt )dt �

∫ π
α

0
cos(αt )dt = 2

α
, (D6)

and similarly, − 2
α
�

∫ T

0 cos(αt )dt . It is easy to see that if the
numbers in {αi}Ni=1 are impartitionable, then for any t > 0 the
numbers in {tαi}Ni=1 are also impartitionable. From (D2) we
have ∫ T

0

[
N∏

i=1

cos(αit )

]
dt

=
∫ T

0

⎡
⎣ 1

2N

∑
υ∈{±1}N

cos

(
N∑

i=1

υiαit

)⎤
⎦dt

= 1

2N

∑
υ∈{±1}N

∫ T

0
cos

(
N∑

i=1

υiαit

)
dt ≡ � (T ). (D7)

Let ι ≡ δ�({αi}Ni=1). Now, using (D6) we have

� (T ) � 1

2N

∑
υ∈{±1}N

2∑N
i=1 υiαi

� 2

ι
, (D8)

and similarly, − 2
ι
� � (T ). Since 2

ι
is constant, we have

limT →∞ � (T )
T

= 0, and thus (D3) holds.
From Lemma 1 we immediately get:
Corollary 1. If the real numbers in {αi}Ni=1 are impartition-

able, then for any {ci}Ni=1,
1.

lim
T →∞

1

T

∫ T

0

N∏
i=1

[
cos2(αit ) + c2

i sin2(αit )
]
dt =

N∏
i=1

1 + c2
i

2
,

(D9)

2.

lim
T →∞

1

T

∫ T

0

N∏
i=1

[
1 − c2

i sin2(αit )
]
dt =

N∏
i=1

(
1 − c2

i

2

)
.

(D10)

Proof. Let us first note that if the numbers in {αi}Ni=1
are impartitionable, then also the numbers in {2αi}Ni=1 are
impartitionable.

We have cos2 α + c2 sin2 α = 1
2 (1 + c2) + (c2 − 1)

cos(2α). Thus the product within the integral in (D9) is
equal to

∑
σ⊆{1,...,N}

[(∏
i∈σ

1 + c2
i

2

)(∏
i /∈σ

(c2
i − 1) cos(2αit )

)]
. (D11)

We can apply (D3) to see that the only term in (D11) which
does not vanish in the limit is the one with σ = {1, . . . , N},
thus giving (D9).

Similarly, using 1 − c2 sin2 α = 1 − c2

2 − c2

2 cos(2α) we
get (D10).

In order to complete the proof of Proposition 2 using
Corollary 1, from the definition of γ (t ) we take c2

i = ζ 2
i

and apply (D9) to get (22a). Similarly, to get (22b) we take
c2
i = (2λi − 1)2 sin2 βi in (D10).

In fact, we have shown an even stronger result, viz. that
it is enough for {αi}Ni=1 to be impartitionable, not necessarily
continuously distributed, but this statement seems to have a
limited physical meaning.
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of information in nonideal environments: Objective reality via a
noisy channel, Phys. Rev. A 81, 062110 (2010).

[18] M. Zwolak, C. J. Riedel, and W. H. Żurek, Amplification,
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