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Abstract
Multiple algorithms classifying frames in video sequences consider them only as separate images. After pointing out the
properties of real-life recordings and classifications of their frames, we propose a new shifting time window approach for
improving binary classifications. It proceeds in two steps: First, well-known classification algorithms are used separately
for each frame to acquire preliminary classifications. Secondly, the results of the previous step are analyzed in relatively
short sequences of consecutive images (the shifting time window). Taking into account the continuous nature of analyzed
real-life videos, the preliminary binary classification sequences can be corrected. In consequence, the classification quality is
improved. Furthermore, we offer a systematic approach where all parameters of the proposed algorithm (such as the window
length or vote weight distribution in the window) are considered and their optimal values are determined. Experiments on
representative examples confirm the advantages of the proposed approach.

Keywords Image classification in videos · Binary classifications · Temporal relations · Continuous properties · OFA and
FSA methods

1 Introduction

Having identified a number of algorithms which classify
single images of a video stream, we can ask whether this
approach is the optimal one in terms of real-life video
sequences. While detecting a static feature requires only a
single picture (frame), in real-life videos we might also con-
sider a longer sequence of frames where the same feature
should be visible.

Algorithms such as those presented in [1,2] tend to con-
sider image classification in videos separately for each frame.
Further on, we will denote this kind of algorithms as One
Frame Analysis (OFA). Their main advantage is a relatively
low cost of preparing image datasets and availability of well-
established methods. The features they detect are static. For
example, lesions in endoscopic videos or people in surveil-
lance recordings can be recognized in single pictures, but
their visibility can be expected to last for a number of con-
secutive frames.
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The continuity of videos is implicitly the basis of object
tracking methods which adaptively adjust the representa-
tions of tracked objects [3,4] or exploit their inter-frame
similarity [5]. Even though an observed item can change dra-
matically over time, all changes are assumed to be gradual
and traceable. Other methods, which track either faces [6] or
hand movements [7], initially detect a trajectory in particular
frames and smoothen it in a second step.

Various works can be singled out, which tackle particular
aspects of considering the relationships between classifica-
tions of consecutive video frames. Such an approach can be
applied in the frame-classifying method itself or by intro-
ducing an additional post-processing step to account for the
temporal structure. The latter option will be further investi-
gated within this paper.

For example, the authors of [8] proposed composing a
scene segmentation algorithm of simpler classifying algo-
rithms. The results are rationalized in terms of their temporal
structure with a hidden Markov model.

Such an approach has also benefited the authors of [9],
who have improved the recognition rate of text objects when
temporal context in the video has been considered. Also [10]
increased the recognition quality after introducing a shifting
window post-processing step. In [11] outliers are corrected
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in a final step, changing minor errors throughout sequences
of 100 frames. Using small time windows to analyze ranked
lists of identifications successfully improved the identifica-
tion of pedestrians in [12]. The works introduced within this
paragraph are the only ones which explicitly evaluate the
influence of improving classifications by utilizing temporal
properties of the video—which is the essence of our method.
This information is presented in Sect. 5 for a comparison
with the proposed approach.

Sliding windows have been used for video summarization
in [13]. To establish relevant neighborhoods for key frames,
the window size was adapted in respect to cuts of the video.
The authors of [14] incorporate a post-processing step with a
shifting window of size 5, where a majority vote determines
the final classification of a frame (the segment of the gas-
trointestinal tract it represents). It’s only briefly implied that
this step improves the accuracy of their method.

In series of classifications, single outliers can be consid-
ered to be potential mistakes. A broad overview of outlier
detection methods has been provided by Gupta et al. [15,16].
They compare a single value with its prediction based on its
neighborhood (one-sided or two-sided). The prediction can
be the median [17], mean [18] or a more complex function
[18] of the values in the neighborhood. These methods corre-
spond directly to the shifting window approach presented in
[14,19,20], with the neighborhood equivalent to the shifting
windows.

Summing up, multiple works can be pointed out where the
neighborhood of classified frames has been taken into con-
sideration. They have proven to be improving classification
results, but so far there was no effort to propose and analyze
a general approach.

The contributions introduced by this work are twofold.
First, we have identified the need and motivation for intro-
ducing a method which allows to consider the temporal
information, which is neglected by OFA methods. Those
motivations are identified in the implicit use of temporal
relations in multiple papers. They are also confirmed by a
theoretical analysis. Secondly, the FSA method is proposed,
which allows to improve existingOFAalgorithms. It includes
temporal information in a post-processing step, which allows
to utilize all benefits ofOFAmethods. The experimental eval-
uation confirms the efficiency of the method and allows to
understand how its controlling parameters affect it.

This paper considers primarily binary classifications, but
a generalization for multi-categorical classifications can be
conceived, e.g., for facial expressions [21]. This has been
noted in the conclusions of this paper.

In the next section, we will continue with a brief discus-
sion of how the continuity of real-life videos allows us to
make assumptions regarding the structure of their classifi-
cation sequences. As a conclusion, in Sect. 3 we propose a
new scheme for improving algorithms which assign binary

properties to video frames. The new method is evaluated
according to a scheme presented in Sect. 4 on two real-life
datasets as well as an artificial stream. The results of the
evaluation are presented in Sect. 5. Finally, the conclusions
of this paper are summarized in Sect. 6.

2 Continuity and change

Themain context inwhichweconsider the classifiedvideos is
their pace of change andwhat continuous features they there-
fore present (as discrete images of continuous processes).

We define the process of classification as a sequence of
transformations between different spaces. Thewhole concept
is presented in Fig. 1, where each subfigure corresponds to
a step in transforming the recorded view into a sequence of
consecutive classifications:

(a) The observed reality is of continuous nature, both in
terms of the time axis and the changes it undergoes.

(b) The video recording represents the reality as closely
as possible. Still, frames are recorded only in regu-
lar intervals (step value) and the acquired images are
not fully accurate representations (observation axis—
rounded values with a difference of Q).

(c) When every frame is classified separately, the classifying
algorithm is prone to errors. Although the classification
is generally accurate, single mistakes are common.

(d) Knowing that the acquired binary classifications are
representing a continuous property (here: the original
trajectory leading over or under the line in the middle),
the initial classifications can be improved.

The corresponding transformations turning the observed
view into a series of classifications are:

– (a)→(b): recording the video stream,
– (b)→(c): classifying the video stream as separate frames
—the One Frame Analysis (OFA) approach,

– (c)→(d): improving the initial classifications—the pro-
posed Frame Sequence Analysis (FSA) approach.

The visual distance between two pictures has to be defined
in a domain-specific way. We will further on define it as a
metric function d(·, ·), putting aside an exact derivation of
its value. A real-life observation in a point of time t will be
denoted as vt . The first frame of the video starts at t0 = 0, the
time of frame number m (m ∈ N) is therefore tm = m · step.

We observe the underlying continuous process (the real-
life view) in discrete, evenly spaced moments (as video
frames) and expect the amount of change to have an upper
bound which allows for preserving the majority of the view
from frame to frame. This kind of continuity is defined as
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Fig. 1 Four stages from real-life view to final classification aObserved
reality,b discrete and digitalized reality,where: step—time between two
frames, Q—digitalization inaccuracy, i.e., pixels and discrete colors, c
OFA result, d FSA result

Lipschitz continuity with the constant L > 0:

d(vt , vu) ≤ L · |t − u|. (1)

This definition is illustrated in Fig. 1a. In a �t = |t − u|
time difference, the function can therefore change by nomore
than±L ·�t . For the exemplary point at t = 3.5, the constant
L determines the limits within which the function can vary.

We interpret L as the maximal pace of change for the
analyzed type of video. Assuming that the discrete sequence
(frames and their classifications) is a view of a continuous
function (i.e., the true view and state) which satisfies the
Lipschitz property, the appropriate limitations on the change
over time are still kept.

To show this, let us first define the function which repre-
sents the transformation of the real-life state into a discrete
video. We will model it with the function V (·) which satis-
fies:

d(V (vt ), vt ) <
Q

2
. (2)

The constant Q expresses the inaccuracy of the transforma-
tion and reflects the quality of the recording. The value of Q
is lower for higher image quality.

Therefore, for two given observations vs and vt :

d(V (vt ), V (vs)) ≤ d(V (vt ), vt ) + d(vt , vs)

+ d(vs, V (vs)) ≤ d(vt , vs) + Q. (3)

This result corresponds to the fact that the difference between
two frames represents the difference between the views they
represent and a limited inaccuracy of the recording (e.g.,
rounded colors, pixels).

Theorem 1 A discrete view with a limited inaccuracy of a
Lipschitz continuous function preserves the Lipschitz prop-
erty.

Proof Let us define: vt—observation in point of time t ,
V (·)—projection of the real-life view into a picture/frame,
pm = V (vm·step)—discrete picture in the discrete moment
m ∈ N.
We will show that the Lipschitz property is still preserved for
pm . Let us take arbitrary different frame indexes m and m′
(�m = |m − m′| ≥ 1). Applying Eqs. 1 and 3, we get:

d(pm , pm′ ) = d(V (vm·step), V (vm′ ·step))
≤ d(vm·step, vm′ ·step) + Q ≤ L · step · �m + Q

≤
(
L+ Q

step

)
· step · �m

Q′= Q
step= (L + Q′) · step · �m

(4)

��
The proof shows that (L + Q′) · step = L · step + Q

expresses the limit of change between consecutive frames.
Thus, a faster pace of change can be compensated by lower
step and Q values—which are limited only by the cur-
rent technical development (highest possible frame rate and
image quality). Already now, Q ≈ 0, since the human eye
often perceives videos as real-colored and cannot distinguish
pixels.

Continuing, we will discuss the video frames in terms of
their ground truth (GT) values, i.e., the actual value of the
classified property. We will denote the ground truth of the
framem as Gm and its OFA classification as Om (Gm, Om ∈
{0, 1}). From the continuity of the analyzed video, we get that
the closer two frames are in the video sequence, the bigger
the chance that their classes in the GT are equal.

At this point, it is important to note the connection between
Lipschitz continuity and the real-life origin of the analyzed
videos. Observed real-life objects in a typical 25FPS video
remain visible over multiple frames. A single positive out-
lier represents an error rather than an object (e.g., person)
appearing for 0.04 s.

Wewill consider a frame’s neighborhoodas a timewindow
of size w (odd, therefore w = 2k + 1 for a k ∈ N). We
adjust its size to be much smaller than the length Z of the
current scene (sequence of consecutive positive or negative
classifications in the GT). Z is a random variable with an
unknown distribution. Due to the continuity of the video, we
assume that its average value is significantly larger than 0.
We choose a maximal window size wmax that ensures that
the vast majority of windows are fully contained in a single
scene:

P(wmax 
 Z) ≈ 1. (5)
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Fig. 2 Example calculations for Eqs. 7 and 8 (w = 7, R1/1 = R0/0 =
0.85):adistribution ofwindowswith a given number of 1 s,b confidence
of correct FSA corrections (black line) compared to theOFA confidence
(0.85)

For two given values c1, c2 ∈ {0, 1}, we define the classi-
fication correspondence as:

Rc1/c2 = P(Om = c1 | Gm = c2). (6)

These values can be estimated for a given OFA algorithm as
the corresponding statistic of its performance on the GT data.

The probability of having a given number s of ones in a
windowofwidthw = 2k+1 comes from the observation that
for both possible versions of the underlying GT the number
of ones has a binomial distribution:

P

(
m+k∑

i=m−k

Oi = s

)

=
∑

c∈{0,1}
P

(
m+k∑

i=m−k

Oi = s|Gm = c

)
P(Gm = c)

= ∑
c∈{0,1}

( s
w

)
Rs
1/c · Rw−s

0/c · P(Gm = c). (7)

Continuing, we will establish the confidence of a decision
indicated by a majority vote in the time window. It can be
defined as the probability of the underlyingGTbeing equal to
0 or 1 given that thewindowcontains s positive classifications
(using Bayes’ theorem):

P

(
Gm = c |

m+k∑
i=m−k

Oi = s

)

=
P

(∑m+k
i=m−k Oi = s | Gm = c

)
P(Gm = c)

P
(∑m+k

i=m−k Oi = s
) . (8)

The OFA algorithms improved by the proposed FSA
method are expected to have a relatively high accuracy, since

FSAw,λ,A algorithm:
Input: Sequence of n OFA classifications O[1 . . . n]
Output: Sequence of n FSA classifications C[1 . . . n]
Parameters: w, λ, A
Algorithm:

1. Init C with O
2. For every window of width w in O:
3. Perform a weighted vote on the classification of the

central frame with weights from the distribution Dλ

4. If the vote result exceeds the acceptance threshold A:
5. Change the central frame’s classification in C

6. return C

Fig. 3 FSA pseudocode

their output is the sole base for any further reasoning. Exam-
ples of applying Eqs. 7 and 8 are presented in Fig. 2. The
numerical values provide a strong indication for leaning
toward the majority result when deciding on the window
center’s classification assignment. The confidence of such
a decision is at least at the level of OFA classifications.

In the next section, we will propose a new method based
on the observations made above. The proposed method will
be a more flexible, extended version of the majority vote
considered so far, with two additional controlling parameters
taken into account.

3 The FSA algorithm

The proposed approach corrects the results of a preliminary
OFA classification.We have named it Frame Sequence Anal-
ysis (FSA). It is presented in Fig. 3. The controlling variables
w, λ, A have been specified as parameters of the algorithm:

– w: window width, 5 ≤ w ≤ wmax;
– λ: distribution parameter, 0.2 < λ ≤ 1;
– A: acceptance threshold, 0.5 ≤ A < 1.

For any considered domain, the optimal values of those
parameters may differ; therefore, they need to be estab-
lished by means of discrete optimization. The minimal value
λ = 0.2 has been set, because lower values of the parameter
correspond to reducing the window size.

The significance distribution Dλ has been introduced to
represent the decreasing relevance of frames further away
from the window’s center. It is a linear relation, adjusted by
the parameter λ:

Dλ(i) = 1 − (1 − λ) · |i |
k

for i ∈ {−k, . . . , k}. (9)

The weighted vote result for frame m is equal to:

vote =
∑k

j=−k Dλ( j)Om+ j∑k
j=−k Dλ( j)

(10)
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(m is the index of the central frame in a shifting window,
therefore: k ≤ m < n − k). If the result of the vote exceeds
the acceptance threshold A, then the result of the vote is
deemed significant and its indicated value is assigned as the
frame’s classification (possibly changing the original value).
Otherwise, the original OFA classification is kept. It is worth
noting that by taking A = 0.5 and λ = 1 we acquire the
majority voting variant discussed in the previous section.

4 Experiments

Classifications of images in videos are evaluated either in
terms of frame-wise classification accuracy or scene bound-
ary matching (with a certain lenience in terms of transitions
between scenes). For our evaluation,we use four qualitymea-
sures, describing different error rates:

– FNR: false negative ratio (computed R0/1 value)
– FPR: false positive ratio (computed R1/0 value)
– MBRB : missing (scene) boundary ratio
– IBRB : invalid (scene) boundary ratio,

where B is the number of frames by which a detected scene
boundary’s location can differ from its corresponding posi-
tion in the GT. If a match is found within that distance, it is
considered to be a correct detection. We define the values of
MBRB and IBRB as follows:

MBRB = # (Missed Scene Boundaries)

# (Scene boundaries in GT)
, (11)

IBRB = # (Invalid Scene Boundaries)

# (Detected scene boundaries)
. (12)

An example of the evaluation of scene matching is presented
in Fig. 4. The acquired error rates areMBR2 = 1

2 and IBR2 =
3
4 .

The value of B expresses an acceptable discrepancy in
scene boundary locations. Thus, it is considered to be domain
specific.Consequently, there are four numerical valueswhich
vary between test executions:

– B: the scene boundary tolerance,
– w, λ, A: the controlling parameters of the FSA algorithm

presented in Fig. 3.
Another variable of the experimental procedure is the test
data. We have considered five sets of recordings:

– artificial stream with moving objects: slightly (AM1) or
very (AM2) distorted,

– Chokepoint [22] first (CP1) and second (CP2) portal,
– Traffic Lights Recognition [23] (TLR).

0-1 boundary 1-0 boundary

B=2 B=2 B=2 B=2 B=2 B=2

0-1 boundary
(1 < B frames away - match)

no match
(missing boundary)

no match
(invalid boundary)

no matches
(2 invalid boundaries)

ground
truth

classification

Fig. 4 Scene boundary tolerance example for B = 2

The artificial stream is a generated video sequence containing
a drawing of a person and moving objects which overlap
it. It is generated with a set of predefined distortions (blur,
noise, random artifacts), to evaluate the influence of the video
quality on OFA and FSA results. Chokepoint and TLR are
open annotated datasets.

The characteristics of each of the datasets are different.
The artificial stream contains regular movement of a limited
number of objects and moderately long scenes. The Choke-
point recordings contain multiple short scenes, often with
people passing through the view of the camera rapidly one
after another. The TLR recording contains mostly very long
scenes. Furthermore, the resolution of this video is the small-
est.

Three OFA algorithms have been used as black-boxes,
providing input for our FSA schemes:

– for the artificial streams - openCV [24] silhouette detec-
tion (with Haar cascades),

– for the Chokepoint datasets - openCV face detection
(with Haar cascades),

– for Traffic Light Recognition - our implementation of the
algorithm presented in [23].

The TLR dataset contains multiple kinds of annotations
(green/yellow/red light or ambiguous). We have focused on
detecting green lights and left out the ambiguous scenes,
acquiring a binary OFA classifier.

The number of parameters allows us to perform a dense
search of the parameter values’ space. We consider best
parameter values for every quality measure separately, as
well as their combined root mean square.

The main point of interest of the testing procedure is the
improvement in accuracy introduced by the FSA scheme,
when it is compared with the underlying OFA algorithm.
First, considering the structure of the results, we want to find
relationships between parameters and provide guidelines for
the final experimentation. We start with performing a simple
exploratory analysis of the results acquired on the testing
datasets. This is an introduction for evaluating the algorithm
on the verification data.

The final experiment’s scheme is presented in Fig. 5. To
focus on the improvement our algorithm contributes to the
considered OFA algorithms, the given FSA results are pre-
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dataset
(video+GT)

OFA
algorithm
choice

OFAx

FSA
params
w, λ, A

FSAw,λ,A

OFA
results

FSA
results

evaluation

Improvement
ratio
FNR
FPR
MBR
IBR

Fig. 5 Procedure for evaluating OFA and FSA classifications
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Fig. 6 FPR and FNR measures changing with window size (empty
circle—OFA result)

sented as the ratio of every error type in the FSA output
compared to the OFA output.

5 Experiment results

The first step of the experiments has been the analysis of
the results acquired on training data. The ranges of possible
parameter values have been densely covered with test execu-
tions. First, pairs of measures have been compared with each
other for different values ofw in a simple majority vote. Fig-
ure 6 shows the most definitive result of those comparisons
(FPR/FNR). With an increasing w the measures improve
steadily until a value, after which the quality of the FSA algo-
rithmfirst stagnates and then changes chaotically. In contrast,
for increasing values of w the IBR changed chaotically and
MBR increased.

The values shown in Fig. 6 are two-dimensional; there-
fore, only a partial order can be introduced among them. The
black markers represent the minimal results (i.e., there are no
other window sizes acquiring a better improvement in terms
of both measures at once), which are better than the original
OFA. Those are compared with the typical sizes of scenes
(ranges from the first to the third quartile) in the correspond-
ing recordings in Table1. The range of the best values of w

correlates with the distribution of the scene size, but is also
influenced by the quality of the data.

In Fig. 7, the best parameter values for each measure and
some of their combinations have been presented. The results
for A show that all measures besides MBR indicate a strong

Table 1 Best window sizes for scene lengths

Test case AM1 AM2 TLR CP1 CP2

Scene lengths 92–154 92–154 469–1425 57–79 53–80

Best window sizes 15–17 15–79 ≥99 13–23 7–23

0.6

0.8

1.0

A
AM1
AM2
TLR

CP1
CP2

0.25

0.50

0.75

1.00

λ

Combined noMBR FPR FNR MBR10 IBR10

25

50

75

100

w

Fig. 7 Best parameter values for given measures. Mean and standard
deviation range for best 25 results for each case

preference for lower values of A, which corresponds to their
interpretations.

Intuitively, we expected the MBR measure to provide a
soft limiting effect, so that the FSA step would not smoothen
the results too much. It has been designed symmetrically
to IBR, but has been shown to be much more unstable. In
most tests, its value changed significantly, dominating the
combined measure. The reason is as follows: The initial
OFA classifications had been heavily segmented. Therefore,
boundaries were rarely missing, which resulted in perfect
MBR values in the initial data. Due to this strong influence,
we conclude that its significance should either be limited or
its value provided only as an informative measure after opti-
mizing for the other measures.

To see the underlying relation between the optimal param-
eters, a plot of the best performing100parameter sets for each
case is shown in Fig. 8.

Finally, parameter sets performing best on training data,
have been evaluated on verification data and presented in
Table2. In virtually all cases the acquired error rates have
been reduced. Figure9 shows exemplary cases from CP2,
where theFSAapproach succeeds and fails in correcting clas-
sifications, what confirms two of our presumptions. First, the
OFA detector makes short mistakes due to the variability of
the appearance of detected objects in real-life videos—which
is why it is susceptible to the FSA improvement. Secondly,
the FSAmethod is not able to correct long-term errors, espe-
cially when the OFA algorithm fixates on generating false
detections in a semi-static background.

Thus far, no universal methods have been proposed which
could be compared with the FSA approach. Results in dif-
ferent works are comparable only to a limited degree, as
evaluations are performed on different datasets, other under-
lying algorithms and with domain-specific measures. The
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Fig. 8 Parameter relations (B = 10, best reduction of combined FPR,
FNR and IBR; black—best result) for every dataset

temporal filtering in [10] improved a hand gesture recog-
nition rate from 84.7 to 87.5%. The ratio of detections
overlapping GT in [9] was improved 4% by a median tempo-
ral filter and 10% by a global HMM method. In [11], it was
stated that outlier post-processing “slightly lowers” the FNR.
In a different field (pedestrian reidentification [12]), but with
an approach related to ours, an increase in the F-score values
from 15.5 to 19.2% and from 25.6–28.1% to 33.5–38.9% has
been acquired.

The results acquired by the FSA approach are of a similar
magnitude to those acquired by these methods. This shows
that the FSA step correctly and universally utilizes the tempo-
ral relations in the video. Also the fact that the FSA approach
was able to improve all of the considered OFA algorithms
(which are industry standard or state-of-the-art representa-
tives) is a strong confirmation of the FSA approach and its
universality.

Table 2 Quality results: FSA to OFA comparison

B Dataset FSA to OFA error ratio

Measure

FPR FNR IBRB

5 AM1 0.92 0.89 0.76

AM2 0.78 1.00 0.96

TLR 0.97 1.02 1.00

CP1 0.86 0.99 0.61

CP2 0.95 0.98 0.65

10 AM1 0.83 0.88 0.75

AM2 0.94 0.97 0.98

TLR 0.56 0.87 0.93

CP1 0.79 0.92 0.22

CP2 0.96 1.00 0.58

20 AM1 0.83 0.90 0.35

AM2 0.96 1.00 0.99

TLR 0.56 0.87 0.91

CP1 0.79 0.92 0.13

CP2 0.95 0.99 0.24

50 AM1 0.71 0.91 0.35

AM2 0.69 1.06 0.23

TLR 0.56 0.87 0.88

CP1 0.79 0.92 0.07

CP2 0.95 0.99 0.16

su
cc
es
s FN

FP

fa
ilu

re

FN

FP

Fig. 9 Example OFA outputs: FSA success and failure cases

6 Conclusions

The proposed FSA method allowed to efficiently improve
the considered algorithms, which classify images in video
streams. It uses the temporal information in classification
sequences, which in real-life videos are considered to repre-
sent underlying continuous processes. Therefore, the same
approach can be applied to numerous other OFA algorithms.

We have presented a systematic and complete approach to
defining and analyzing the properties of FSA schemes. After
extending a simple majority voting scheme with additional
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parameters (significance distribution Dλ and acceptance
threshold A), we have shown how they influence all qual-
ity measures. In all cases, setting A close to 0.5 led to the
best results. The best frame significance distribution parame-
ter λ varied between cases, concentrating in different ranges
of possible values. Other distributions can be analyzed, as
our method allows to embed them. The relationship of the
optimal window size w with the scene lengths’ distribution
fulfills the assumption from Eq. 5.

Our results have allowed to establish the applicability of
the FSA method. It performs best in videos of non-perfect
quality, where single OFA classifications are affected by dis-
tortions. In cases with a very high OFA accuracy level, the
FSA step’s effect would be smaller.

We propose continued experiments with different distri-
butions and other parameterizations of the FSA scheme.
Furthermore, an extended approach can be developed, which
determines the significance distribution in the shifting win-
dow empirically, by measuring the similarity of frames. This
could improve the FSA method quality, at the cost of com-
putational efficiency.

We also propose to consider multi-categorical classifica-
tions, by using a binary encoding (“1 of n”—one-hot) of the
category labels. A method of generalizing the FSA approach
can be conceived, where the FSA step operates on single
binary positions of the encoded classification before a label
is chosen.

Finally, also further experimentation with new datasets
and OFA algorithms is encouraged, to develop universal
guidelines for the method’s application.
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